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Some Applied Mathematics in the form of playing with long strings of funny   
numbers can end up anything from an obsessive fascination to a stunning energy
efficiency breakthrough. 

Let us first gather together several of our more obscure Guru’s Lair "fun with 
numbers" resources. Followed up by the discovery timeline on how a two decade 
long obsessive fascination with applied math led to the Magic Sinewave energy 
efficiency breakthrough…

Barker Codes & Correllation—  These codes give a strong value when multiplied 
by themselves in phase and a weak value when multiplied by themselves when 
timeshifted or against external noise. Which becomes super important when you 
are extracting signals from deep noise, for GPS, for spread spectrum, or when 
otherwise having several signals simultaneously communicating interference free 
over the same channel. (Go to Hardware Hacker 54 in the linked archive.)

Digital Filters—  Digital filters can do things that analog cannot because they can
look both backward and forward through time. They are often rather simple to 
implement, consisting only of delay, scaling, and summing. The only little trick is 
picking the right scaling coefficients ahead of time to get your desired results. 
Also see MUSE107.PDF for a more detailed design example.

Equally Tempered Music— There is only one magic combination of 8-bit data 
values that can give you the equally tempered music scale without generating at 
least one sour note. This is the magic sequence 116-123-130-138-146-155-164-    
174-184-195-207-219-232. Also see my CMOS Cookbook for further details.

Fractal Ferns— These fantastic self-replicating, self-repeating, and self-scaling 
patterns assert themselves often in nature. With coastlines and mountains being 
typical. Curiously, the shorter the ruler you use to measure a coastline, the        
longer it gets! As per Mandelbrot and company. And the fern is by far the most 
simple and spectacular demo. Also see our PostScript library. Especially our fern   
Fractal Image Converter.
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Pseudorandom Number Generators— Otherwise known as noise that repeats, 
these are made from long shift registers with carefully selected feedback taps. Any
short sequence of output numbers appears to behave pretty much like truly 
random output. (See Ask the Guru 1 in the linked archive.) Lots more in my        
Apple Assembly Cookbook and my CMOS Cookbook.

Cubic Splines— These efficiently generate smooth continuous curves from very 
sparse control data points. They get used for everything from PostScript Fonts to 
computer graphics to machine tool cutting paths. One popular form is called a   
Bezier curve. An Intro Tutorial is found here.

Active Filters— By making a subtle change in the math of classic active filters, 
new "equal component value" designs evolve that are much easier to use and 
separate their frequency and damping determining elements. These use opamps 
to replace inductors and are extremely versatile.

n-connectedness— Some simple yet subtle math shows you how to connect        
everything to everything else. And has extremely diverse uses from letting a 
microcomputer port drive a surprisingly high number of different LEDS to unusual
"string art" to web usage patterns to explaining why organizations become 
unwieldy even if only a few new members are added.

Binary Chain Codes— These unusual sequences have the unique property that a 
short sample of them reveals that sample’s position in the entire code. Leading to
all sorts of robotic and automation absolute position sensing apps. Chain codes 
often close on themselves for continuous sequencing. Only an n bit sample is 
needed to find where you are in a code of length 2n. 

Wavelets— Wavelets are an exceptionally powerful new math tool. One causing 
revolutionary developments in most everything from cardiology through 
seismology. But most significantly to new methods of video and still picture 
compression. Wavelets can uniquely supply both the big picture and fine
detail at the same time. Here’s an intro.

Basis Functions— Also known as Bernstein Polynomials or high resolution          
cubic splines, these are the secret to changing the size or distorting an image. 
And doing so without artifacts and actually improving the final appearance. 
Extensive use examples here and here. 

Binomial Coefficients— These see lots of statistical use such as "How many 
combinations of six coins are there that will have two heads and four tails?" And 
sure got important in my earlier Magic Sinewave work where the question in 
disguise was "How many six bit words are there with only two ones in them? Per 
this example. 

Breshenham’s Algorithm— Converting from vectors to steps is important for 
everything from rasterizing computer graphics to generating machine tool paths.
One of the most fundamental graphic routines.
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Shuffling right along— There’s a subtle gotcha in the "obvious" shuffling 
algorithm that introduces bias errors. Here’s the correct way to, say, shuffle a deck
of cards or rotate the position of advertising banners. More sourcecode here.

Nonlinear Graphic Transformations— Remapping of ordinary graphics onto 
unusual shapes has all sorts of interesting uses. The real biggie here is perspective,
but other examples include spherical, cylindrical, rootbeer, scribble, isometric, 
glyph path, and star wars transforms. Lots of additional examples here.

Chebycheff Polynomials— These are simply a fancy way to manipulate trig multi 
angle identities. As such, they see all sorts of interesting uses in everything from 
my Magic Sinewves (see below) to Active Filters. They are surprisingly simple to 
generate, and often produce the "best" of all possible solutions.

Image Correction— By selectively lengthening or shortening a bitmap pixel line, 
image distortion can be either eliminated or enhanced. Similarly, by comparing  
individual bitmap pixels against a mask, adjustments can be made in brightness,
contrast, gamma, hue, knockout, or transparency. 

Fibonacci’s Sunflowers— The numeric sequence 1-2-3-5-8-13-21-34-55-89…
occurs repeatedly in nature, since things tend to expand or contract in proportion
to their present size. Tutorial and sourcecode shows how to draw sunflower-like 
patterns in PostScript using an incredibly magic angle of 138.58776 degrees.

Gaussian Elimination— This is a standard method to solve n linear equations in n
unknowns, and is based on zeroing certain matrix values and making others unity.
Such rearrangements ultimately let the answers pop out by inspection. It largely 
replaces older Determinant methods. 

Fourier Series— Relating time to frequency is crucial for advanced engineering 
analysis. The most profound and fundamental tool for this is the classic Fourier    
Series and its newer Discrete Fourier Transform and Fast Fourier Transforms. 
Extensively used for the analysis of our Magic Sinewaves discussed below. 

RMS Power Calculations— Until recently, low cost methods of measuring true 
electronic power of unusual waveforms did not exist at all. Which led to all sorts 
of "not even wrong" claims about circuit energy efficiency and "overunity" 
hogwash. Additional info is also found here and consulting services here. 

Heap Sorting— The heapsort data structure comes remarkable close to looking 
exactly like a pile of cowshit. But this arcane and hard to understand algorithm 
sorts high quantity items much faster than conventional approaches. Growing at 
nlog(n) rather than (n)2.

Taylor Series— This math tool is most useful to create or eliminate nonlinearities. 
It approximates a real-world response with a level, a slope, a parabola, a cubic, 
and as many additional terms as are needed. Also useful to draw a curve through
n data points.
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The Magic Sinewave Timeline

My Magic Sinewave story starts in 1981 with a 6502 programming class I was 
teaching at EAC. I had encouraged several students to try and feed long binary 
sequences to an Apple IIe speaker to see if they couldn’t get anything interesting
out of the two-state speaker in the way of nice sounding timbers or even chords.

Every once in a while, a fairly pure low tone would come out that only had minor 
buzz or whine on top of it. Which got me to thinking about whether conventional
digital sinewave synthesis could somehow be improved.

I felt that an ideal digital sinewave synthesizer for power electronics should…

•  Offer lots of precisely controllable amplitudes.

•  Be totally digital and low end microcontroller friendly.

•  Completely zero out as many low harmonics as desired.

•  Use the fewest switching events for highest efficiency.

•  Have no harmonics stronger than the fundamental.

•  Include an optional three phase compatibility.

Such a selection of Magic Sinewaves would be enormously useful to dramatically 
improve the energy efficiency of ac induction motors, electric vehicles, pv solar 
panels, power quality conditioning, brushless servo motors, telecomm, battery 
inverters, and aerospace power. As per this tutorial.

I first started off by "brute force" investigating all of the possible shorter binary 
sequences. Not surprisingly, things got rather ugly beyond n=32 with its over      
four billion states to be explored. Shorter sequences did give an occasionally 
useful amplitude with somewhat decent close in harmonics. But these were very 
few and far between.

Ferinstance, there are only nine useful 30-bit words of differing amplitudes having
no third or fifth harmonic. From over a billion possible total words. All of which 
strongly suggested that very long binary sequences would be needed if anything 
new was going to be discovered. A choice of a 420 bit word seemed to lead to 
several interesting possibilities. By using quarter wave symmetry, we’d only have 
to work with a mere 105 bits per quarter.

And 105 happens to be the product of 3, 5, and 7. Which suggests that we 
should be able to find lots of solutions having none of these harmonics present. 
Nor any of their 9, 15, 21… product harmonics. We can write 35 bit equations 
that force the third harmonic to zero. And 21 bit equations that force the fifth to 
zero. And 15 bit equations that force our seventh to zero.
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These 71 equations force certain bits to be dependent on one another. Which 
means we can get down around 105-71=34 independent bits that we’ll have to 
exhaustively search.

Fortunately, there are some other tricks we can pull. We are dealing with binary 
numbers here. If k = w + x + y + z and w through z are in binary, then k can only 
assume sixteen different values. Further, if k is also binary, it can only assume the 
five values of 0+0+0+0, 0+0+0+1, 0+0+1+0, 0+1+0+0 or 1+0+0+0.

All of which fairly quickly gets you down to only a few thousand sequences to 
explore. I picked out the best hundred of these and published them all in Circuit 
Cellar back in early 1997. 

While these sequences sure seemed interesting at the time, they remained far 
from optimal. Because of their still having fairly high distortion, way too many 
efficiency-robbing switching transitions, high amplitude jitter, several missing 
values, strong filtering requirements, and fairly high storage needs.

The Dripping Stalactite

So, I doggedly continued exhaustively exploring higher bit lengths. 768 bits 
seemed to have some advantages. But it still gave only erratic and mediocre 
results at best. At that point, I decided to focus on contiguous groups of ones 
that gave fewer pulses and thus higher efficiency. This also vastly reduced the 
patterns to be explored.

Why higher efficiency? Because the fewer the switching events, the fewer the 
dynamic switching losses. These dynamic losses typically account for around        
one-half of the total controller losses in most power electronics systems.

I also created a mythical minimum visual pollution theorem guideline. One that 
said that if a pulse pattern didn’t "look" nice and sinewaveish, then it probably 
wasn’t worth bothering over. Thus, you reasonably would expect pulses to get 
consistently wider as they approached 90 degrees of a sinewave quadrant. And 
you would expect them to be pretty much evenly spaced as well.

This theorem ended up getting slightly violated later on with our delta friendly 
magic sinewaves, but at this point it was a useful guideline. And again very much 
reduced the patterns to be tested.

By working in quadrants, all even harmonics and any dc term could automatically
be eliminated. The number of states to be explored got further reduced. A full 
sinewave thus is created by mirroring the quadrant for the first half cycle, and 
both mirroring and flipping for the second.

Working by quadrants also greatly reduces the storage needs for each amplitude 
value. Ultimately, as few as five to eight 8-bit stored values were required for each
amplitude. Thus easily fitting inside a smaller microcomputer.
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As the various bit patterns were tried, a consistent data structure kept showing 
up. One that looked exactly like a dripping stalactite…
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Each dot represented the distortion and amplitude gotten from a single trial of 
selected pulse positions. At the time, I did not have the faintest clue why such an 
unusual shape was evolving. But, as a caver, I knew a lot about stalactites.

Much later it became obvious that we were looking at necessary quantization      
errors. Caused by whole integer approximations to needed exact values.
 
At any rate, two features of the stalactites became apparent: There were often      
drips at the bottom that were consistently a lot better than the rest of the gang.

"Better" being lower distortion and closer to the target amplitude. Repeated 
careful testing revealed that, yes, these were real. And, the missing tip of the 
stalactite seemed to "point" to a yet-to-be-discovered super duper zero distortion 
result. Our holy grail.

It seemed that if any magic solutions were to ultimately be found, they would 
involve extremely long binary words. Our current production evaluation chips 
typically use binary words of 41,664 bits and even higher! Clearly, the "filtered 
exhaustive search" method that got us this far wasn’t going to hack it.

So, I tried a different tack and temporarily "went analog". I grabbed one of the 
most promising drips and then tried to optimize it. At the time, I was hoping for 
nothing more than a decibel or two of improvement at best. I went with what I 
named my "shake the box" scheme.

In which I would take a pulse edge and make a one-tenth degree change in its 
position, seeking an optimum. I’d then repeat for the other pulses. Followed by a 
one-hundredth degree change and then a one-thousandth degree change. I’d 
then continue till things did not get any better.

This approach turned out to be identical to a standard math "tough equation" 
solving process called Newton’s Method…
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To solve a nasty math problem by Newton’s Method,
first guess at a good answer. Calculate that guess.

Then make a small change in one of the variables to
improve your results. Continue for all variables.

Repeat with progressively smaller changes until you
get acceptably close enough to a true solution. 

Lo and behold, doing so with the drips quickly lead to…

The 3:17 am Ephitany

Not only was the drip distortion reduced, but it disappeared entirely! Starting 
with seven pulses per quadrant, I ended up with astonishing low distortion levels 
for the first twenty-six harmonics! The holy grail was found!

Or was it?

Any time you find a "too good to be true" result, STOP
IMMEDIATELY and TRY TO PROVE YOURSELF WRONG!

I sent the result to another mathematician who agreed that this, against all odds, 
was real. So, it was off to the races. How many Magic Sinewaves were there? 
Were there better ones? Had we already achieved the best possible efficiency? 

It seemed way too early for any solid theory, so I started a brute force exploration.
Similar to hunting for …

Canyons in the Bajada

I tried to visualize the Magic Sinewave space as terrain common to the Basin and 
Range desert Southwest. In which you had an upland sloping bajada that was so 
heavily brush covered so you should not see very far.

In the bajada were some deep canyons, and at the bottom of the deep canyons, 
streams representing a continuum of Magic Sinewave solutions. You would take a 
guess where to start and wander around till you found a canyon. Then you would
descend to stream level. Finally, you would work up and down the stream, while 
extracting magic sinewaves of sequential amplitude values.

The question was how many canyons were there and which were the very best? 
By taking our one drip solution and then simply fattening or shrinking the pulses 
slightly, a series of Magic Sinewaves of amplitudes 0 to 100 was quickly found. I 
ended up calling these the normal series.
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I next tried to improve my exploration tools. I was up against the 32 bit math 
limit of the PostScript analysis utilities I was using, so I created some JavaScript    
calculators that were both more interactive and had 64 bit math precision.

This additional eight or so decimal places of "daylight" reduced the "zero" values 
so low that only the fussiest of mathematicians could object that these were not 
"proven" true zero solutions. An engineer, of course, would shrug this off as "What
else could they be?".

Moving the pulse guesses towards 90 degrees found a whole new "canyon" and a 
new class of magic sinewaves with an even more amazing property: Two more     
harmonics were zeroed! Seven pulses per quadrant zeroed out the first twenty    
eight harmonics! I called these the best efficiency series and strongly believe that
none more efficient exist or are possible. 

With "efficiency" in this case being defined as the maximum number of zeroed    
harmonics for the minimum number of pulse edges.

This once again seemed "too good to be true". Because a sampled data system of 
n events per cycle tends to have strong odd harmonics at n-1 and n+1. But the 
mystery was resolved with some smoke and mirrors: Two "invisible" pulses of zero 
width and zero energy were really present at 0 and 180 degrees. You actually had
7-1/2 pulses per quadrant and 30 pulses per cycle total. But could pretend two of
the pulses simply weren’t there!

"Best Efficiency" Properties

While I still didn’t yet have the exact math for the best efficiency magic sinewaves
of n pulses per quadrant, their properties could easily be stated…

The waveform appears somewhat similar to a 100 percent
pulsewidth modulated carrier of frequency 4n.

The first 4n harmonics are ZERO with a true solution and
very low when quantized to properly chosen integers.

The first two uncontrolled harmonics at 4n+1 and 4n+3 are
large but never larger than the fundamental. 

Higher harmonics are quite low in energy and very high in
frequency. Spectrum is thus spread out for separation. 

Each and every pulse edge performs ONE useful task, thus 
guaranteeing the highest possible efficiency.

A intro summary of additional properties is found here. A tutorial of these 
findings also appears here. Along with evaluation chips here.
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Other Magic Sinewaves were found and explored. By sharing one wider pulse at 
90 and 270 degrees, you could create a class of bridged magic sinewaves.

More important were Delta Friendly magic sinewaves that were fully three phase 
compatible. Three phase power requires that all triad harmonics be zero and that 
only three half bridge drivers be used if rewiring is to be avoided.

Special and rather arcane tricks are needed to lock pairs of pulse edges together. 
The bottom line is that highly useful three phase solutions exist. They only zero 
out 3n/4 harmonics compared to the 4n of a best efficiency solution. But they 
analyze much faster and need only one half of the storage words per amplitude.

The early JavaScript calculators tended to be rather slow on longer sequences, so
they were modified to calculate only differential changes rather than doing a full 
Fourier Series for each and every box shaking.

This resulted in a dramatic speedup. Solutions to 384 pulses have been posted to 
my website. Counts beyond 1000 pulses per cycle seem possible. Ultra long 
sequences might ease filtering and audio whine at the cost of extra switching 
losses and extra storage. Yet still be significantly more efficient than classic PWM.

Rewriting the calculators for each new length got to be painful, so I wrote a new  
PostScript program that generates JavaScript programs! More details on this 
per our consulting services.

At this point, it was time to start thinking about switching from analysis to 
synthesis. And at long last looking into the actual…

Magic Sinewave Math Equations 
Equations for a seven pulse per quadrant best efficiency magic sinewave are…

cos( 1*p1s ) -cos(1* p1e )+…+cos( 1*p7s ) -cos( 1*p7e ) = ampl*pi/4 
cos( 3*p1s ) -cos( 3*p1e )+…+cos( 3*p7s ) -cos( 3*p7e ) = 0
cos( 5*p1s ) -cos( 5*p1e )+…+cos( 5*p7s ) -cos( 5*p7e ) = 0
cos( 7*p1s ) -cos( 7*p1e )+…+cos( 7*p7s ) -cos( 3*p7e ) = 0
cos( 9*p1s ) -cos( 9*p1e )+…+cos( 9*p7s ) -cos( 3*p7e ) = 0
cos(11*p1s) -cos(11*p1e)+…+cos(11*p7s) -cos(11*p7e)  = 0
cos(13*p1s) -cos(13*p1e)+…+cos(13*p7s) -cos(13*p7e)  = 0
cos(15*p1s) -cos(15*p1e)+…+cos(15*p7s) -cos(15*p7e)  = 0
cos(17*p1s) -cos(17*p1e)+…+cos(17*p7s) -cos(17*p7e)  = 0
cos(19*p1s) -cos(19*p1e)+…+cos(19*p7s) -cos(19*p7e)  = 0
cos(21*p1s) -cos(21*p1e)+…+cos(21*p7s) -cos(21*p7e)  = 0
cos(23*p1s) -cos(23*p1e)+…+cos(23*p7s) -cos(23*p7e)  = 0
cos(25*p1s) -cos(25*p1e)+…+cos(25*p7s) -cos(25*p7e)  = 0
cos(27*p1s) -cos(27*p1e)+…+cos(27*p7s) -cos(27*p7e)  = 0
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Our first equation sets the fundamental amplitude, while the rest of the equations
zero out the total harmonic distortion through the first 4n harmonics. My "shake 
the box" or Newton’s Method works just fine for an iterative solution.

One tiny detail: You may get a slightly wrong amplitude on your first pass. Simply
repeat with an adjusted amplitude request. For instance, if you want 0.400 and 
get 0.396, try again asking for 0.404. The process usually will rapidly converge.

We see that we have fourteen equations in fourteen unknowns. Thus…

Each pulse edge (indirectly) performs ONE useful task.

Maximum harmonics are zeroed by minimum pulse edges.

 
You could think of one pulse edge variable as (indirectly) setting the amplitude 
and the other thirteen pulse edge variables as zeroing out all the odd harmonics   
3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, and 27. And all the even harmonics are 
eliminated by way of quadrant symmetry. Apparently giving us the best possible  
energy efficiency solution to low harmonic elimination.

We might ask an obvious question here: Wouldn’t it have been simpler and two 
decades faster to just write and solve these equations in the first place?

Well, applied math sometimes does not work out that way. There was not the 
least reason to suspect that any solutions existed at all to the above equations. Let
alone ones that would lead to a major breakthrough in energy efficiency.

Digging Deeper

It can be useful to try and transform our above equations into other forms. This 
might give us insight into what is really coming down, might get us a step closer 
to actually proving that no more efficient Magic Sinewave solutions exist, or may 
let us try to solve our equations using some fast non-iterative method.

We seem to have fourteen nonlinear trigonometric multiple angle equations in 
fourteen unknowns. The ugliest feature of this nasty mess is obviously the multiple
angle part. Any trig book should give us a few identities such as…

   cos(30- ) = 4cos(0- )3 - 3cos(0- )

   cos(50- ) = 16cos(0- )5 - 20cos(0- )3 + 5cos(0- )

 
These particular funny equations can be related to the first kind Chebycheff        
Polynomials. They get rid of the multiple trig angles by replacing them with 
fundamental angle equations. More detail on the process appears here.
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Chebycheff Polynomials are widely used to solve all sorts of sticky problems, 
especially with Active Filters. They share this interesting property…

When Chebycheff Polynomials are a good solution to a
problem, they often can be proven the BEST POSSIBLE.

Thus driving the Cheby to the Leby.

 
Once you are down to the single angle equations, you can then use x = cos0-  to   
eliminate all the trig entirely! And doing so does lead to some profoundly "bare 
metal" power equations. Per these details.

Unfortunately, the "bare metal" power equations seem to be even harder to solve 
than our above trig equations. Despite their elegant simplicity.

The odds seem very high that a best efficiency Magic Sinewave is in fact the most
efficient at maximizing zeroed harmonics for minimum pulse edges. And that a 
simple "closed form" direct solution to the underlying math is very unlikely.

Tools to analyze Magic Sinewave spectra can be found here. Along with a full 
development proposal here. And evaluation chips here.
 

The Whole Gang

To wrap things up, let’s see if we can’t coax a color coded bunch of dripping 
stalactites to pose for a group portrait…
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The number of stalactites is set by the fastest changing variable. In this Delta      
Friendly example, pulse edges P2S - P1E will have the fastest rate of change.

The rate of variable change (and your best achievable distortions) in turn will be 
decided by how finely you are quantizing as set by your clock cycles to output 
cycles ratio. As you can see, the stalactites will combine into a selectable 
continuum of "good" and "best" values.
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In this particular three phase example, the value chosen for amplitude 0.53 gave 
a total unfiltered 2-22 harmonic distortion of just over 0.06 percent. Harmonics 2
through 22 were all a minimum of -65 decibels down from the fundamental. 
Most were much lower. Per this Analysis Tool. 

Those mysterious "drips" are simply the best available quantized approximation to
a perfect Magic Sinewave solution! For the highest possible Energy Efficiency.

For  More  Help

Additional "fun with numbers" applied math resources appear in our Math Stuff
and Tech Musings libraries. Custom Assistance is also available.

Our Magic Sinewave library holds bunches of additional energy efficiency 
breakthrough support. Including these two intros here and here, a development 
proposal here, a tutorial here, visualizations here, jitter and distortion analysis      
here, lots of calculators here, seminars & workshops here, analysis tools here, and
our latest release of evaluation chips here.

The MS28D-04X magic sinewave chips are newly available at $19.63 each plus 
shipping. Sourcecode and one hour of consulting is separately available for $89 
additional.

You can order your samples and sourcecode here. They should also be shortly 
available on eBay.

Licensing arrangements for your own chip production using our sourcecode or 
any of its derivatives or variants are available and are quite reasonably priced. You
can email me for further details.

Additional Magic Sinewave services, programming, seminars, training and project
development are available here and here. 

Further GuruGrams columns await your ongoing support as a Synergetics            
Partner.
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