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Pseudo-random sequences are useful in a number
of applications, including music synthesizers.

This article explores the circuits that

generate these sequences and their applications

by DON LANCASTER

NOISE IS USUALLY THE BAD GUY WITH
the black hat in most electronic systems.
It’s something we want to get rid of, or
at least minimize as best we can. But
not always! Sometimes noise can be use-
ful. Useful if we want to generate ran-
dom tone sequences in electronic music.
Useful if we want to use it for part of a
computer data-security code. Useful to
test complex communications gear where
all different sorts of signal levels might
be present at once. Useful in crypto-
graphy for “secret” code generation and
transmission. And useful for an elabor-
ate form of communications called signal
correlation, handy where you use white-
hat good-guy noise to extract a signal or
some information that may be deeply
buried in the bad-guy, black-hat noise
you can’t control.

The trick is to get noise that repeats!
Noise that appears random, but repeats in
a predictable fashion. Believe it or not,
this is very easy to do and takes nothing
but a few pieces of TTL or some other
logic and an op-amp.

The name of the game is a series of
easy-to-generate codes called Pseudo-
Random Sequences. Besides being inter-
esting and simple to experiment with, you
might like to use them in an electronic
music system, for audio testing or on a
school or fair project.

What do we mean, pseudo-random!

How can noise repeat? What we do is
generate a long and involved sequence of
digital ones and zeros or analog signal
levels. If the sequence is long, the short-
term variations appear to be completely
random and unpredictable and have es-
sentially the same power and statistical
distribution properties of “real” random
noise., Now, the catch is that over the
long time sequence length, the same
“noise” gets put out over and over again.
So, short term, you make the signal look
like noise. Long term, you make the
same thing repeat continuously. You
pick the short term to fit the system that
needs the noise or a random sequence of

inputs. You pick the long term to fit the
circuit and your experiment.

For instance, we’ll shortly see that if
we had a 16-stage digital shift register
connected right, we could easily generate
a maximal length sequence that is 65,535
bits long. Now, take 500, or 1000, or even
5000 bits out of the middle of the se-
quence and it sure looks like noise. It’s
an easy matter to convert it to an analog
level by low-pass filtering or integrating
the sequence. Thus, we can go either
analog or digital.

The really interesting property of all
this is that we can use the same 500,
1000 or 5000 bits over and over again,
so that the “noise” repeats exactly every
time. On a scope display, this means
you can get a stable presentation of ran-
dom events. In electronic music, it means
you can get the same melodic or rhythm
sequence back anytime you want. With
real noise, it would be gone forever.
And in security communications and those
correlation circuits, we have to know
what to look for at the other end of the
system, sO we can generate an exact
replica or a delayed replica of what we
started with. This process of comparison
is called autocorrelation and lets us re-
cover our original information.

Types of sequences

Generating long sequences is an easy
job for any logic family, particularly
MOS or TTL for medium speeds and
MECL for faster ones. There are many
possible routes to go, but the two most
popular ones are called the Barker code
and the Maximal Length Pseudo-Random
Sequence. Barker codes are “best” from
the standpoint of comparison or auto-
correlation. The problem is that they are
rather hard to generate and that no one
has found any really long ones. So, the
maximal length type turns out best for
many applications. It’s real easy to build,
and, as the name implies, we can do no
better with a certain amount of parts to
attain a given length of sequence.

Maximum length turns out to be all
but one of the possible states of a suitable
serial shift register circuit. Thus, if we

have a 6-stage register, the total possible
states from 000000, 000001, 000010,
through 111110, 111111 is 63. The maxi-

mum length pseudo-random sequence
will be 63 bits. A 7-stage register is
good for 127, an 8 for 255, up to 65,535
for a 16-stage register. Obviously, with
a few more register stages, we can get
to astronomical lengths. Thus, with only
a few low-cost IC’s, you can easily build
multi-million bit sequences. Even with
six stages, the 63-note sequence is more
than enough for a short electronic music
melodic sequence. Even shorter sequen-
ces are useful for timbre generation of
unusual electronic sounds.

Table 1 shows the sequence length we
can expect from the various length of
registers, provided we have set up the
circuit properly to generate a maximal
length sequence.

Getting the circuit working
But, all a serial shift register can do
is pass on ones and zeroes. It gets them
from its input and passes them on one
and only one stage each time the regis-
ter is clocked. For instance, if we had a
register full of zeros, its states would be.
000000
Connect the input to a “1” and clock it
once, and we get
100000
Clock it again for
110000
Now, input a zero and clock it
011000
And clock it five more times:

Thus, all a serial shift register consists
of is a “bit marcher” that shifts things
over one stage each clock command. The
particular shift register we are using is a
serial-in, shift-right type, the most pop-
ular and most common form.

We still have to get our input 1’s and
0’s from somewhere. The way it’s done
is with feedback. We logically combine
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SHORTER SEQUENCE LENGTHS

LENGTH

STAGES LENGTH STAGES
2 3 10 1023
3 7 11 2047
4 15 12 4095
5 31 13 8191
6 63 14 16,383
7 127 15 32,767
8 255 16 65,535
9 511 17 131,071
TABLE I—RANDOM SEQUENCE LENGTHS
SEQUENTIAL STATES FOR n-6
(sequence length = 63)
000000 ( 0) 011100 (28) 000111 ( 7) 001000 ( 8)
100000 (32) 101110 (46) 100011 (35) 100100 (36)
110000 (48) 010111  (23) 110001 (49) 110010 (50)
111000 (56) 101011 (43) 011000 (24) 011001 (25)
111100 (60) 110101 (53) 101100 (44) 001100 (12)
111110 (62) 011010 (26) 110110 (54) 100110 (38)
011111  (31) 001101 (13) 011011  (27) 010011 (19)
101111 (47) 000110 ( 6) 101101 (45) 101001 (41)
110111  (55) 000011 ( 3) 010110 (22) 010100 (20)
111011  (59) 100001 (33) 001011 (11) 101010 (42)
111101 (61) 010000 (16) 100101 (37) 010101 (21)
011110 (30) 101000 (40) 010010 (18) 001010 (10)
001111 (15) 110100 (52) 001001 ( 9) 000101 ( 5)
100111 (39) 111010 (58) 000100 ( 4) 000010 ( 2)
110011  (51) 011101 (29) 100010 (34) 000001 ( 1)
111001 (57) 001110 (14) 010001 (17) (000000) (( 0))

TABLE 1I—THE SEQUENTIAL STATES for the circuit n—6 in Fig. 1. The first (input) register

stage is on the left, the last (output) on the right. Numbers in parentheses are the decimal

equivalents of the binary words.

REGISTER CONNECTIONS FOR LONGER SEQUENCES

FEED EXCLUSIVE-NOR GATE

STAGES SEQUENCE LENGTH FROM OUTPUTS
17 131,071 14 and 17
18 262,143 11 and 18
20 1,048,575 17 and 20
21 2,097,151 19 and 21
22 4,194,303 21 and 22
23 8,388,607 18 and 23
24 16,766,977 19 and 24
25 33,554,431 22 and 25
26 67,074,001 21 and 26
27 138,693,177 19 and 27
28 268,435,455 25 and 28
29 536,870,911 27 and 29
30 1,073,215,489 23 and 30
31 2,147,483,647 28 and 31

TABLE 1il—HOW TO CONNECT FOR SEQUENCES UP TO 31

in a proper circuit to generate a new one
or zero in unique response to the state
the register is now in.

The logic for maximal length takes
nothing but exclusive NOR gates and
turns out to be unique. Any logical com-
bination of outputs to drive the input
will give us some sequence length. The
problem with the majority of connections
is that they only generate a very short
(or maybe only a 1-bit!) sequence, and
that the states going through the register
do not have the random-looking proper-
ties that we need.

What we have to do is find the magic
combination of logic and feedback that
will generate the maximal length se-
quence for a given stage length. To do
this takes a bunch of high-level math,

but it has to be done only once. Circuits
that will do that are shown in Fig. 1 for
register lengths of 2 through 16.

Some more details

Let’s actually build a real 63-bit se-
quence circuit, It’s shown in Fig. 2. We
use the first six stages of a 74164, one-
half of a 7486 quad EXCLUSIVE-OR
gate with the two sections cascaded to
form an EXCLUSIVE-NOR, the usual
5-volt supply and decoupling, and a vari-
able-speed clock made up from a
MCI1555 or 555 timer.

Every time the circuit is clocked, it
advances one count and generates a
pseudo-random sequence of 63 of its 64
possible states. The clock frequency de-
termines how fast the states will change,

while the sequence time will be 1/63rd
the clock frequency if you run the cir-
cuit continuously. We can use the serial
bit stream or we can use the digital words
that show up in parallel on the register
outputs. Or, as we’ll shortly see, these are
easy to convert to analog “noise” or dis-
crete, randomly varying analog levels.

The two cascaded EXCLUSIVE-OR
circuits form an EXCLUSIVE-NOR or
comparator. If both inputs are the same,
a “1” is output, If the inputs are different,
a “0” is output. Thus our feedback cir-
cuit looks at stage 5 and stage 6 to see
what they were before the new clock
arrives. The output of the EXCLUSIVE-
NOR then sets up what stage 1 is to be
after clocking, determined by whether
the logic levels on stage 5 and 6 are the
same or different.

For instance, in the 63-word sequence
of Fig. 1 (n=6), if 5 and 6 are both 0’s,
a “1” gets entered into the first stage on
the next clocking. What was in the first
stage goes to the second; the second to
the third, and so on. If 5is a 1 and 6 is
a 0, a “0” goes to stage 1 on the next
clocking. The same thing happens if 5
isa 0 and 6 is a 1. Finally, if 5 and 6
are both 1’s, a 1 is sent to the first stage
on the next clocking.

In this manner, the entire pseudo-
random sequence is built up. To see how
beautifully it works, set up a table like
that of Table II for some of the shorter
sequences of Fig. 1—say the 15-word
sequence of n-3.

All 63 states are shown in Table II.
As you can see, any short-term group of
bits in the middle jumps around in a very
nearly random manner: If you count the
number of sequential 1’s and 0’s you get
and work up a distribution curve, it turns
out to be a rather chunky approximation
to a random probability curve. As we
add more and more register stages, the
curve smooths out, and the more stages,
the better the randomness. For any cir-
cuit, the maximum number of sequential
I’s or 0’s we can get has to be equal to
or less than the register length, Obviously
we get far more short bursts out than
long ones. If you go through all the
statistical math, you find that you do
have very nearly a truly random behavior
on a short-term basis, only one that
nicely repeats every time we ask it to.
In fact, things turn out even better than
random noise, since you get the random-
ness over one sequence length, while
“true” noise would theoretically take for-
ever to be truly random. Longer se-
quences behave even better.

Available sequences

There are usually at least four pos-
sible maximal length sequences for any
stage length. Circuits to get all four are
shown in Fig. 3. If we take the circuit
we have and invert the input, we get an
inverted sequence in which all the ones
are zeros and vice versa. Or, instead of
looking at what’s going to happen next,
we can look to see what already did hap-
pen and get a backwards sequence. Fin-
ally, we can both look backwards and
invert to get a backwards sequence with
interchanged ones and zeros. All four cir-
cuits have essentially the same random-
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ness properties. Which one you use de-
pends on how you like to start the circuit
and what output polarity you want. In
electronic miusic, it’s handy to use all
four, for you can get a sequence, the
sequence played backwards, or the se-
quence played on an inverted scale or
on an inverted scale and backwards.

The disallowed state

One little detail we have to watch for
is the unused state. If you ever get into
the 111111 state with the normal cir-
cuit, it will stay there forever! The back-
wards version will also stick in 111111,
while either inverted (complementary)
sequence sticks in 000000. So, we must
never allow this state to occur, It’s easy
to reset or preset our register or other-
wise make sure we. also start our sequence
on a known valid portion of the se-
quence. By the way, this is true of almost
all counters and sequential circuits in
general. You have to investigate all the
disallowed or “don’t care” states to make
sure none of them are self-perpetuating.

One other little detail is that we
obviously must get an additional 1 or 0
(or one less zero or one) since our code

SHIFT REGISTER

is always an odd number of bits long.
This missing 1 or 0 will tend to skew the
random distribution slightly and will tend
to shift the bias on an analog conversion
scheme slightly. This is easily avoided
by compensating bias resistors, and the
longer sequences have almost negligible
skew and randomness bias.

Converting to analog

Figure 4 shows two diflerent ways to
convert the digits to numbers. In 4-a, we
use an integrator or low-pass filter on the
serial bit stream, and the output of the
integrator is an analog voltage that varies
in a random manner. The short-term
output is noise that behaves just like
white noise up to the filter’s cutoff fre-
quency or at least up to a good fraction
of it. A cutoff frequency of 1/20 the
clock frequency is recommended, partic-
ularly for longer sequences. A different
possibility is shown in Fig. 4-b.

Here we directly D/A convert the
parallel digital words to an analog signal.
With this circuit, you get analog levels
that jump to some new random value,
once every clock cycle.

To find the time the sequence repeats,
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FIG. 1—PSEUDO-RANDOM CIRCUITS that produce sequences from 3 to 65,535 words.

just divide the clock frequency by the
sequence, the repeat time will be 100,-
using a 100-kHz clock and a length 16
sequence, the repeat time will be 100,-
000/65,535 or about 1.5 times per sec-
ond. If you are using the 63-note se-
quence for electronic music at 3 notes
per second, it repeats once every 21 sec-
onds. A 127-note sequence would be
good for 42 seconds, and so on. As an
extreme example, if you used a 48-stage
MECL shift register and a 100-MHz
clock, it would take around 3 million
seconds or over half a year to repeat.
At lower clock frequencies, it would take
decades or even centuries!

The serial conversion circuit of Fig.
4-a works best when the clock is at least
20 times the filter’s cutoff frequency as
determined by the capacitor values. Thus,
for high-quality audio testing and require-
ments of this type, you use as long a
register length and as fast a clock as you
can.

Applications

Let’s briefy turn to the things you can
do with a pseudo-random sequence gen-
erator.

For audio testing and communications,
you normally use a very fast clock and
a sequence that repeats perhaps 30 times
a second, so you can get a stable oscil-
loscope display. The filtering then gives
you random signal variations that dupli-
cate the effect of random combinations
of voice or communications data or signal
levels, Commercial instruments are avail-
able (Hewlett-Packard, among others)
that do just this. The net result of the
testing is that you simulate the real
operating conditions in a realistic man-
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ner but also in a way that lets you see
the results as a stable display.

Electronic music uses are relatively
obvious. By interchanging the outputs in
a programmable manner, you can use
one basic sequence generator to build a
fantastic number of tunes and can obtain
them frontwards, backwards, normal
scale or inverted. Some of these combin-
ations will be dull and others will be
simply phase-shifted replicas of others,
but the number of unique and interesting
variations remaining are still a bunch.
Figure 5 shows one possible electronic
music composer. By adding random rhy-
thm and pause combinations, you can end
up with an essentially infinite number of
variations. You can also use pseudo-
random sequences to generate timbre
waveforms for electronic music.

Secure computer communications en-
code the data to be transmitted onto a
pseudo-random sequence that is locked
to a replica at the far end. Usually, the
sequence length is very long, days,
months, even years. Cryptography and
other security schemes are other appli-
cations of this type. As with any code,
regardless of its complexity, it can be
broken. The object of any code game is
to make cracking the code so complex,
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make it take so long, or make it so INPUT GOOD
expensive that the cost of cracking ex- DATA SCRAMBLED OUTPUT
DATA

ceeds or at least severely diminishes the
value of the information to be gained. So,
as with all codes, the pseudo-random
technique is a reasonably effective deter-
rent, not a fail-safe and foolproof route
to security.

To encode or decode data, two EX-
CLUSIVE-NOR gates are used, one at
each end of our secure line. Remember
that the output of an EXCLUSIVE-NOR
is the same if the inputs are identical and
different if they differ. So, if our pseudo-
random generator happens to be in a “1”
state, input data 1’s stay ones and 0’s
stay zeros, e.g. they are transmitted with-
-out “error.” On the other hand, if our
pseudo-random generator happens to be
in a “0” state, the 0’s become 1’s and
I’s become 0’s; we say the data is com-
plemented. Since the line now consists of
a random mixture of good and bad data,
it appears to be garbage to anyone mon-
itoring in the middle. At the other end,
we simply add a new pseudo-random gen-
erator identical in length and sequence
to the original; once again, it inverts
when zero and passes when one; and all
the data straightens back out again.
Figure 6 shows the. circuit.

Autocorrelation is a very complex sub-
ject, but it dramatically illustrates the
power of pseudo-random sequences. Sup-
pose we have a sequence length of 63
and that a 1 is 41 volt and 0 is —1 volt.
If we multiply the code by itself on a
bit-by-bit basis, we would get 463 volts
out. On the other hand, if we multiply
the code by a delayed replica of itself
or a random string of ones and zeros,
we will probably get a very low value,

LINE

PSEUDO-NOISE TRACKING PSEUDO-
SOURCE NOISE SOURCE

FIG. 6—A PSEUDO-RANDOM CODER or data

scrambler for privacy or cryptography.

maybe +1 or —1 out. Thus when the
code matches itself, you get a very strong
output signal; otherwise you get very
little. Only the Barker codes can give you
perfect 4 and —1 sidelobe levels; the
mismatch and noise level produced in a
pseudo-random code is higher, but still
has a very useful sidelobe level.

This tremendous build-up of signal
buys you a signal-to-noise improvement
and the ability to extract a signal deeply
buried in uncontrollable noise.

Longer sequences

The schematics for sequences longer
than 16 get rather cumbersome to draw,
so they are shown . in table form in
Table III. The lengths are shown up to
31 stages, which is a sequence length
of 2,147,483,647. That should be long
enough for just about anything. Note
that this sequence can be built up with

only four of the 74164 shift registers.

Sequence 19 is omitted because it takes
more than one exclusive OR gate to
build it. There are likewise other possi-
ble maximally long or nearly maximal
sequences for lengths 17, 21, 22, 23, 25,
27, 28, 29 and 31, but one should be
enough for each length. R-E
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