Getting a charge out of batteries.

Our usual reminder here that the Resource Bin is now a two-way column. You can get tech help, consultant referrals and off-the-wall networking on nearly any electronic, tinaja questing, personal publishing, money machine, or computer topic by calling me at (520) 428-4073 weekdays 8-5 Mountain Standard Time. US callers only, please.

I’m now in the process of setting up my new Guru’s Lair web site you will find at (where else?) www.tinaja.com This is the place you go for instant tech answers. Among the many files in our library, you will find complete reprint sets for all of the Resource Bin and other columns. Plus a brand new Synergetics Consultant’s Newtwork & lots of links to unique web sites.

You will get the best results if you have both Netscape Gold and Acrobat Reader 3.0 installed. This new reader does utterly amazing things online.

A Look at Batteries

Take a fresh lemon and stick a bare copper wire and an iron nail into it. Now connect a voltmeter between the wire and nail and you should observe a voltage. Switch to an ammeter, and watch for a few mils of current.

This is one simple example of an electrochemical cell. Which is often and wrongly called a battery.

Just as that original battery was a grouping of cannon, your electrical battery is supposed to be a group of cells. A normal flashlight is supposed to have one battery of two cells. But nearly everybody says “battery” when they mean “cell”.

An electrochemical cell consists of an electrolyte through which electrons freely find their way between any two dissimilar conductors. An anode at the negative terminal and a cathode at the positive terminal. At one time, these electrolytes had to be liquid. But these days, you will find gels, pastes, and even a few solid electrolytes.

When an external circuit is closed, a current results. Caused by a chemical reaction that forces electrons from the (+) cathode on over to the (-) anode. As that electrical energy in your current gets “used” externally, the amount of chemical energy remaining in the cell decreases. Thus discharging the cell.

A primary battery is normally a one way sort of thing. It starts with a high chemical energy and usually is able to discharge only once.

Some examples of primary batteries are carbon zinc flashlight cells, higher current alkaline cells, small mercury or silver oxide cells for long life at rather low currents, and brand new long life, high current lithium cells.

Any secondary battery is reversible. You can initially charge it by “filling” it with electrical energy. Energy that is converted into higher levels of stored chemical energy. You then discharge it into a load as needed.

One common secondary battery is the lead acid battery you’ll find in any automobile. Other secondary batteries include nickel cadmium and nickel metal hydride cells used for everything from cordless phones to toothbrushes. And lithium polymer variants.

You may find quite a bit of overlap between primary and secondary cells. Some flashlight cells can be recharged a few times. With less bang for your buck each time. Those secondary cells cannot get recharged forever. They’ll typically have a useful lifetime of a few hundred to several thousand charge and discharge cycles.

Every battery technology trades off energy density, lifetime, cost, current levels, temperature, terminal voltage, discharge properties, rechargability, convenience, and safety.

A Closer Look

A lead acid battery is made from a sulphuric acid electrolyte solution, a lead cathode, and a lead oxide anode.

To discharge your battery, an external current is drawn. Reversibly forcing lead, lead oxide, and sulphuric acid into lead sulphate and water. Thus reducing the stored chemical energy.

To charge your battery, an external current is applied. Reversibly forcing the combination of lead sulphate and water back into lead, lead oxide, and sulphuric acid.

Thus raising the available chemical energy to higher levels.

Somewhat similar reactions do exist for all popular battery chemistries. No one battery is “best” for all uses. So a dozen or more choices of chemistry are popular today.

There’s several important measures of how “good” a battery is. These are collectively called the energy density.

This energy density sometimes gets expressed by weight. Telling you how heavy your battery has to be.

While Watt hours per kilogram is the norm, Watt hours per pound will often get used instead. Note that there are 2.2 pounds in a kilogram.

If your energy density is expressed by volume, it tells you how big or how bulky the battery has to be. While Watt hours per liter is the norm, Watt hours per cubic inch or a Watt hours per cubic centimeter might sometimes get used. There are 61 cubic inches or 1000 cubic centimeters in one liter. A liter is also called a cubic decimeter.

As a rule of thumb, the Watt hours per liter will be two or three times the Watt hours per kilogram. For typical chemistries most of the time.

For instance, some alkaline primary cell may offer you an energy density
of 140 Watt hours per kilogram or 400 Watt hours per liter. A nickel metal hydride cell might provide an energy density of 65 Watt hours per kilogram or 170 Watt hours per liter.

In general, a primary battery can deliver longer life for a given weight and volume. But at less convenience and higher operating costs.

My fire pager can barely make it overnight without having to recharge its older NiCads. But it easily goes for several days on alkalines. And more than two weeks on lithium.

Here are some battery resources...

Duracell

The Duracell folks have lots of free battery brochures. These can get you educated in a big hurry. Included are lifetime discharge curves and full tech specifications.

Let's review what you'll find in a few of these brochures...

Carbon Zinc

Cells are in those plain old primary flashlight batteries. While the cheapest of the lot, they are not really as cost effective as the newer choices. Typical energy densities are 50 Watt hours per kilogram or 150 Watt hours per liter.

By the way, an old caver's trick on flashlight cells: Always reverse to top cell in your backup light source. That way nothing awful happens when it inevitably turns on in your pack.

Alkaline Manganese Dioxide

Cells are a newer and a better substitute for carbon zinc. The high costs are more than offset by longer life and fewer surprises. These are really great for flashlights, toys, and intermittent high current loads. Energy densities are as high as 140 Watt hours per kilogram or 400 Watt hours per liter.

The **Mercuric Oxide** or **Silver Oxide** battery systems are typically offered as tiny coin cells. They are usable for computer real time clocks, watches or calculators. The output voltage is very stable and flat. Energy density is 110 Watt hours per kilogram or 450 Watt hours per liter.

Mercury cells are being phased out because of safety and toxicity.

Zinc Air

Cells are a safer and newer primary replacement for the mercury cells. These unusual cells have an air access hole in them. They are best used for continuous but low currents. They also do not self discharge until the air seal is removed.

Since one of the products "used up" in a zinc air cell is external, they have a big time energy density advantage. Namely 350 Watt hours per kilogram and a stunning 1200 Watt hours per liter. But note that these are suitable for small and light loads only. They are unlikely to end up very useful for electric vehicles.

Nickel Cadmium

Secondary cells are one of the earliest of rechargables. These still remain popular today for test equipment, toothbrushes, and in some cordless appliances. At 40 Watt hours per kilogram or 120 Watt hours per liter. But with some bad habits.

Cadmium is a deadly heavy metal and is tricky to properly dispose of. Certain NiCads have a memory effect where if you lightly discharge them all the time, they will forget entirely what a deep discharge is.

Note that typical NiCads have an extremely low internal impedance. If you short circuit one, an exceptionally high current is quite likely. Possibly exploding the cell. And welding both short and shorter.

Nickel Metal Hydride

Secondary batteries are a big improvement over NiCads. With higher energy densities and safer chemistry. They largely lack NiCad's undesirable memory effects. Important uses include laptops, video cameras, and cellular phones.

The new primary Lithium cells are often the "best". Outstanding life gets combined with superb energy density and higher per cell voltages. But prices are still way high.

Lithium is by far the lightest metal and is plentiful in sea water. Sadly, lithium is extremely reactive and has been a bear to tame for battery use.

Some lithium technologies are now reaching 400 Watt hours per kilogram and 1000 Watt hours per liter.

Watch out for new rechargable and extremely lightweight lithium polymer cells from Argonne and others.

Interestingly, they apply a "warm" technology that has to hold the cells at 60 degrees C or so. A good review of lithium polymer possibilities appear in the Sept. 1996 Automative Industries on pages 75-77.

One source for specialized custom high efficiency lithium cave lighting devices is HDS Systems.

Yuasa-Exide and Panasonic

Ordinary lead acid batteries use a wet chemistry. One which has to get

Copyright c 1997 by Don Lancaster (520) 428-4073 www.tinaja.com All commercial and all electronic media rights fully reserved.
maintained, ventilated, and remain right side up. A gel cell instead uses a gelled electrolyte. These normally are usable in any position and are sealed from the environment.

Gel cells are often used for alarm systems, for emergency lighting, and for uninterruptable power supplies. Their typical energy densities are 25 W hours per kilogram and 60 W hours per liter. Cheap, but not so great compared to newer cells.

Uh, Duracell is not in the lead acid business. Instead you’ll have to go to Yuasa-Exide, to Johnson Controls, or to Panasonic for the gel cells. These are usually stocked by Mouser, Digi-Key, and all of the usual suspects.

Additional ads for battery suppliers are found in the EEM Master. And in E.E. Times, Electronic Component News, and similar trade journals.

Get a Charge Out Of This

Newer rechargeable cells are quite fussy over how you charge them. You can’t simply shove a bunch of current into them and belligerently walk away.

The latest of charger circuits will use pulse techniques. Which carefully measure cell voltage and temperature. Important suppliers for the intelligent charger chips now include Benchmark, Unitrode, and Dallas.

A review of charger resources can be found as my file HACK80.PDF on www.tinaja.com

You can expect the next generation of batteries to have some degree of built in intelligence. A thermistor at the least. Maybe even a full micro to provide both safety and "gas gauge" functions. Amp is a leading proponent of new multi-pin battery connectors that ease adding smarts to these next generation power sources.

The Battery Reference Book

This fat textbook by T. R. Crompton is sold by Butterworth Heinemann. All of the major battery technologies are exhaustively covered in depth.

Lead acid, nickel, silver, alkaline, carbon zinc, zinc chloride, mercury, lithium, manganese dioxide, sodium sulphur, metal air, zinc halogen, and scads of others.

The second edition was revised in 1995. The text is British, so you’ll see some European emphasis. Plus a few rough spots in the translation. As an example, they’ll use cubic decimeters instead of liters in their notation.

One electrochemistry publication is Interface. Edited by the Electrochemical Society. In the area of trade groups, you should find an Independent Battery Manufacturers Association and a Battery Council International.

And, of course, the web is crammed to the gills with online battery info.

1-800-BATTERIES

There are several newer outfits that now specialize in one stop shopping for all replacement battery packs. For video cameras, cellular phones, and laptop computers. You should find ads for many of these in Nuts & Volts.

One high profile supplier is Power Express, who have a 1-800-BATTERIES catalog. Two competitors are Battery Technology and B&H Photo Video.

Home Power

As we’ve seen a time or two before, Home Power magazine is the source for most alternate energy topics.

Including, of course, the batteries used for most solar and wind energy storage. You’ll find lots of advertisers, tech info, and detailed reviews.

I’ve provided a hot link to the Home Power site on www.tinaja.com

Yet another source for home energy battery storage products is Real Goods.
Electric Car Batteries

Most of the heaviest trucks and the most powerful locomotives found in the world today are electric. And have been so for decades. Thus, your key problem is making electric cars more wimpy, not less.

There's been great heaping bunches of hidden secret agendas, regulatory hassles, market uncertainties, lack of infrastructure, and the misdirection in most auto battery research.

Do note that the energy density of gasoline is ridiculously higher than any known battery technology. When all is said and done, gasoline today is a "better" choice by a factor of nearly one hundred. This is your main reason electric cars have yet to make it very far out of the driveway.

Until batteries dramatically improve, a hybrid car having a small constant speed diesel engine, a limited battery set, and not less than four in-wheel motors makes the most sense to me.

For decades now, there has been a perpetual motion scam eeking out a meager existence on late night talk shows. In several cases, exceptional battery life extensions are claimed. In a system that involves high voltages, sudden inductive switching, and "lots of sparks".

Life extensions which occasionally disappear when you place a diode in series with the cells. Could there be a real effect hidden in the hype?

While, of course, remaining within the bounds of physical and chemical reality. And the real world.

Theoretically, if so much as a scrap of the zinc case still remains on an ordinary flashlight cell, recoverable energy remains. Such a cell does not "run down" by fully depleting all its chemical energy. Instead, processes involving depolarization will gradually increase the cell's internal resistance to the point where useful energy can no longer be drawn.

Life curves tell us that discharging such a cell only a few hours per day gives much longer life than running it continuously. Those electrochemical "cells" used by the electroplating folks often are reversed every now and then. Purposely unpulsing a tad. For cleaner and smoother results.

What happens if you recycle some part of the drawn energy as narrow and high current spikes? Say a reverse ten amps for a twentieth of a second every five seconds. Against a normal half amp draw.

One amp second back for five out. Because of inherent nonlinearities, this pulsed return current just might depolarize better than a continuous draw can polarize. Possibly, a longer battery net life could result.

Conceivably, you could have this electronic disk that snaps on top of the top cell of your flashlight. A disk that magically extends battery life by discouraging polarization.

The big bucks question that you can personally explore today is whether such a recycle effect exists at all. Casual observation says it should. And if this effect exists, is it cost effective enough and dramatic enough to bother with?

A Basic Stamp project, obviously. Switching with a power Mosfet. And some PC data acquisition. And always fresh cells from identical lots inside the same package.

Limit your experiments to carbon zinc or alkaline cells only. Don't even think of trying this with NiCads! Just to stay on the safe side, use a "bomb shelter" consisting of a paint can full of sand. And some fuses.

Fixed resistor heating loads are a much more controllable choice than a nonlinear light bulb filament. A good digital voltmeter is a must.

This Month's Contests

Let's have two contests this month. Tell me about a battery resource I am not familiar with. Or run that pulse recycling experiment to see if you can come up with a useful result.

There will be a largish pile of my new Incredible Secret Money Machine II books going to the dozen or so better entries, plus an all-expense-paid (FOB Thatcher, AZ) tinaja quest for two that will go to the very best of all.

Send all your written entries to me here at Synergetics, rather than to Nuts & Volts editorial.

Microcomputer pioneer and guru Don Lancaster is the author of 33 books and countless tech articles. Don maintains his no-charge US tech helpline found at (520) 428-4073, besides offering all of his own books, reprints, and consulting services. Don also has two free catalogs full of his resource secrets waiting for you. Your best calling times are 8-5 on weekdays, Mountain Standard Time.

Funding and time constraints restrict this helpline service to US callers only.

Don is in the process of setting up his Guru’s Lair at http://www.tinaja.com

Full reprints and preprints of all Don’s columns and ongoing tech support appear here. You can reach Don at Synergetics, Box 809, Thatcher, AZ 85552. Or send any messages to his US Internet address of don@tinaja.com