
Converting Between PostScript Strings,
Integers, Arrays, and Dictionaries

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2003 as GuruGram #30
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

The general purpose PostScript computer language is both richly and strictly
typed. What may work out well for one data type may be difficult or inconvenient
in another. Conversion between types can end up anywhere from being redbook
obvious to ending up extremely subtle and obscure.

What I thought I’d do here is update and expand our older STRCONV.HTML type
conversion tutorial and add a few sneaky new routines…

Extracting a Substring

This is easily done by using (mybigstring) 3 2 getinterval. Which, in this
example gets you a two character substring that starts on the fourth (counting 0,
1,2,3) character from the beginning. You can also do a search that returns post
match pre true if found or original_string false if not. Note that the left (or the
early) portion of the string ends up on the top of the stack.

Also note that use of getinterval returns a substring, while, as we’ll shortly see,
get returns an integer equal to the selected ASCII character value.

Merging two Strings

PostScript strings are always of a fixed and predefined length. Short of writing
over nulls, I know of no immediate or direct process for adding characters to the
end of an existing string. Instead, merging two strings takes a custom routine
found in my Gonzo Utilities…

/mergestr {2 copy length exch length add string dup dup
4 3 roll 4 index length exch putinterval 3 1 roll exch
0 exch putinterval} def

 (This is a) (merged string.) mergestr --->
 (This is a merged string.)

— 30.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/post01.asp
http://partners.adobe.com/asn/developer/pdfs/tn/PLRM.pdf
http://www.tinaja.com/psutils/strconv.html
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp#gonzo

Merging is also useful for formatting or to add carriage returns or punctuation.
A (yourstring) (.\n\n) mergestr adds a period and double newlines should you
later decide to do a print. Be careful when merging strings to make sure there are
just enough spaces between your merged words!

Inserting a Substring

This is easily done by using (mybigstring) 2 putinterval. Which, in this example
inserts a substring of any length that will start on your third (counting 0,1,2,)
character from the beginning.

The original string must be long enough to hold the inserted one.

Note that use of putinterval inserts a substring, while, as we will shortly see,
put inserts and converts an integer equal to the ASCII character value.

String to Integers

A mystring 6 get will extract the seventh character in a string, convert it to an
0-255 integer, and place it on the stack. The integer value will equals the ASCII
character value.

To convert all of the string into integers on the stack, simply use a mystring { }
forall. Note that our "empty" forall proc will place the integers on the string in
correct order.

Note that the integers need not be a rational ASCII message. Strings can instead
be used to efficiently store any data values within an 0-255 integer range.

String to Array

To convert a string into a stack top array of 0-255 ASCII equivalent integers‚

 /mynewarray mark (yourstring){ } forall] store

Once again, the "empty" forall proc piles up the integers onto the stack for you.

Inserting Numbers Into a String

Here is how you put a PostScript integer or real number into a string…

 /secretnum 42 store

 (The meaning of life is)
 secretnum 10 string cvs mergestr (.\n) mergestr

Strings can be written to a disk using yourfile (yourstring) writestring.

— 30.2 —

http://www.tinaja.com/post01.asp

Converting Between ASCII and BCD Numbers.

The ASCII code for the numeral "0" is 48. Numeral "1" is 49 and so on…

To convert FROM a 0-9 numeric to an ASCII integer,
ADD decimal 48. (or hex $30)

To convert FROM an ASCII integer a 0-9 numeric to ASCII,
SUBTRACT decimal 48. (or hex $30)

Any longer groups of numbers can be extracted from a string by use of (1.2345)
cvr. Or else by creative use of PostScript’s obscure token command.

Converting Between Strings and Names.

Just use the redbook solutions of (string) cvn or /Name 10 string cvs. Note that
the forward slash gets added or removed automagically.

String Dereferencing

One of the most maddingly infuriating happenings in all of PostScript occurs
when the contents of old strings mysteriously change later on in unexpected
ways. The usual problem is failing to understand that…

 PostScipt does NOT place strings into arrays
 or other data structures!

 All it places are POINTERS to those strings!

Thus, if you reuse a string (such as a disk reading workstring), much if not all of
your previous string storage can get corrupted. Note further that…

 PostScript string contents are NOT preserved
 or protected by saves and restores!

The subtle but simple cure for these hassles is called string dereferencing. Any
time you are about to use a string that may change later in your program, you
take a "snapshot" that creates a new and unique string that will not change…

 (reusable_string) dup length string cvs ----> (safe_string)

Pointers to your dereferenced "safe string" can now be placed in an array or
whatever. (safe_string) will stay exactly the way you created it. And your new
(reusable_string) is free to go on to other tasks.

— 30.3 —

http://www.tinaja.com/psutils/distlang.html
http://www.tinaja.com/post01.asp

String to Executable Code

This one is really easy…

 (yourstring) cvx ---> makes string executable

 (yourstring) cvx exec ---> actually executes proc

String to Windows Filename

The "\" reverse slash is reserved in PostScript strings as an "escape" character. For
instance, a \n forces a newline, while \(or \) can be used to deal with
unmatched parentheses within a string.

Should you really want a \ in any PostScript string, you’ll have to insert a \\ . One
important place this shows up is in Windows Filenames. Per this rule…

ALWAYS use \\ anytime you want a \ in a PostScript string!

A typical Windows filename string might initially get entered into a PostScript
string as (C:\\windows\\desktop\\gonzo\\gonzo.ps).

Gonzo Fourslashing

My Gonzo Utilities will "double up" on the reverse slash hassle…

ALWAYS use \\\\ inside a Gonzo text justification any time
you want a \ to end up in any PostScript string!

A typical Windows filename string might initially get entered into Gonzo text to
be justified as C:\\\\windows\\\\desktop\\\\gonzo\\\\gonzo.ps

Adding Elements to an Array

PostScript arrays are normally of a fixed size. Except for overwriting nulls, I know
of no way to directly make an array larger. Instead, use this dynamic scheme…

 /myarray mark myarray aload pop new_element] store

Since freely mixed types are permitted in PostScript arrays, the new_element can
generally be most any string or numeric or proc or whatever of your choosing.
But if the array is later to become a string, then new_element must be an
appropriate integer in the 0-255 range.

— 30.4 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp

Convert an Array into Integers

A simple aload pop fills the stack with an array’s contents. If the array consists of
all integers, then the stack fills with the same. That pop gets rid of an array copy
that also got placed on top of the stack.

Convert an Array into a String

This one is way, way, waaaay beyond disgustingly elegant. And is in the same
off-the-wall class as using setdash to instantly draw thousands of perspective
bricks. Assume you have an array of positive integers in the 0 to 255 range. They
might be an ASCII text message or they simply might be some data that you want
to efficiently stash as a string. To convert…

/makestring {dup length string dup /NullEncode filter
3 -1 roll {1 index exch write} forall pop} def

[72 105 32 116 104 101 114 101]makestring ---> (Hi there!)

Huh? OK, here it is in English: Create a new string the length of the array. Make
the string into a virtual file that can be written to. Then stuff the array integers
into the string one by one.

Sort an Array of Strings Alphabetically

PostScript’s gt and lt are even more powerful than you would first suspect when
they are applied to strings. For they will automatically go through each entire
string character by character and put them in lexigraphic (or "dictionary") order.

A plain old stack based bubble sort can be more than fast enough for an array of
thousand or fewer strings…

/bubblesortalpha {mark exch aload pop counttomark /idx
exch store {0 1 idx 1 sub {pop 2 copy lt {exch} if idx 1 roll}
for idx 1 roll /idx idx 1 sub store idx 0 eq {exit} if} loop]
} store

[(aardvark)(dragon)(badger)(camel)] bubblesortalpha ----->
[(aardvark)(badger)(camel)(dragon)]

One minor gotcha is that alphanumeric sorts will end up case sensitive. Your
workarounds are capitalizing or trapping each first letter.

Sort an Array of Subarrays by Popularity

This gets real handy in a hurry for such things as Weblog Reports. Say you have
an array of subarrays. Assume further that each of your subarrays will be of a form

— 30.5 —

http://www.tinaja.com/glib/psnt.pdf
http://www.tinaja.com/glib/psnt.pdf
http://www.tinaja.com/psutils/bublsort.ps
http://www.tinaja.com/glib/analogeb.pdf

[{filename} popularity_count] . You can modify our previous bubble sort to sort
on the popularity_count integer subarray position…

/bubblesortpopular {mark exch aload pop counttomark /idx
exch store {0 1 idx 1 sub {pop 2 copy 1 get exch 1 get
gt {exch} if idx 1 roll} for idx 1 roll /idx idx 1 sub
store idx 0 eq {exit} if} loop] } store

[[(file1) 16][(file2) 5][(file3) 45][(file4) 2][(file5) 7]]
bubblesortpopular ----->
[[(file3) 45][(file1)16]][(file5) 7][(file2) 5][(file4) 2]]

Any position of longer subarrays could be sorted numerically or alphanumerically
simply by changing the position value of each get.

These routines seem more than fast enough. Being well under a second for a
thousand or less array elements. Bubble sorts increase in time as n squared.
Other Sorts may be faster for very large arrays.

Convert a Dictionary to an Array

PostScript dictionaries normally relate key-value pairs. While it is quite common
for a key to be a name type, there is emphatically no such restriction in the
PostScript language. A PostScript dictionary can relate ANY two data types!
Something that seems to be one of the most incredibly powerful opportunities
anywhere ever in all of computerdom. And one that remains largely unexplored.

Thus, any entry in a dictionary is simply "match the first to get the second".
Unlike arrays, dictionaries automatically change their length as new items are
added. Better yet, dictionaries offer the known command that greatly simplifies
modifying an existing entry versus entering a new one. Thus, for certain paired
data structures, it may end up faster and simpler to start off with a dictionary
instead of an array.

Let’s look at a specific example that recently has proven most handy. Say you
want to extract individual scripts for all the log visitors to your website. This could
end up as an array of two element subarrays. One per visitor. The subarrays could
end up of form [(23.156.67.121) [23 24 27 33 45]] In this case, your visitor url
23.156.67.121 made hits on lines 23, 24, 27, 33, and 45 of your web log.

To proceed, start with a new dictionary. As you go through your log file, either
start a new url definition or add to the line hits on an old one. The url can be
either in the form of a conventional name or can remain a string. The self
expanding feature of a dictionary combined with its known operator makes data
creation fast and simple.

After you have read your entire web log, you can convert from a dictionary to an
array of two element arrays…

— 30.6 —

http://www.tinaja.com/psutils/insort.ps
http://www.tinaja.com/post01.asp

/newarray mark olddictionary { mark 3 1 roll] } forall] store

Note that the forall operator behaves differently on a dictionary in that it returns
both values of the key-value pair for each entry. See ANALOGEB.PDF for detailed
example code.

Using PostScript to Write PostScript

All sorts of "leap tall buildings in a single bound" possibilities arise whenever you
let your PostScript code write its own new and deferred executable procs. We
have already seen how you can create a string and then do a cvx followed by a
later (command_string) exec when actual execution is desirable.

Arrays can also let you build up future PostScript executables. And often may end
up more powerful and convenient than strings. The only little trick is…

 NEVER put anything into an array being stack built that
 you do not want to have execute immediately.

 Instead, place the NAME OBJECT of any to-be-deferred
 proc on the stack. Followed by a cvx.

Let’s look at an example. In PDF text layout, for an autotracking url hot link,
you’ll want your bounding box to move around as your text does. But the exact
position won’t be known until after you have made and executed your text
justification routines. Ferinstance, your hotlink bounding box will probably stretch
and have to move somewhat to the right during a fill justification.

To solve this dilemma, you make two passes through each text line. The first pass
determines which strings are to be shown where and how. These substrings can
be cataloged into an array. Then your justification calcs are made. Finally, each
portion of the line is imaged when and where needed in its correct font size.

Here’s how you save two crucial but still unknown values for a later autotracking
url box…

 mark 0.33 /setgray cvx /currentpoint cvx /urly /exch
 cvx /store cvx /urlx /exch cvx /store cvx] cvx

which safely becomes…

 {0.33 setgray currentpoint /urly exch store /urlx exch
 store}

— 30.7 —

http://www.tinaja.com/glib/analogeb.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/autourl.pdf

Note that currentpoint executes later on when you create your actual bounding
box, and not at the time you build your array. Many more details on this example
appear in AUTOURL.PDF.

With these sneaky deferral techniques, your PostScript can even write JavaScript
code! Or anything you want in any other language.

For More Help

Additional PostScript and Acrobat and assistance is available per the previously
shown web links. Custom programming and design services are now available at
our standard consulting rates. Per our InfoPack Services. Or you can directly
email me.

Additional GuruGrams columns await your ongoing support as a Synergetics
Partner.

— 30.8 —

http://www.tinaja.com/glib/autourl.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/info01.asp
mailto:don@tinaja.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp
http://www.tinaja.com/advt01.asp

