
Don Lancaster

Vector-to-Step
Conversions
An introductory tutorial.

THE
GURU’S LAIR

Rasterization of vectors

into discrete orthogonal

steps can be handled by

brute force, by applying

Breshenham’s Algorithm,

or by using table lookup.

O

1 Copyright c 1997 by Don Lancaster (520) 428-4073 www.tinaja.com All commercial and all electronic media rights fully reserved.

ne of the most
fundamental needs

for video displays or
robotics or laser printers

is vector-to-step conversion.
Where a random line or motion

direction gets broken down into the
precise number of needed pixels or
incremental robotic steps.

As figure one shows us, a vector
can input at any arbitrary angle. The
needed output steps get locked into
specific x and y, or "east-west" and
"north-south" positionings.

There are several methods that
can do vector-to-step conversions for
you. Extensions of these algorithms
let you do higher dimensions, curved
paths, circles, and even provide for
image or object rotations.

Which method you pick depends
upon your choice of language, your
programming skills, your available
system resources, and the speed of
operation. In a 2-D or a 3-D animated
graphics rendering, speed might be of
utmost importance. But speed might
not be so big a deal on a wood router
that is chomping through a sign.

A high level language might offer
ease of programming and end user
friendliness; a lower level one might
increase speed and reduce costs. But
severely limit your use of fancy math

or trig functions. In a low end PIC
robotic, minimizing memory space
or costs might dominate.

Basic Conversion
It is often simplest to break the

2D vector-to-step conversion process
down into the eight different cases of
figure one. Solve one of these cases,
and the rest should fall in place.

Consider octant zero, going from
0 to 45 degrees in math space. Or
east to northeast in geographic space.
Also assume a proc which accepts x
and y values as inputs and provides
discrete pixels or locked mechanical
steps as its outputs.

In octant zero, your value for x
will always be positive. Your value
for y should also always be positive.
Further, x will always end up greater
than or equal to y.

In this octant, then, you always
will step by x. You may step by y if
doing so gives you less error.

One solution here is to always
take the next x step. Then measure
your errors of stepping by y or not
stepping by y. And taking whichever
result gives you the error with the
lowest absolute value.

Alternately, you can tentatively
step by one half of y and see if you
end up above or below the required
vector. If you are low, step both x
and y. If high, step only by x.

You end this process when you
have used up all the needed x steps.
The other seven octants are similar,
except that y might dominate x or
negative values may be involved.

A complete set of my PostScript
procs that do v-s conversions are in
http://www.tinaja.com/psutils/flutools.ps
on my Guru’s Lair web site. These
can be especially useful to bring the
full power of PostScript to low end
PIC robotic controllers.

More on this in POSTFLUT.PDF
and HACK83.PDF.

Any vector-to-step routine might
create positioning and closure errors
caused by those discrete steps. Your
high level software should keep track
of any fractional pixels for you. Your
high level code can also accomodate
fancier options, such as grid locking
or adjusting optical widths.

http://www.tinaja.com/glib/postflut.pdf
http://www.tinaja.com/glib/hack83.pdf

2Copyright c 1997 by Don Lancaster (520) 428-4073 www.tinaja.com All commercial and all electronic media rights fully reserved.

Figure 1 – Some vector-to-step fundamentals along with a brute force algorithm.

The goal of vector-to-step conversion is to change a diagonal tool path or a
slanty line on a screen or printer bitmap into discrete unit steps that travel
only in north-south or east-west directions…

vector
input

raster (color) -or-
step (black)

outputs

closure
error

(east - west axis)

(n
or

th
-s

ou
th

 a
xi

s
)

First, you correct your input vector so it starts at your actual initial position.
This prevents closure errors from piling up. If not already done, you then
resolve your input vector into its x and y components. For a vector of length Z
and an angle of θ…

 x = Z cos (θ) and y = Z sin (θ)

Next, calculate the slope y/x and save it for later use. Then round x and y off
to the nearest integer values to get the actual steps needed. Compare the
signs of x and y, and the absolute sizes of x and y to find an octant…

x+ y+ x>y octant #0 (000 to 045 degrees)
x+ y+ x<y octant #1 (045 to 090 degrees)
x- y+ x<y octant #2 (090 to 135 degrees)
x- y+ x>y octant #3 (135 to 180 degrees)

x- y- x>y octant #4 (180 to 215 degrees)
x- y- x<y octant #5 (215 to 270 degrees)
x+ y- x<y octant #6 (270 to 315 degrees)
x+ y- x>y octant #7 (315 to 360 degrees)

If you are in octant #0, you always step by +x and sometimes step by +y. To
determine whether a +y step is needed, multiply the total number of x steps
so far by the slope. If the current y total is more than 0.5 steps under this
value, also add a new y step.

Here are the rules for the other octants…

 In octant #0, always step by +x and sometimes step by +y.
 In octant #1, always step by +y and sometimes step by +x.
 In octant #2, always step by +y and sometimes step by -x.
 In octant #3, always step by -x and sometimes step by +y.

 In octant #4, always step by -x and sometimes step by -y.
 In octant #5, always step by -y and sometimes step by -x.
 In octant #6, always step by -y and sometimes step by +x.
 In octant #7, always step by +x and sometimes step by -y.

Bresenham’s Algorithm
I was happy with my v-s routines

until I discovered that I really was
klutzily and inefficiently going over
well plowed ground.

An often optimum solution here
is known as Bresenham’s Algorithm.
It first appeared in the IBM Systems
Journal, 4 (1) 1965, p 25-30. Under the
Algorithm for Computer Control of a
Digital Plotter title.

The algorithm appears in figure
two. By creating a double-sized error
value, only simple adds and shifts
are needed for the calculations. The
double sized error function lets you
test for a simple sign rather than for
a half unit change.

In octant zero, first calculate the
error value of 2y - 2x. On each step,
you test and modify your error value.
Then you decide where to go…

If the initial error value is zero or
greater, you modify your error value
by adding a constant of 2y -2x.

If the initial error value is less
than zero, modify the error value by
adding a constant value of 2y to it.

If the new error value is zero or
positive, step x east and y north. If
negative, step by x east only.

This process continues for your
needed number of x steps. As before,
the other octants are handled "alike
but different somehow". With signs
and the roles of x and y changing.

There’s lots of language specific
examples of this algorithm on the
web. Especially for Java, C++, and
PIC machine. In one version, 7
machine cycles per x pixel plus 31
overhead cycles are required. Thus, a
sixteen step Breshenham conversion
might take 144 machine cycles.

You will also find extensions to
Bresenham’s Algorithm. One lets
you rotate an image without using
any trig functions. This gets done by
taking each scan line and remapping
its position. Another variation draws
circles by use of an ancient Digital
Differential Analyzer scheme.

An Example
Let’s look at a somewhat detailed

Breshenham example. Say we decide

to travel east by 10.134 pixels and
north by 3.65 pixels. Because we can
only work in whole pixels, we will
shoot for going ten over and four up
in quadrant zero. We’ll save the 0.134
and -0.350 "spare change" somewhere
to prevent error pileups.

We’ll first calculate and save our

initial error value of 2 * 4 - 2 * 10 =
-12. We also calculate and save 2*y =
8. Note that we can multiply by two
by simply doing a left shift.

The specific algorithm here tells
us to "start with an error value of
-12. If your error value is negative,
add eight. If your error value is zero

3 Copyright c 1997 by Don Lancaster (520) 428-4073 www.tinaja.com All commercial and all electronic media rights fully reserved.

Figure 2 – The non-obvious Breshenham’s
Algorithm is fast and requires only simple
adds, shifts, and compares.

For octant zero with +x ≥ +y, first
calculate an initial error value ε of
 e = 2y - 2x

Then repeat the following x times…

 IF e < 0 THEN e = e + 2y
 ELSE e = e + 2y - 2x

 STEP x
 IF e >= 0 THEN STEP y

Figure 3 – A two-dimensional PostScript vector-to-step table lookup of order 16.

/vspat [[(0)][(0)(1)][(00)(10)(11)][(000)(010)(101)(111)][(0000)(0100)(1010)(1101)(1111)]

[(00000)(00100)(01010)(10101)(11101)(11111)][(000000)(001000)(010010)(101010)(101101)(111011)

(111111)][(0000000)(0001000)(0100010)(0101010)(1010101)(1101101)(1111011)(1111111)]

[(00000000)(00010000)(01000100)(01010010)(10101010)(10110101)(11011101)(11110111)(11111111)]

[(000000000)(000010000)(001000100)(010010010)(010101010)(101010110)(101101101)(110111101)

(111110111)(111111111)][(0000000000)(0000100000)(0010000100)(0100100010)(0101001010)

(1010101010)(1010110101)(1011101101)(1110111101)(1111110111)(1111111111)][(00000000000)

(00000100000)(00100000100)(01000100010)(01001010010)(01010101010)(10101010110)(10110110101)

(11011011101)(11101111011)(11111101111)(11111111111)][(000000000000)(000001000000)

(001000001000)(010001000100)(010010010010)(010101001010)(101010101010)(101011010101)

(101101101101)(110111011101)(111011111011)(111111101111)(111111111111)][(0000000000000)

(0000001000000)(0001000001000)(0010001000100)(0100100010010)(0101001001010)(1001010101010)

(1010101010110)(1011010110101)(1011101101101)(1101110111101)(1111011111011)(1111111101111)

(1111111111111)][(00000000000000)(00000010000000)(00010000001000)(00100010000100)

(01000100100010)(01001010010010)(01010100101010)(10101010101010)(10101011010101)

(10110110110101)(11011011101101)(11011110111101)(11110111111011)(11111111011111)

(11111111111111)][(000000000000000)(000000010000000)(000100000001000)(001000010000100)

(010001000100010)(010010010010010)(010100101001010)(100101010101010)(101010101010110)

(101011010110101)(101101101101101)(110110111011101)(111011110111101)(111101111111011)

(111111111011111)(111111111111111)][(0000000000000000)(0000000100000000)(0001000000010000)

(0010000100000100)(0100010001000100)(0100100100010010)(0101001001010010)(0101010100101010)

(1010101010101010)(1010101101010110)(1011010110110101)(1011101101101101)(1101110111011101)

(1110111101111011)(1111011111110111)(1111111111011111)(1111111111111111)]] def

Figure 4 – PostScript table lookup is fast and
compact and elegantly simple.

For quadrant zero, enter with x on
stack top and y immediately below.

Then do a…

 vspat exch get exch get

 … to deliver the ASCII string
pattern to the stack top.

or positive, subtract twelve. If your
new error value is positive or zero,
step both x and y. If the new error
value is negative, step only by x.
Continue for the needed number of x
steps." Like so…

 ε = -12 + 8 = -4 ∆y = 0
 ε = -4 + 8 = 4 ∆y = 1
 ε = 4 - 12 = -8 ∆y = 0
 ε = -8 + 8 = 0 ∆y = 1
 ε = 0 - 12 = -12 ∆y = 0

 ε = -12 + 8 = -4 ∆y = 0
 ε = -4 + 8 = 4 ∆y = 1
 ε = 4 - 12 = -8 ∆y = 0
 ε = -8 + 8 = 0 ∆y = 1
 ε = 0 - 12 = -12 ∆y = 0

The final x step pattern will be
(11111111111). The y step pattern is
(0101001010). Which exactly agrees
with my klutzier method.

Table Lookup
Can Bresenham be beaten at his

own game? His solutions are rather
fast and extremely compact. Many
programmers have spent bunches of
time further optimizing them.

In theory, a simple table lookup
of the entire pattern you need for a
given x and y might end up much
faster and considerably simpler. On
the other hand, variable length words
and additional storage space might
be required. As might the overhead
of step extraction.

The table length depends on the
maximum number of pixels or steps
to be handled.

Figure three is a 2D PostScript
array that has all of the needed v-s
patterns for x =0 up through x = 16.
Longer vectors are done by repeated
looping until the input vector is
completely "used up".

As figure four shows us, doing a
PostScript table lookup is simple and
fast. The output is a string optimized
for robotic flutterwumper uses. As
detailed in POSTFLUT.PDF.

How big are these lookup tables?
This depends upon whether you use
pattern bits or ASCII values. And on
overhead and how efficiently you can
pack oddball pattern lengths. But the
tables grow at an n cubed rate.

As an example, the minimum bit
table sizes for a sixteen pixel lookup

are 1632 bits or 204 words of 8-bits
each. Note this will fit into even the
smallest of baby PIC’s. But might be
a real challenge to access.

For 32 pixels, allow 11968 bits or
1496 bytes. For 64 pixels, 87360 bits
or 11977 bytes. Lookup sizes get out
of hand beyond this point.

Breaking up a longer vector into
successive short ones may introduce
minor placement errors. Nearly all of
these will end up negligible. But the
worst case of a vector one more than
a multiple of the table length (17, 33,
49, etc…) is best avoided.

Do this with a different split. For
instance, an 8 then a 9 lookup may
give you modestly more positioning
accuracy than a 16 then a 1 lookup.

Adding Dimensions
Vector-to-step conversions are

easily extended into the three axes
needed for 3-D animation rendering.
Or even up to the six or more axes
used in fancy robotic moves.

In 3-D we have eight possible x
dominant sectors of x+ y+ z+, x+ y+ z-,
on through x-y- z-. There are similarly
eight possible y dominant sectors and
eight possible z dominants. Giving a
total of 24 sectors. Each of these 24
sectors can be dealt with in the same
way we did the eight 2D octants.

For six axis robotic motions, a
two step "coarse-fine" might be one
useful approach. Otherwise, all 384
of the 6-D sectors could be used.

Cardinal Moves?
Let’s wrap things up with a fun

piece of math. When you are putting
pixels on a screen or machining a
path, you’ll want the smoothest path
possible. But on a simple move, you
also may have the option of traveling
only in the eight cardinal directions.

http://www.tinaja.com/glib/postflut.pdf

4Copyright c 1997 by Don Lancaster (520) 428-4073 www.tinaja.com All commercial and all electronic media rights fully reserved.

Figure 5 – "Cardinal Moves" can sometimes simplify low end robotics sytsems. Here is the
math behind the minor speed penalties involved.

desired vector (length = 1)

θ u 45°
0.707 v 0.293 v

0.414 sin θ

cos θ

v

0
.7

0
7

v
si

n
θ

length
penalty

phase angle in degrees

0 %

5 %

10 %

0 90 180 270 360

Assume a quadrant zero vector of length 1 and angle θ. Approximate this

with an east move of u and a northeast move of v…

The vertical rise will be both 0.707 v and sinθ. Thus, v = 1.414sin θ.

Extend the baseline by (1-0.707) v = 0.293 v = 0.4140 sinθ.

The baseline will now be u+v long and will equal cosθ + 0.4140 sinθ.

The excess length (and time penalty) will be…

 excess length = cosθ + 0.4140 sinθ - 1

Extending and plotting produces this error curve…

Worst case error is about eight percent. Average error is five percent.

Near axis move errors are negligible.

new from
DON LANCASTER

SYNERGETICS
Box 809-CC

Thatcher, AZ 85552
(520) 428-4073

FREE US VOICE HELPLINE VISA / MC

ACTIVE FILTER COOKBOOK
The sixteenth (!) printing of Don’s bible on analog
op-amp lowpass, bandpass, and highpass active
filters. De-mystified instant designs. $28.50

CMOS AND TTL COOKBOOKS
Millions of copies in print worldwide. THE two
books for digital integrated circuit fundamentals.
About as hands-on as you can get. $28.50 each.

INCREDIBLE SECRET
MONEY MACHINE II

Updated 2nd edition of Don’s classic on setting
up your own technical or craft venture. $18.50

LANCASTER CLASSICS LIBRARY
Don’s best early stuff at a bargain price. Includes
the CMOS Cookbook, The TTL Cookbook, Active
Filter Cookbook, PostScript video, Case Against
Patents, Incredible Secret Money Machine II, and
Hardware Hacker II reprints. $119.50

LOTS OF OTHER GOODIES
. Tech Musings V or VI $24.50
. Ask the Guru I or II or III $24.50
. Hardware Hacker II, III or IV $24.50
. Micro Cookbook I $19.50
. PostScript Beginner Stuff $29.50
. PostScript Show and Tell $29.50
. Intro to PostScript Video $29.50
. PostScript Reference II $34.50
. PostScript Tutorial/Cookbook $22.50
. PostScript by Example $32.50
. Understanding PS Programming $29.50
. PostScript: A Visual Approach $22.50
. PostScript Program Design $24.50
. Thinking in PostScript $22.50
. LaserWriter Reference $19.50
. Type 1 Font Format $16.50
. Acrobat Reference $24.50
. Whole works (all PostScript) $380.00
. Technical Insider Secrets FREE

POSTSCRIPT SECRETS
A Book/Disk combination crammed full of free
fonts, insider resources, utilities, publications,
workarounds, fontgrabbing, more. For most any
PostScript printer. Mac or PC format. $29.50

BOOK-ON-DEMAND PUB KIT
Ongoing details on Book-on-demand publishing,
a new method of producing books only when and
as ordered. Reprints, sources, samples. $39.50

THE CASE AGAINST PATENTS
For most individuals, patents are virtually certain
to result in a net loss of sanity, energy, time, and
money. This reprint set shows you Don’s tested
and proven real-world alternatives. 28.50

BLATANT OPPORTUNIST I
The reprints from all Don’s Midnight Engineering
columns. Includes a broad range of real world,
proven coverage on small scale technical startup
ventures. Stuff you can use right now. $24.50

RESOURCE BIN I
A complete collection of all Don’s Nuts & Volts
columns to date, including a new index and his
master names and numbers list. $24.50

FREE SAMPLES
Check Don’s Guru’s Lair at http://www.tinaja.com
for interactive catalogs and online samples of
Don’s unique products. Searchable reprints and
reference resouces, too. Tech help, hot links to
cool sites, consultants. email: don@tinaja.com

FREE Catalog: http://www.tinaja.com

Such a restriction may simplify your
code and shorten your file lengths.
At least in several of those low end
flutterwumper systems I have been
working with recently.

How much time penalty is there
in positioning only in directions of E,
NE, N, NW, W, SW, S,, and SE?

As figure five reveals, the penalty
is surprisingly small. Worst case is a
tad over 8 percent at 22.5 degrees.
Average for all random positions is
around five percent, and there is zero
to very little penalty for the usual
axis or near-axis moves.

For More Information
Searching "Breshenham" on the

web gives you bunches more in the
way of v-s theory, extensions, and
language specific examples.

Additional support also appears

on http://www.tinaja.com. Be sure
to check the Math Stuff and also the
Flutterwumper library pages.

Consulting services are available
on the above concepts.

Microcomputer pioneer and guru
Don Lancaster is now the author of
35 books and countless articles. Don
maintains his US technical helpline
you’ll find at (520) 428-4073, besides
offering all his own books, reprints
and consulting services.

Don has a free new catalog full
of his latest insider secrets waiting
for you. Your best calling times are
8-5 MST on weekdays.

Don is also the webmaster of his
Guru’s Lair at www.tinaja.com You
could also reach Don at Synergetics,
Box 809, Thatcher, AZ 85552. Or you
can email don@tinaja.com

http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com
http://www.tinaja.com/guru01.html
http://www.tinaja.com/math01.html
http://www.tinaja.com/flut01.html
http://www.tinaja.com/info01.html
http://www.tinaja.com
mailto:don@tinaja.com

5Copyright c 1997 by Don Lancaster (520) 428-4073 www.tinaja.com All commercial and all electronic media rights fully reserved.

