
A Universal .BMP Format
Bitmap Image Manipulator

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2005 as GuruGram #56
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Altering images in the .BMP data format can be exceptionally useful for eBay
Photography, among many other obvious tasks. There are many popular software
utilities available that can help you do this, ranging from that superb and low cost
ImageView32 to the commercial and industry standard Adobe Photoshop.

For several ongoing reasons, I decided to write many of my own .BMP altering
routines that let me conveniently do my things my way…

 Exploring the .BMP Data Format

 Digital Camera Swings and Tilts
 Digital Camera Dodges and Burns
 My eBay Photo Secrets
 PS Array to Image Conversion
 A revised Bitmap Typewriter
 Bitmap Perspective Lettering
 Image Keystone Correction
 Web Imaging Secrets
 Imaginative Images
 Combined Tilt Corrector and Punchthru Eliminator
 Combined Background and Vignette Generator

Some current projects are that I need a bitmap rotator that has precision beyond
the one degree offered by ImageView32; a "true" keystone corrector which could
eliminate second order distortion; the real bilineal and bicubic pixel interpolation
routines; a way to explore nonlinear pixel techniques; and to gain the ability to
do 2x2, 3x3, 4x4, 5x5 and higher digital filtering to all bitmap pixels.

Rather than work up individual code for all of these, it seemed to make more
sense to work up a Universal Bitmap Image Manipulator. One that would "bite
the bullet" and make a complete bitmap image RAM resident. Where any pixel

— 56.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/glib/expbmp.pdf
http://stores.ebay.com/synergeticsabeja
http://stores.ebay.com/synergeticsabeja
http://www.arcatapet.net/imgv32.cfm
http://www.adobe.com
http://www.tinaja.com/glib/expbmp.pdf
http://www.tinaja.com/glib/expbmp.pdf
http://www.tinaja.com/glib/swingtlt.pdf
http://www.tinaja.com/psutils/dodbur01.psl
http://www.tinaja.com/glib/ebayfoto.pdf
http://www.tinaja.com/glib/psar2img.pdf
http://www.tinaja.com/glib/bmfauto1.pdf
http://www.tinaja.com/glib/perspec1.pdf
http://www.tinaja.com/glib/keycor01.pdf
http://www.tinaja.com/glib/webimage.pdf
http://www.tinaja.com/glib/imagimag.pdf
http://www.tinaja.com/psutils/nutilt01.psl
http://www.tinaja.com/psutils/nubkg01.psl
http://www.arcatapet.net/imgv32.cfm
http://www.tinaja.com/psutils/unibm01.psl

could be altered, moved, or changed in any manner. You’ll find some preliminary
code on this as our UNIBMM01.PSL utility. At present, the code handles dozens of
fairly sophisticated image manipulation tasks. I hope to expand it much further in
the future.

As usual, I chose to write these routines in PostScript, because of its fundamental
elegance, its intuitive simplicity, and its enormous flexibility. But, above all, the
ease with which PostScript can manipulate most any disk file in virtually any data
format. This gets done by using ordinary short ASCII textfiles that make use of
Acrobat Distiller as a General Purpose Host Resident PostScript Computer.

Naturally, there is no way that an interpreted language can speed compete
against compiled code being rerun or custom hardware. But the execution times
seem good enough for my eBay uses. With all but the most complex actions on
the largest bitmaps taking only a few to a few tens of seconds.

Our Gonzo Utilities are recommended but not essential for much of this code. I
have tried to make all of our algorithms well documented and carefully spelled
out. If needed, you should be able to translate them to other languages or even
adapt it to custom hardware.

The .BMP Image Format

The .BMP image format is preferred for image manipulation in that it is usually
uncompressed, non-lossy and raises few generation issues. But its huge file sizes
will demand conversion to .JPG or other formats for final image distribution.

A tutorial on the .BMP Data Format is found here. Actually, there are quite a few
different .BMP Data Formats. These data formats are all in two pieces, consisting
of an information header followed by the actual image data content.

We will concern ourselves only with the uncompressed RGB color version having
three 8-bit bytes per pixel. Further, we will not worry much about converting
between .BMP to and other external data formats. These tasks are readily
handled by other programs.

Let’s look at a few key .BMP points that can cause you grief…

There are two areas in the header that hold the horizontal
and vertical pixel size info. These are both 32 bit words of
four 8-bit bytes each, LSB last.

Counts MUST accurately match the bitmap image data that
follows. Your display ap must either read these values or
else be told them. Otherwise, shifting, tearing, or error
messages are near certain to result.

— 56.2 —

http://www.tinaja.com/psutils/unibm01.psl
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/psutils/distlang.html
http://stores.ebay.com/synergeticsabeja
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/glib/expbmp.pdf
http://www.tinaja.com/glib/expbmp.pdf

.BMP Bitmaps build left to right by the horizontal line and
do so from the BOTTOM UP.

Note that this vertical building is the OPPOSITE of a scanned
display that normally builds from top down.

This .BMP detail is non-obvious and unexpected…

Any given pixel in the .BMP data follows a BLUE - GREEN -
RED data sequence with blue being presented EARLIEST.

Finally, the major .BMP grief-causing gotcha…

The .BMP format apparently DEMANDS use of 32-bit words.
Thus, each new horizontal line MUST start on a 32-bit
word boundary!

Because three does not divide into four all that well, a
number of NULL PADDING BYTES may have to be added to
the previous data line. 0, 1, 2, or 3 bytes may be needed.

Because some bitmap manipulations may end up with a different output file size,
padding is best left till the final output file is written to disk.

Here is some padding byte example code. It is shown in PostScript, makes use of
my Gonzo Utilities and starts with the present horizontal line data string …

 /onepad [0] makestring store % previously defined
 /twopad [0 0] makestring store
 /threepad [0 0 0] makestring store

 dup length 4 mod dup 0 gt {
 [(xxx) threepad twopad onepad]
 exch get mergestr}{pop}ifelse

 writefile exch writestring

Some PostScript Sneaky Tricks

The goal in a Universal Bitmap Manipulator is to place the entire bitmap image
in RAM memory at once. So that each and every RGB pixel triad can be easily

— 56.3 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/psutils/unibm01.psl

accessed. Because more than one .BMP copy can be resident at once, use of a
minimum of 250 Megabytes of RAM with no other programs active is strongly
recommended.

Just because you have everything in the bitmap copy at once present at once
does not mean you should always go whole hog…

ALWAYS minimize the per-pixel calculation complexity!

AVOID X-Y pixel access if row or column access will do!

There’s a sneaky trick that makes PostScript especially attractive for bitmap
manipulation. A RGB color pixel is normally an integer having a 0-255 range. A
PostScript string is also an integer having a 0-255 range. Thus, there are a few
compelling speed and size and computational advantages to representing any
.BMP line as a PostScript string.

We will thus use a convention of stashing a bitmap as an array of PostScript
strings. Let’s take a look at…

Some Coding Examples

Our Universal Bitmap Manipulator is very much an expanding and moving
target. Here is some present thinking on some of the earlier routines…

/grabbitmap .BMP disk file reader — An existing .BMP file gets read one line at
a time and converted into an array of PostScript strings called /instrarray . Each
string will be three times as long as the number of horizontal pixels because of
the B-G-R byte color sequencing per pixel. The array length will equal the height
of the original bitmap. Each byte will hold an integer color value ranging from a
black of 0 to a fully saturated 255.

Padding bytes are not held internally. They are regenerated only as an output file
is resaved to disk.

Some PostScript quirks…

PostScript REQUIRES the full Windows pathname. This is
best handled by MERGING a prefix with a short filename.

A DOUBLE REVERSE SLASH is required inside a PostScript
sting any time a single reverse slash is really wanted.

Normally, only a POINTER to a string is saved instead of a
copy of the string itself. To prevent rude surprises, a string
can be DEREFERENCED by making a fresh copy of itself.

— 56.4 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/psutils/unibm01.psl
http://www.tinaja.com/post01.asp

Ferinstance, a PostScript string can be dereferenced by using dup length string
cvs. An array can be dereferenced by using mark exch aload pop] Dereferencing
should be avoided unless really needed because it is time and memory extensive.

Distiller may introduce yet another annoying quirk: The garbage collection can
be too rigorous at times. Which can introduce major slowdowns. This can be
avoided by creative use of -2 vmreclaim (stop all garbage collection) and a 0
vmreclaim (resume normal collection).

/savebitmap .BMP disk file saver — When manipulating bitmap images, it is
normally best to create a new intermediate or output file instead of overwriting
any existing string arrays. /savebitmap first copies the original bitmap header and
then writes the string array /outstrarray to disk. Each individual row string is
padded by 0,1,2, or 3 null characters to end on a 32-bit boundary as required.
The horizontal and vertical sizes in the header are then modified if they have been
changed by cropping, distortion, or resizing.

/cropimage rectangular cropping — Cropping can get done by selective writing
needed partial rows and vertical row counts to outstrarray. While remembering
that rows are in three byte BGR triads. Four values of ll, ul, lr, and rr are passed
on the stack to the selective cropper code.

/flipvertically vertical image flipper — This is one of the easiest to do bitmap
alterations in that it reads out the string array in reverse order, outputting the
top string first.

/mirrorhorizontally horizontal image flipper — Flipping an image horizontally is
somewhat tricky in that you want to reverse the sequence of the BGR triads while
preserving their color validity. Basically, you grab three characters at a time
from your input row string and move them to your output row string.

/rotate90 and /rotate270 image rotators — Angle rotation to arbitrary angles
can be slow and tricky, but plus or minus ninety degrees is fairly trivial. You
simply create new string rows out of columnar BGR pixel triads. For CW, work
from the top down. For CCW, work from the bottom up. Once again, all triads
must be preserved for proper color sequencing.

/negateimage negative image conversion — Many special effects and image
adjustments can be created simply by altering each pixel triad in place. One of
the easiest is a negator, which can be done by a 256 sub abs applied to each and
every color of each and every pixel. Obvious other "in-place" tricks can make use
of table lookup to alter contrast, brightness, gamma, or hue.

Creating a black and white image of equivalent luminance may need an obscure
0.11 blue + 0.59 green + 0.30 red calculation. Your result could be left in RGB

— 56.5 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp

space or a more compact gray-only .BMP format can be substituted. Any color
separations can be similarly handled. These, and similar in-place techniques, can
also be done for you on a custom bsais.

/nowhites punchthru blocker — A pure white background is easily underwritten
with a color or a randomized pattern, perhaps even vignetting to gain darker or
lighter edges. JPEG edge artifacts can also be significantly reduced by a proper
choice of varying background patterning. Examples appear in NUBKG01.PSL.

But if there are any pure whites inside of your active image area, you may get a
punchthru with possibly disastrous results. Like that tv weatherturkey ending up
with a map where his stomach is supposed to be. Your workaround is to go on
through your PRE-whitened image and replace every red 255 with a red 254.
Thus guaranteeing no punchthru.

But note that any resizing or contrast/brightness/gamma correcting can alter your
color values. Be sure to use your nowhite feature before you change it! Also,
many of our fancier pixel interpolation routines will routinely test for overflows
and underflows. A nowhite punchthru blocker can easily be introduced here at a
zero time or code penalty.

/knockback background eliminator — Early stages of image post processing
often involves /to knocking out the background to white. Most of the .BMP
knockout program features or software I looked seemed to have one problem or
another. Instead, /knockback uses the following algorithm…

Starting from the left, write white pixels till a white
pixel is found. Repeat for each row.

Starting from the right, write white pixels till a white
pixel is found. Repeat for each row.

Starting from the top, write white pixels till a white
pixel is found. Repeat for each column.

Starting from the bottom, write white pixels till a white
pixel is found. Repeat for each column.

Yeah, this is only approximate and misses internals and parts of undercuts. But it
is quite fast, works for me, and has few rude surprises. To write white, a 255 is
substituted for each color value in the pixel triad.

/xybilini and friends — Any time an image is resized or demands any nonlinear
transformation, some pixel interpolation may be required. Where you substitute
the "best possible" new pixel whose color will best approximate the four adjacent
original ones.

— 56.6 —

http://www.tinaja.com/info01.asp
http://www.tinaja.com/psutils/nubkg01.psl
http://www.tinaja.com/psutils/nubkg01.psl
http://www.tinaja.com/glib/nonlingr.pdf
http://www.tinaja.com/glib/nonlingr.pdf

There are two popular solutions to this crucially essential bitmap manipulation
need. The simplest and faster is called bilinear interpolation. Bilineal
interpolation simply takes a proportional average of the four adjacent pixels in the
original image…

 BILINEAL INTERPOLATION:

 ll(x-1)(y-1) - lr(x)(y-1) - ul(x-1)(y) + ur(x)(y)

Here x is the fractional part of the new x position and y is the fractional part of
the new y position. A fractional part can usually be calculated by a dup cvi exch
sub. ll is the 0-255 value of the lower left pixel, etc… Note that the interpolation
calculation needs to repeated for each of the three RGB pixel color values.

X axis or Y axis interpolation can obviously be done by using only the appropriate
two terms from above. While bilineal interpolation is somewhat time and code
intensive, it appears to be the minimum task needed to get reasonably acceptable
results.

/xybicubi and friends — There is a much fancier interpolation scheme that is
called a bicubic interpolation. This involves the use of an ugly nasty called high
resolution cubic spline Basis Functions. You can find a tutorial here as per our
GuruGram #4. Bicubic interpolation views the sixteen closest neighbor pixels in a
4x4 array. And then comes up with a superb approximation which can actually
improve upon your image sharpness and resolution…

 BICUBIC INTERPOLATION:

 p03(b0y)(b3x) + p13(b1y)(b3x) + p23(b2y)(b3x) + p33(b3y)(b3x) +
 p02(b0y)(b2x) + p12(b1y)(b2x) + p22(b2y)(b2x) + p32(b3y)(b2x) +

 evaluated pixel -----> • <----- is positioned here

 p01(b0y)(b1x) + p11(b1y)(b1x) + p21(b2y)(b1x) + p31(b3y)(b1x) +
 p00(b0y)(b0x) + p10(b1y)(b0x) + p20(b2y)(b0x) + p30(b3y)(b0x)

 where pixel p11 is at the lower left corner of the point that is to be
interpolated, and (b0x) is a typical directional Basis Function. This all gets
repeated three times per pixel for blue, green, and red.

Bicubic interpolation creates a much sharper transition halfway between pixels.
Here are two sample Basis Function table lookups for twenty intermediate
points…

— 56.7 —

http://www.tinaja.com/glib/basis.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/basis.pdf
http://www.tinaja.com/glib/basis.pdf

 /b0 [0.000 -0.007 -0.026 -0.053 -0.083 -0.111 -0.132 -0.145
 -0.147 -0.140 -0.125 -0.103 -0.080 -0.057 -0.036 -0.020
 -0.009 -0.003 -0.000 -0.000 -0.000] store

 /b1 [1.000 0.999 0.998 0.992 0.979 0.954 0.916 0.863 0.795
 0.715 0.625 0.529 0.432 0.338 0.252 0.176 0.113 0.064
 0.028 0.007 0.000] store

B(2) is the mirror to B(1)and is read right to left. B(3) is the mirror to B(0) and is
also read right to left. Note that pretesting is needed to make sure a pixel is in
legal range.

A table lookup of crossproducts can be generated ahead of time to possibly save
a lot of per-pixel processing time. Per this preliminary utility. Generation time is
only a fraction of a second. I’m not sure what the optimum table size would be.
16x16 is probably good enough, while 64x64 certainly should be.

Bicubic is further complicated by occasional overflows and underflows which need
testing and trapping. Special a = -0.5 treatment is also required for any medical or
astronomical images that must be accurately preserved.

As a practical matter, it is often very difficult to tell any final difference at all
between bilineal and bicubic interpolation. Especially for noncrucial apps such as
eBay Product Images. Thus, the extra time and complexity is often not justified.

/presize proportional resizing — Obvious uses for pixel interpolation include
zooms and picture resizing. Magnification should present no problems, except
that bicubic interpolation is probably needed for extreme magnification. But there
is a subtle gotcha in reduction that I have yet to find an official solution for.

The information content of a reduced image must, of course, go down. If you
simply downsample, chances are you will get unacceptable partial dropouts of
single pixel width lines. Thus, an image downsizing often must combine a low
pass filtering with resampling.

My approach to resizing is presently…

 • Use pixel interpolation at or above 1.0 magnification
 • Use 2x2 pixel averaging at 0.5 magnification.
 • Proportion the two between 0.5 and 1.0 magnification.
 • Prescale by 2x2 pixel averaging below 0.5 magnification.

Optimal downsizing is very much content specific, and the rules might end up
different for, say, a landscape compared to a detailed line graph.
 — 56.8 —

http://www.tinaja.com/psutils/imxytab.psl
http://stores.ebay.com/synergeticsabeja

For More Help

The code for our Universal Bitmap Image Manipulator is very much a moving
target, so keep checking back for possible updates and improvements.

Additional info on image manipulation for eBay use is found on our Auction Help
library page. As do hundreds of examples of images using these techniques.

More on PostScript and Acrobat in their separate resource areas. More on
bitmaps in our Fonts & Images library. Free Gonzo Utilities and many use
examples are found here.

Additional consulting services are available per our Infopack services and on a
contract or an hourly basis. Additional GuruGrams are found here.

Further GuruGrams await your ongoing support as a Synergetics Partner.

— 56.9 —

http://www.tinaja.com/psutils/unibm01.psl
http://www.tinaja.com/psutils/unibm01.psl
http://stores.ebay.com/synergeticsabeja
http://www.tinaja.com/auct01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/aafont01.asp
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

