
Word Frequency Analysis
As an Authoring Tool

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2005 as GuruGram #45
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

As an author, I seem to have a disconcerting habit of reusing the same word or
phrase over and over again. Used once, a word can be concise and incisive. But
repeated use first devalues and then ultimately annoys. Especially "getting in a
rut" verbs or adverbs. Such as being or typically.

I feel any word has a normally expected use frequency. And that going beyond
that frequency in any document degrades the quality of whatever it is you are
trying to say. A word like superb is best used only a very few times. Unexpected
words such as plethora or sultry should be limited to a single use per story.

By doing some simple word frequency analysis, you can easily flag any problem
words and alter or correct them as needed…

WORD FREQUENCY ANALYSIS - Counting the number of times
each word in a document is used and correcting any excess.

Secondary uses of word frequency analysis include extracting the keywords and
search terms from websites. Or as an alternate method of spell checking that
easily flags wrongly used homonyms and such. Or for index generation. Or to
determine if your reading grade level matches your word lengths.

Word frequency analysis can easily done by using the superb PostScript general
purpose computing language. Especially since it is so good at reading virtually
any file format in any language. From most any sourcecode. The usual route is to
create your PostScript code as a standard ASCII textfile and then send it on to
Acrobat Distiller which you use as a host based PostScript interpreter.

I’ve written a WORDFRQ1.PSL PostScript utility that you might like to explore. It
presently works with .PSL sourcecode files based on my Gonzo Utilities. Since I’m
not sure exactly where I am going with this, the code may remain a little rough
around the edges. You should be able to readily adapt this code to Acrobat .PDF
or another display format.

— 44.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.mytranslate.com/wordfrequency.htm
http://www.mytranslate.com/wordfrequency.htm
http://www.cooper.com/alan/homonym_list.html
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/psutils/wordfrq1.psl
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/acrob01.asp

Depending upon your sourcecode and its format, extracting words can end up
somewhat subtle or difficult. Here are the usual steps involved…

EXPAND any document compression.

ISOLATE text strings from formatting commands.

REMOVE punctuation, linefeeds, and force lower case.

FILTER embedded commands and very short words.

COUNT the words used into a data structure.

SORT the data structure by word popularity.

ANALYZE the results for excessive word use.

Let’s look at these in turn. Details will vary with your document source…

EXPAND any compression

My Gonzo routines and most HTML code will not be compressed, so expansion
should not be needed. Acrobat PDF on the other hand, is usually Flate encoded
for compactness.

Your first step to open a .PDF doc for word frequency analysis would be to get an
uncompressed output. You can do this by printing to disk as level 1, by using a
disability output option, by using FLATEVUE.PDF in my GuruGram library, or by
using the newer and much better UcompressPFD.api routine on the Acrobat SDK
Software Development Kit detailed in STARTSDK.PDF. Which also can be found
in my GuruGram library.

ISOLATE text strings

Except for ordinary text files, your source doc will probably be a mix of printable
words and embedded formatting and layout commands. Your next goal should
be to extract only those "words" in your doc that are actually going to appear on
screen or in print. In the case of a HTML page, chances are you can remove most
of the unwanteds by eliminating anything between pairs of < and > brackets.
Other sources may require wildly different techniques.

For my Gonzo .PSL source files and for an uncompressed Acrobat .PDF file, your
PostScript strings will often be identified by pairs of (and) parenthesis that will
define a PS string type.

The PostScript token operator can be especially useful for stripping out only your
prinable strings. Here is an example from WORDFRQ1.PSL that also should be
adaptable to general .PDF word extraction…

— 44.2 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/glib/flatvue.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.adobe.com
http://www.adobe.com
http://www.tinaja.com/glib/startsdk.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/psutils/wordfrq1.psl

/extracttextstrings { 2000 % set looping limit
 {dup length 1 gt { % till string empty
 token % extract token
 /donex false store % clear exit flag
 {dup type (stringtype) eq % is token a string?
 {getwordsfromstring} % yes, process words
 {pop} ifelse } % no, get next token
 { /donex true store} % set exit flag
 ifelse } % if token is found
 { exit} ifelse % if string length > 0

 donex {exit} if % force exit if done
 } repeat % loop if not
 } store

In normal use, a string that holds the .PSL page objects gets placed on the stack
and sent to this routine. Strings representing the grouped page words are then
isolated and sent to getwordsfromstring for further processing. Similar code
should be useful to extract .PDF line strings.

Tokens are extracted one at a time from the input string. If a stringtype, they get
output, rejecting all other commnds. The donex flag lets you exit from a loop
within a loop. Input data longer than 65K can be handled by going to a file read
rather than a string input.

REMOVE punctuation, linefeeds, and embedded codes.

Two stages of processing will normally be needed to convert the word strings into
individual words. In the first of these, linefeeds and carriage returns and tabs are
converted to spaces. An ending space is also added. It may also be desirable to
switch to all lower case characters…

To REMOVE carriage returns, linefeeds, or tabs, convert
any decimal 9, 10, or 13 string ASCII values to 32. Add
an extra ending 32.

To CHANGE upper to lower case, ADD 32 to any decimal
string ASCII value in the range of 65 to 90.

After spaces have been substituted for other formatting, the individual words can
be extracted for further second stage processing.

Perhaps like so…

— 44.3 —

/getwordsfromstring {
 mark exch % start array
 {dup dup 10 eq exch % lf to space
 13 eq or {pop 32} if % cr to space
 dup dup 65 ge exch % force lower case
 90 le and {32 add} if
 } forall
] makestring % array to string

 30000 { % word extraction loop
 () search { exch pop
 procword}{pop exit}
 ifelse} repeat
 } store

Individual words are then output on the stack to procword for further processing.
As before, makestring is our disgustingly elegant array to string converter…

/makestring {dup length string dup /NullEncode filter
3 -1 roll {1 index exch write} forall pop} def

FILTER commands and very short words.

At this point, each printing word has been individually extracted from the page
strings. In the case of my .PSL files using my gonzo utilities, these words may still
have embedded font changes or url links attached to them. Our second removal
stage leaves only the isolated lower case word for further processing. Using this
higher level sequence…

/filterword {
 striptrailinggonzo % remove url links
 striptrailingpunct % remove trailing punctuation
 striptrailingfontchange % remove trailing font change
 striptrailingpunct % and again

 4{stripleadingfontchange % remove leading font change
 } repeat

 dup length 3 gt % word more than 3 chars?
 {gotone}{pop} ifelse % yes, process
 } store

— 44.4 —

http://www.tinaja.com/post01.asp#gonzo

Helped along by these code details…

/striptrailinggonzo { % remove url links
 (l/) search {exch
 pop exch pop} if
 } store

/striptrailingfontchange { % remove post font changes
 dup length 3 ge {
 dup dup length 2 sub
 get 124 eq {dup length
 2 sub 0 exch getinterval
 } if } if } store

/striptrailingpunct { % remove post punctuation
 dup length 3 ge {
 dup dup dup length
 1 sub get dup 46 % periods

 eq exch 44 eq or % commas
 dup exch 188 eq or % ellipses
 exch 208 eq or % em dashes

 {dup length 1 sub % shorten by one char
 0 exch getinterval}
 if } if } store

/stripleadingfontchange { % remove pre font changes
 dup length 3 ge { % must be long enough
 dup 0 get 124 eq { % vertical shash?
 dup length 2 sub % remove first two chars
 2 exch getinterval}
 if } if } store

Words less than three characters are ignored. Additional filtering could be added
here to block very common words. But these are also likely to be used in excess,
so I’ve purposely left them all in.

COUNT the words used into a data structure.

At this point, each word has been isolated. We are finally ready to place the words
in a data structure and count them.

A dictionary is a good initial choice because PostScript’s known command does
fast and convenient searches. We’ll use a /word nn format where /word is the
name of the word and nn is the word count.

— 44.5 —

If the word is not known, we add it to the dictionary with a count of one. If the
word is known, we bump the count of the existing entry…

/gotone {cvn /curword % change word to name
 exch store
 worddict curword known % is name in worddict?

 {worddict dup curword % yes, bump count
 get 1 add curword exch
 put}

 {worddict begin curword % no, add new
 1 def end } ifelse
 } store

Note that worddict has to be previously defined with a /worddict 100 dict def.

SORT the data structure by word popularity.

PostScript dictionaries do not sort very well because of the hashing used for fast
access. So, we will convert to a second data structure that we have used quite a
few times before. This will be an array of arrays, with each subarray having two
entries of [(word) nn], where nn is the count.

Format conversion will be handled by our upcoming reportworddict routine. We
have looked at several PostScript sorts in our previous GuruGrams. This plain old
bubble sort by popularity should work just fine…

/popbubblesort2 { /curmat1 exch store curmat1 length
1 sub -1 1 {curmat1 0 get exch 1 exch 1 exch {/posn exch
store curmat1 posn get 2 copy 1 get exch 1 get lt {exch}
if curmat1 exch posn 1 sub exch put} for curmat1 exch
posn exch put } for curmat1 } bind store

ANALYZE the results for excessive word use.

A reportworddict routine can combine data reformatting, sorting, and set up the
actual output reporting…

/reportworddict {mark % start new array
 worddict { exch /cn % save the name
 exch store % save the count
 /cv exch store

— 44.6 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/gurgrm01.asp

 mark cn 100 string % name to posn 0
 cvs cv] % count to posn 1
 } forall] % complete array

 popbubblesort2 % sort array by count

 { dup 1 get 3 ge % start log report
 {formattedprint}{pop} % using formatter
 ifelse} forall
 } store

Your formattedprint can go to the Distiller log file or can be written to a fancier
disk file. Here is a simple log reporter…

/formattedprint {dup 0 get /wordx exch store 1 get /num
exch store (jn) wordx mergestr (-) mergestr num 10
string cvs mergestr print flush

Which borrows this mergestr string merger from my gonzo utilities…

/mergestr {2 copy length exch length add string dup dup
4 3 roll 4 index length exch putinterval 3 1 roll exch
0 exch putinterval} def

An Example

Our WORDFRQ1.PSL utility includes a tempstring collection of the three printing
pages of AZAUCT1.PDF found in GuruGram #44. Running the utility produces
these (and lesser) word frequencies in your output log file…

auction 27 sales 7 many 5 houses 4 several 3
auctions 27 while 6 some 5 surplus 4 digital 3
arizona 18 does 6 find 4 sierra 4 listings 3
their 13 have 6 also 4 based 4 community 3
ebay 12 items 6 tucson 4 help 4 good 3
with 11 other 6 school 4 resource 4 library 3
here 11 your 5 typically 4 area 3 gurugram 3
college 8 this 5 often 4 along 3 found 3
yard 8 work 5 well 4 utility 3 looked 3
these 8 that 5 estate 4 from 3 postscript 3

— 44.7 —

http://www.tinaja.com/psutils/wordfrq1.psl
http://www.tinaja.com/glib/azauct01.pdf
http://www.tinaja.com/gurgrm01.asp

We immediately see that our subject matter of Arizona Auctions is way
overloaded. But this may be tricky to reduce because most of the references
needed have one or both words in them. Still, any additional uses should be
ruthlessly stomped out.

there and these also seem to have a tad too much use. Two "in a rut" words
down on the list are based and typically. And are in my usual problem area.
other may be near the edge. While yard appears a bit high, it is a needed
modifier to this story.

A Caution

Word frequency analysis can be a most useful tool to make your work more
readable and more concise. It is also extremely useful for index generation,
extracting HTML keywords, and checking your reading grade level.

Just be sure you don’t go too far the other way. An author has a bad case of
Roget’s Syndrome when they use the wrong word in the wrong domicile.

Reduce any excessive word usage as best you can. But be sure to carefully avoid
synonoyms for synoymns sake.

For More Help

I’m working on an upgrade that should let you work directly with output Acrobat
PDF files. By reading input docs of any length and writing to an output reporting
diskfile. This may be the subject of a future GuruGram. It can also be made
available to you on a Custom Consulting basis.

Additional GuruGrams are found here, PostScript topics here, and Acrobat info
can be found here.

Further GuruGrams await your ongoing support as a Synergetics Partner.

— 44.8 —

http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

