
Solving Puzzles With PostScript

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
http://www.tinaja.com don@tinaja.com
copyright c2006 as GuruGram #67.
(928) 428-4073

Way on back in the late 1950’s when I first learnt engineering, many math
calculations were difficult, crude, and very time consuming. You often tended to
avoid doing anything involving extensive math. Or else went far out of your way
to find some simplifying alternatives.

These days, of course, the average kitchen blender has far more computational
capability than a fifties student engineer could have even dreamt of. And the
routine math power of a plain old desktop PC was unimaginably beyond anything
anywhere at any cost. The paradigm has obviously shifted.

To the point where we now have new and better math tools available. Some of
which can be based on nothing but plain old brute force…

 Throwing a few million extra math calculations
 at any problem is not that big a deal any more.

I’ve already used brute force methods for several previous projects. Ferinstance,
in our Fun With Fields of GuruGram #43, all of the horrendously ugly coordinate
transformations and complex trig functions involved in traditional electromagnetic
fields problems got completely blown away. Simply handled by using a plain old
rectangular area and brute force recalculating the boundary conditions a few
hundred thousand times. Then using the classic relaxation method.

And all of the exciting developments in our Magic Sinewaves started off by brute
force calculating every possible harmonic result for all possible digital words of
a given binary length.

When the combinations got out of hand, longer words were dealt with by
pre-applying suitable filters. Which eventually revealed that something rare but
exotic was possible in the way of greatly improved digital sinewave generation.
Zeroing the maximum harmonics using the minimum pulse edges.

You’ll find much more of the story in STALAC.PDF. Along with many other related
"fun with math" adventures.

— 67.1 —

http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/paradigm.pdf
http://www.tinaja.com/glib/rebound1.psl
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/msinexec.pdf
http://www.tinaja.com/glib/stalac.pdf

Puzzling over PostScript

I’ve long been overly enameled by the superb general purpose PostScript
computing language. Which I routinely use for an amazing variety of tasks. And
many thousands of examples of which you’ll find on these Web Pages.

Let’s see how PostScript can be used as a sledgehammer solution to some
common classes of puzzles.

Ferinstance, some of the more insidious time wasters are known as alphametic
puzzles. And a typical example might be…

 ONE
 ONE
 TWO
 TWO
 THREE
 ELEVEN
 ======
 TWENTY

The object of the game being to find one or more unique numeric solutions. That
obey the obvious rules of base 10, each letter always a uniquely specific digit, and
no leading zeros.

There are a surprisingly large number of alphametic puzzles. Several web sites
devoted to them appear, here, here, and here. Or you can search Google under
"alphametic puzzles" for nearly 5000 more.

One of the simplest known examples is the classic SEND + MORE = MONEY.

We will look at two methods of solving this class of problems. The first attack
method will use direct brute force without regard to the numeric relations in the
problem. With direct brute force, we will pay no attention whatsoever to any
internal "clues" the puzzle gives us.

Our second will use modified brute force to dramatically speed up the results.
For this, we will use any obvious internal clues. Such as partial totals, relations
between numerals, and ranges of allowed carries. With either method, you’ll still
end up exploring many thousands to many millions of possible permutations.

Let’s see. Since there are ten numerals maximum, the total possible number of
solution combinations is 10*9*8*7*6… . Otherwise known as factorial ten, 10!, or
a grand total of 3,628,800 permutations.

PostScript can easily whump up these combinations in a minute or less and often
get us at least one solution in about the same time. Here is your basic 10! factorial
permutation generator…

— 67.2 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com
http://www.tinaja.com/post01.asp
http://www.tkcs-collins.com/truman/alphamet/alpha_gen.shtml
 http://www.tkcs-collins.com/truman/alphamet/alphamet.shtml
http://users.aol.com/s6sj7gt/mikealp.htm
http://www.google.com
http://www.tinaja.com/post01.asp

/scanall { /valid [0 0 0 0 0 0 0 0 0 0] store

 0 1 9 {/x0 exch store valid x0 get 0 eq {valid x0 1 put
 0 1 9 {/x1 exch store valid x1 get 0 eq {valid x1 1 put
 0 1 9 {/x2 exch store valid x2 get 0 eq {valid x2 1 put
 0 1 9 {/x3 exch store valid x3 get 0 eq {valid x3 1 put
 0 1 9 {/x4 exch store valid x4 get 0 eq {valid x4 1 put
 0 1 9 {/x5 exch store valid x5 get 0 eq {valid x5 1 put
 0 1 9 {/x6 exch store valid x6 get 0 eq {valid x6 1 put
 0 1 9 {/x7 exch store valid x7 get 0 eq {valid x7 1 put
 0 1 9 {/x8 exch store valid x8 get 0 eq {valid x8 1 put

 /x9 45 x1 sub x2 sub x3 sub x4 sub x5 sub
 x6 sub x7 sub x8 sub store
 dotask

 valid x8 0 put } if } for
 valid x7 0 put } if } for
 valid x6 0 put } if } for
 valid x5 0 put } if } for
 valid x4 0 put } if } for
 valid x3 0 put } if } for
 valid x2 0 put } if } for
 valid x1 0 put } if } for
 valid x0 0 put } if } for

 } bind store

Not much rocket science here. Simply nine loops inside each other.

But instead of comparing each new variable against the previously used ones, a
valid array gets used instead. This turns out to be quite a bit faster. A "0" in the
array means the numeral remains available; a "1" means it is in use. Values
change to "1" on any loop continuance and change back to "0" when any loop is
temporarily finished.

Similarly, while the needed tenth loop could be used, a direct calculation is faster.
This totally general code executes dotask precisely 3,628,800 times. Once for
each possible combination of numerals.

For any particular problem, you will substitute the x0 … x9 values with your
desired letters for the particular puzzle at hand. Your dotask routine will then
make the needed specific calculations for you. And then spit out the desired
results for you.

Here is an example of a dotask routine…

— 67.3 —

/dotask {oo 100 mul nn 10 mul add ee 1 mul add 2 mul
 tt 100 mul ww 10 mul add oo 1 mul add 2 mul add
 tt 10000 mul hh 1000 mul add rr 100 mul add ee 10
 mul add ee 1 mul add add ee 100000 mul ll 10000
 mul add ee 1000 mul add vv 100 mul add ee 10 mul
 add nn 1 mul add add

 tt 100000 mul ww 10000 mul add ee 1000 mul add
 nn 100 mul add tt 10 mul add yy add

 eq {(gotone!
) print ee == tt == } if

 } bind store

Interestingly, there are four possible solutions. Column specific R and V can have
their values interchanged. And column specific W depends upon its own column
specific L.

This routine exhaustively searches all 10! = 3,628,800 permutations in a brute
force search. It gives you the first answer in thirty seconds on an 800 MHz XP.

Digging Deeper

By going to problem specific restrictions, you can dramatically reduce the cases
needing tested. And speed up your results. Leading to our modified brute force
method.

Such problem specific restrictions are set by column carries, restrictive interactions
between variables, summations, and such. In this case, some careful thought
should show us that…

 • O, T, and E cannot be zero because they lead.

 • Carry5 has to be 1, so 1 + E = T.
 Which further restricts E to not being 9.

 • Possible values for carry3 are 1 through 4.
 Since carry3 + H + E = E, carry3 + H = 10.
 H can thus only be 6, 7, 8, or 9.

 • From column 1, 10 mod (3*E + 2*O + N) equals Y.

Each restriction can be added as a condition once all needed variables for that
condition are defined. Modifying scanall leaves us with…

— 67.4 —

/scanall {
/valid [0 0 0 0 0 0 0 0 0 0] store

1 1 8 {/ee exch store ee 1 add /tt exch store
 valid ee 1 put valid tt 1 put
 1 1 9 {/oo exch store valid oo get 0 eq {valid oo 1 put
 0 1 9 {/nn exch store valid nn get 0 eq {valid nn 1 put
 0 1 9 {/yy exch store valid yy get 0 eq ee 3 mul oo 2 mul
 add nn add 10 mod yy eq and {valid yy 1 put
 0 1 9 {/ww exch store valid ww get 0 eq {valid ww 1 put
 0 1 9 {/rr exch store valid rr get 0 eq {valid rr 1 put
 0 1 9 {/vv exch store valid vv get 0 eq {valid vv 1 put
 6 1 9 {/hh exch store valid hh get 0 eq {valid hh 1 put

 /ll 45 ee sub oo sub nn sub yy sub ww sub
 tt sub rr sub vv sub hh sub store
 dotask

 valid hh 0 put } if } for
 valid vv 0 put } if } for
 valid rr 0 put } if } for
 valid ww 0 put } if } for
 valid yy 0 put } if } for
 valid nn 0 put } if } for
 valid oo 0 put } if } for
 valid ee 0 put valid tt 0 put} for
 } bind store

The modified code evaluates 11,208 cases with the first answer in 0.3 seconds.

And Deeper?

There’s little point in further optimization if you are already running in a fraction
of a second and you are only going to run the code once. But if you really want
to, a second column restriction drops you down to 1206 trips with the first
answer in 50 milliseconds. Beyond that, the law of diminishing returns sets in.
With the extra calculations for qualifications actually increasing your processing
time. And the reporting time becoming a major fraction of anything left.

For More Help

Some ready-to-use companion code appears as PUZZ01.PSL Similar topics in our
PostScript and Math Stuff libraries. Our Gonzo Utilities greatly simplify and
improve your use of PostScript. As always, Custom Consulting is available. You
can email me for details.

— 67.5 —

http://www.tinaja.com/psutils/puzz01.psl
http://www.tinaja.com/post01.asp
http://www.tinaja.com/math01.asp
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp
http://www.tinaja.com/info01.asp
mailto:don@tinaja.com

