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A Practical Method of Designing RC Active Filters* 
R. P. SALLEN? AND E. L. KEYt 

N THE FREQUENCY range below about 30 cps, 
the dissipation factors of available inductors are 
generally too large to permit the practical design of 

inductance-capacitance (LC) or resistance-inductance- 
capacitance (RLC) filter networks. The circuits de- 
scribed in the following pages were developed and col- 
lected to provide an alternative method of realizing 
sharp cut-off filters at very low frequencies. In many 
cases the active elements can be simple cathode-follower 
circuits that have stable gain, low output impedance and 
a large dynamic range. 

GENERAL METHOD OF ACHIEVING ARBITRARY 
TRANSFER CHARACTERISTICS 

A passive two-terminal pair network consisting of re- 
sistive and capacitive elements has an open-circuit 
transfer ratio of the form 

N(s) 
i;(,) = - = 

a&m + urn-p--l + . ’ . + a1s + a0 

D(s) bmP + bm-lsm-l + . * . + b1s + bo 
’ (1) 

where s is the complex frequency variable (a+j,), the 
ai and bi are real positive constants, and the bi are non- 
zero. All the poles of G(s) lie on the negative real axis 
of the s-plane, a property that severely limits the appli- 
cation of passive RC circuits to sharp cut-off filters. 

The unbalanced (n+l)-terminal pair RC network 
shown in Fig. 1 can be characterized by the relation 
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Fig. l-The (n+l)-terminal pair network. . 

* This paperisanabridged version of Tech. Rep. No. 50, published 
by Lincoln Lab., M.I.T., Lexington, Mass., on May 6, 1954, under 
same title. Reference may be made to that report for useful design 
charts of Butterworth and Tchebycheff filters. The research in this 
document was supported jointly by the Army, Navy, and the Air 
Force under contract with M.I.T. 

t Lincoln Lab., Mass. Inst. Tech., Cambridge, Mass. 

e0W = 
elNl(s) -t e&ds> + . . + enNn(s) 

D(s) 
: (2) 

where the individual transfer ratios, [Ni(s) ]/ [D(S)], 
have the same properties ascribed to (1). 

If active elements are added to the multitermmal net- 
work in the manner shown in Fig. 2, the over-all transfer 
ratio, [co(s)]/ [cl(s)], is given by 

KmVds)+K~zNz(s)+ . . +KdVds) 

G(s) = D(s) - [Ko1Nl(~)+Ko2Nz(~)+ . . +Ko,N,($~ (3) 

Fig. 2-Multi-terminal active network. 

Generally speaking, it is possible to select an appro- 
priate network and a series of constants Kii, Koi so that 
the poles and zeros of G(s) can be placed anywhere in 
the complex plane. (Complex critical frequencies will 
occur, of course, in conjugate pairs.) Under certain con- 
ditions, all transfer functions of a given degree can be 
achieved with one fixed network by selection of appro-- 
priate K’s. 

Actually, a maximum of four active elements are re- 
quired for the circuit of Fig. 2; two amplifiers for each 
of the two sets of K’s, one with positive gain, one with 
negative gain. The remaining values of Kli and Koi can 
be obtained by means of passive attenuators. 

Any transfer voltage ratio ordinarily realizable by 
means of passive RLC networks can be achieved with 
the circuit of Fig. 2. In addition, a variety of oscillators 
can also be characterized by the transfer function G(s) 
in (3). 
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In most cases it is desirable to limit the application 
of the general circuit of Fig. 2 to transfer ratios with 
only two conjugate poles. Any given transfer ratio can 
be achieved by a cascade of simpler circuits of this kind 
and one or more passive RC networks. 

The second-order transfer function, 

G(s) = 

u2s2 + UlS + a0 

bzs2 + bls + bo ’ 
(4) 

can be realized by means of the circuits of Fig. 3, which 
are special cases of that of Fig. 2. The arrangement of 
Fig. 3(b) includes two active elements that may be 
separate amplifiers or one amplifier with two input 
points. The RC passive networks generally have two 
capacitors and two resistors each, and a circuit-design 
procedure is available that affords one considerable con- 
trol over the orders of magnitude of the components. 
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Fig. 3--Second-order active networks. 

The design of circuits of the form illustrated in Fig. 3 
can be facilitated by means of the catalog of possible 
circuit arrangements that has been compiled and is 
given in a later section. There are probably other useful 
circuits of this form that could be added to the catalog, 
but for most applications the present list of eighteen 
networks will be found adequate. 

GENERALAPPROACHTO NETWORK DESIGN 

The basic objective of a design procedure based on 
the network catalog is the control over the locations of 
the poles of the transfer voltage ratio (4). These poles 

are the zeros of the denominator polynomial which, for 
convenience, can be normalized in the following manner. 
We have 

Do(s) = [D(s) - KoN(s)] = bzs2 + bls + b. (Figs. 3 and 4) 

= bo[()1 + (,>,+I], 

where 

(5) 

h 
and d = -== * 

dbobz 

Fig. 4-High-pass filter circuit. 

In the s-plane, the zeros of Do(s) lie on a circle of 
radius w. and have a real part equal to -u!wo/2.’ The 
shape of the frequency characteristics of DO(S) are de- 
pendent only on the value of the parameter d; the con- 
stant wo determines their positions in the frequency 
domain, and bo determines the relative amplitude. The 
parameter wo can be given the physical interpretations 
“resonant frequency,” “cut-&f frequency,” etc., depend- 
ing upon the nature of the numerator of G(s). 

It is convenient, in designing a circuit for a given 
Do(s), for one to set wo = 1 radian per second temporarily, 
and to establish the required value of d. The network 
response can then be shifted in frequency to wo by divid- 
ing the resistive elements or the capacitive elements of 
the circuit by the desired value of wg. 

In most of the networks in the catalog, there are five 
basic design variables: two resistances, two capacitors, 

1 This is true only for dS2 when d >2, the zeros lie on the nega- 
tive real axis, a case that is not of present interest. 
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the gain K. The relationships between the variablgs 
that are independent of d are given with each network. 
Several additional parameters that have been found 
useful for designing a network for a given d include two 
products of a resistance and capacitance (designated 
T1 and Tz), the ratio of the resistances ,(p) , and the ratio 
of the capacitors (7). The establishment of a specified 
value of d is accomplished by means‘of two of these 
parameters and the gain K. With each network in the 
catalog is a short table that specifies, for a given choice 
of parameters, the appropriate group of design relations 
for d given at the end of the catalog. 

The form of the numerator of G(s) is determined by 
the particular network chosen for the function. In some 
cases the numerator constants can easily be established 
at the desired values; in others an attempt to do this 
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may severely limit the parameters affecting the value of 
d in the denominator and lead to an unsatisfactor:y cir- 
cuit design. In this case, the numerator polynomial can 
be realized by means of additional passive or active net.- 
works. A method of network design is discussed later. 

CATALOG OFSECOND-ORDER ACTIVE NETWORKS 
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DESIGN OF ACTIVE NETWORKS BY MEANS 
OF THE CATALOG 

While anyone may start with a given transfer function 
or with the networks in the catalog and work out his 
own method for selecting parameters, one approach has 
been found useful and is described here for those wishing 
to design such circuits most directly. In any event, it is 
strongly recommended that one work through at least 
one group of relations in the foregoing section to gain 
insight into their meaning. 

The basis of the general procedure suggested below is 
the necessity that the practical design of an active filter 
must be carried out within the litiitations imposed by 
the available components. Restrictions on the size of 
capacitors, number and complexity of amplifier stages, 
and requirements for variability are typical factors that 
impose practical circuit limitations and must be con- 
trolled. 

Realizing a Specified Value of d 

When a particular network has been selected, one 
chooses a set of two parameters-(p, T1), (p, T.J, (y, T1) 
or (y, T!J2-and locates the appropriate group of design 
formulas in the foregoing section. If the problem in- 
volves restrictions on the size of capacitors, then y is a 
useful parameter. On the other hand, if control of the 
resistance values is more important, one may use p. In 
general, TI and T2 are equally convenient parameters 
except where one of them determines a factor in the 
numerator of G(s). 

In the same section, each formula group includes: 
(a) The expression for d in terms of K and the two 

parameters (x, T), selected above (x stands for p or y, 
T for TI or T,); 

(b) The solution of the equation in (a) for T; 
(c) The solution of the equation in (a) for K; 
(d) The minimum value of K satisfying the equation 

in (a) with arbitrary x, positive T [Kmi, is obtained by 
solving the equation aK(d, x, T)/dT=O for T and sub- 
stituting the solution, TKmin into the expression for 
K(d, x, T) I; 

(e) The minimum value of x satisfying the equation 
in (a) with arbitrary K, positive T (x has a minimum in 
the same sense as K, above); 

(f) The value of expression (b) when K = Kmin 
(~=%nin is the same condition and both values of Tare 
the same in this case) ; 

(g) The value of expression (c) when d = 0 (the signifi- 
cance of Km,, is discussed below). 

In establishing the values of x, T and K, one selects 
any two of them arbitrarily (in an algebraic sense- 
with more purpose in the practical sense), subject to the 
algebraic limitations K 2 Kmi,, xz~,i,. The value of the 
remaining parameter is then determined from formula 

2 One might also employ (p, y) as design parameters, but this pair 
appears to be less useful than the others since it provides less control 
over the actual magnitudes of the components. 

(b) or (c). For most purposes, a recommended procedure 
is the assumption of x, K, and the solution for T. ’ 

As an example, suppose that a required 

G(s) = - 
s2 + 1.414s + 1 

is to be realized by means of network No. 3 in the cata- 
log, using one cathode follower as the active element. 
(The circuit to be used is shown in Fig. 4.) Suppose fur- 
ther that R2 (parallel combination of the two biasing 
resistors) shall be 1 megohm and that both capacitors 
shall have the same value. 

First of all, we shall choose (7, T2) as our design par- 
ameters, so that we may easily control the ratio of the 
capacitors and the value of R2. According to the catalog, 
Formula Group III for d is indicated. 

Setting y = 1, we have 

K = 4(1+ 7) - d2 
m,n 

4(1 + r> 

= 
4:2 - (1.414)2 

4.2 

= 0.75. 

If we set K = 0.9, a reasonable value for the amplifier of 
Fig. 4, then 

1 _ 4(1 + 4(1 - a 
- dZ 1 

1.414 4.2.(1 - 0.9) 

= 2(1 - 0.9) (1.414)2 1 . 
= 1.59,12.5. 

The expression for d in Formula Group III, d = (1 +r) 
/( T2) +T2(l -K), suggests that a choice of the smaller 
value of T2 above would resvlt in a more stable circuit, 
in that variations in the active element will have less 
effect on the value of d. 

Up to this point, we have R2=106, T2= 1.59, and 
Cl = Cs. Then, making .use of the relation TIT2 = 1, we 
find C,=C,=l.S9pf and R1=3.93X106. 

It can be stated as a general rule of thumb that 
values of d greater than 0.5 can be realized most easily 
and with the simplest circuits; as d approaches 0.2, more 
care becomes necessary in the circuit design. Finally, 
values of d of the order of 0.1 or less demand active ele- 
ments that are more complicated and highly stabilized, 
and passive elements that have been carefully adjusted 
within close tolerances. The latter values of d are not 
generally encountered in low-frequency filters. 

As stated it has been found most convenient to design 
second-order networks on the basis of 1 radian per 
second, and to make a subsequent shift of their charac- 
teristics to the appropriate frequency by altering the 
passive elements. The basic invariants under a fre- 
quency transformation of this kind are the parameters 
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p and y; as long as the ratio of resistors and the ratio of 
capacitors remain constant, the frequency character- 
istics of the networks will have the same shape. The 
necessary invariance of p and y indicates the technique 
for making filters with variable cut-off frequencies. 

Imperfections in the Active Elements 

It has been assumed, heretofore, that the active ele- 
ments of the networks in Figs. 2 and 3 and in the 
catalog possessed the ideal attributes: infinite input 
impedance, zero output impedance and stable gain. It 
is therefore important, in the design of an active net- 
work of this kind, for one to insure that the imperfec- 
tions in the amplifiers used do not appreciably deterio- 
rate the desired performance of the circuit. 

With regard to finite output impedance, it can be seen 
that in many cases the active elements drive a portion 
of the passive network through a resistive element. In 
this case, the design can be made to incorporate the out- 
put impedance in the resistive element and effectively 
neutralize its effects; 

On the other hand, where an amplifier drives a capaci- 
tive branch of a network, it is imperative that the out- 
put impedance be considerably smaller than any of the 
resistive elements of the network. This condition is most 
serious when the value of d is very small and the gain of 
the active element is close to + 1. The limitation of the 
amplifier output impedance to a reasonably small value 
will generally prevent any significant alteration of the 
network characteristics in the vicinity of the cut-off fre- 
quency(ies). On the other hand, the attenuation 
achieved in certain networks in regions well beyond cut- 
off will fall short of the expected value because the out- 
put impedance, though small, is still finite. This situa- 
tion has been observed in low-pass networks at high 
frequencies and in “notch” circuits at the null frequency. 
Behavior of this kind can best be investigated by a 
direct analysis of the particular circuit involved. Since 
only “very high frequencies” or “null frequencies” are of 
interest in this case, the analysis can be simplified by the 
assumption of these extreme frequency conditions. 
Under these circumstances, the output impedance 
should be negliglibly small in comparison with (1 -K) 
times the value of resistive elements of the networks. 
Fortunately, strict requirements of this sort do not oc- 
cur often in low-frequency filters. 

Another interesting departure of the active elements 
from the ideal is the drift in their gain. With most of the 
networks in the catalog (those with TIT, = l), the posi- 
tion of the transfer characteristics in the frequency do- 
main is independent of the active element; with a few 
others this is not so. In both cases, however, a drift in 
gain will result in a change in the actual value of d and 
in the shape of the frequency characteristics. It is often 
possible, as in the previous example, to reduce this de- 
pendence by an appropriate choice of parameters; but 

in any event the active gain should generally be at. least 
l/d times as stable as the expected value of d. 

There is another kind of instability often character- 
istic of active RC networks of the kind discussed here, 
namely, their tendency to become oscillators. This 
tendency is most prevalent when the value of d is small. 
Even in some circuits where the active gain is ostensibly 
free from drift, oscillations may be sustained by an 
amplifier that drives itself into a region of its character- 
istics where the gain is far greater than expected. 

A basic cure for a situation of this kind is the use of 
a feedback amplifier for the active element, such that 
the gain K is given by 

A 
K=-, 

1 + PA 
<(6) 

where A is the gain of the amplifier without feedback, 
/3 is the feedback ratio derived from passive elements. 
It is easily seen that the value of K is absolutely limited 
to l/p, regardless-of.the value of A. The simple cat:hode- 
follower circuit illustrated in Fig. 4 is an example of this 
kind of active element. The critical value of K for a 
given network, Km,,, is given at the end of the network 
catalog. A practical circuit design must include means 
for insuring that the active gain does not approach this 
value. 

Adjustment of Physical Networks 
When an active network has been constructed with 

physical components, minor adjustments in the ,latter 
are frequently required to achieve the performance in- 
dicated by the design. If the departure from the ex- 
pected characteristics is not large, the trimming of a 
single capacitor or resistor may suffice to properly posi- 
tion the network characteristics in the frequency do- 
main. The shapes of the characteristics are most easily 
altered by adjustment of the gain K. 

In the event that the departure from expected char- 
acteristics is large and is not accountable to the usual 
tolerances in components, one may look to the following 
as possible sources of error: miscalculation of design 
parameters, excessive amplifier output impedance, poor 
capacitor “Q”. It is unreasonable to ignore the “Q” of 
large paper capacitors in networks where the resistive 
elements are of the order of 1 megohm or more. 

When the network design includes an active element 
whose gain is slightly less than +l (e.g., the circuit of 
Fig. 4), it is usually difficult to measure or adjust the 
quantity (1 -K) directly with necessary accuracy. If a 
potentiometer is available for trimming the gain (as in 
Fig. 4), one may effect the adjustment in a simple 
manner by observing the over-all network amplitude- 
frequency response. The expected frequency-response 
characteristic for three transfer functions is illustrated 
in Fig. 5. Note that, although the latter are written on 
the basis of 1 radian per second, the frequency response 
is indicated at the true “resonant” frequency WO. 
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Fig. S-Amplitude-frequency response of several active networks. 

It is sometimes desirable to avoid the necessity for 
adjusting the elements of a network, particularly the 
passive ones, by their prior selection within specified 
tolerances. Although the subject of tolerances has not 
been studied in detail, the expected variability of the 
network characteristics will generally be of the same 
order of magnitude as the tolerances in the passive ele- 
ments, when the active elements are properly adjusted. 

Factoring a High-Order G(s) into Second-Order Transfer 
Ratios 

A third- or higher-order transfer ratio can be written 
in the form 

N(s) Nds) G(s) = - = - Nzb) N&l 

D(s) Dds) 
X ~X...XX, 

Dz(s) Dn(s) 
(7) 

in a variety of ways such that the transfer ratios, 
Gi(s) = [Nib) I/ [Q(s) I, contain first- or second-order 
polynomials with real coefficients in the numerator and 
denominator. 

All of the first-order denominators can be achieved 
with one passive RC network or by means of a cascade 
of isolated RC networks which, incidentally, can be 

Fig. 6-Circuit with transfer function, 

0 w. w- 

(c) C(s) = s 
s2 + ds + 1 

made to absorb some of the factors of N(s). The remain- 
ing second-order denominator polynomials are each 
identified with an individual active RC network of a 
form shown in the catalog. Practical considerations de- 
termine the pairing of the appropriate numerator factors 
with the second-order denominators; the relative prop- 
erties of the various networks are the key to the pairing 
process. 

No general rules can be given for selecting a group of 
second-order networks, for the choice is dependent on 
the particular requirements of the over-all circuit. How- 
ever, an example can be used to indicate the kind of 
reasoning one may employ in a given situation. Con- 
sider the transfer ratio 

G(s) = 
s2(s + 1) 

(s2 + 0.5s + l)(s” + s + l)(s + 2) ’ 

and assume we are interested in realizing G(s) with the 
simplest and most easily designed circuits possible. 

First of all, one passive network is indicated: either 
l/(s+2), s/(s+2) or (s+l)/(s+2). The possible second- 
order active networks will then have functions of the 
form 

S(S + 1) 1 S 
s2 + 0.5s + 1 s + 2 s2 f s + 1 

Fig. 7-One alternative to circuit of Fig. 6. 
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W(s + 1) 
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Fig. S-Active high-pass filter. 
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Fig. 9-Active bandpass filter. 
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1 s s2 

(9 + as + 1) ’ (3 + as + 1) ’ (s2 + df + 1) ’ 

s+1 s(s + 1) 

Or (3 + ds + 1) (S2 + as + 1) 

Because the last two functions contain zeros at s = - 1, 
the establishment of which will tend to inhibit the free- 
dom usually desired in the design for d in the denomina- 
tor, we may justifiably simplify the problem by incor- 
porating the zero at - 1 in the passive network. 

Reference to the catalog further indicates that net- 
works for numerators 1 and s2 are simple and can be 
achieved with positive gains less than 1. Finally, since 
the smaller values of d require amplifiers that more 
closely approximate the ideal active element, we shall 
associate the s2 numerator (network No. 3) with the de- 
nominator whose d = 0.5, so that RI can absorb the out- 
put impedance of the amplifier. A reasonable set of fac- 
tors of G(s) is then 

S2 1 
G(s) = 

s+l - . 
(9 + 0.5s + 1) x (s2 + s + 1) x s + 2 

A possible circuit is shown in Fig. 6 (page 83), to which 
an alternative is given in Fig. 7 (page 83) where the net- 
work is based on a different set of factors of G(s). 

In general, there are a great number of possible cir- 
cuits realizing a given G(s) that can be justified on the 
basis of particular requirements for simplicity, output 
impedance, stability and so on. 

Several additional points should be mentioned in re- 
gard to the cascading of second-order networks. First, 
a series of networks involving cathode-follower ampli- 
fiers as active elements, or a series of cathode-coupled 
amplifier networks, has a useful property whereby the 
bias given to the first amplifier can usually be carried 
over from stage to stage. This is important where re- 
sistive elements couple adjacent networks, since it 
avoids the need for coupling capacitors which, at low 
frequencies, might become fairly large. 

In designing a circuit, it is always desirable for one to 
employ only capacitors whose impedance-frequency 
characteristics help to determine the transfer ratio; i.e., 
capacitors that are part of the basic networks in the 
catalog. Other capacitors, which might be used solely 
for bypassing, coupling, etc., will usually have im- 
pedances negligible at the frequencies of interest and 
will be appreciably larger than those in the former cate- 
gory. In this regard, it is often advisable, when one is 
designing an active RC filter to be followed by amplifier 
circuits, to incorporate single zeros and poles of the G(s) 
into the amplifier interstage coupling networks, or even 
to add additional ones that can be cancelled by the filter 
network. 

Finally, where possible, amplifiers in a chain of active 
networks should be placed so that those with the small- 
est dynamic range appear last. 

Two examples of low-frequency filters that have been 
constructed and tested in the laboratory are shown in 
Figs. 8 and 9, on the previous page. 


