
Some PostScript Utilities for
HTML and XHTML Revalidation

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2009 pub 11/09 as GuruGram #102
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

One of the ruder surprises of the web is that different browsers tend to display
in different manners. Some may allow unique custom features, while others
choke on them. As the web has aged and newer and better standards have
emerged, the rules have gotten more and more strict.

In particular, HTML 4.0 and XTML now demand that…

Most commands are now case sensitive.
Most data must be quote bracketed.
Most commands must be lower case.
"LOWSRC" is no longer permitted.
"alt=" on images is now mandatory.
Text ampersands must be in "&" format
<blockquote> has largely supplanted .
Some commands (such as
) must now self-delimit.
Id’s have largely replaced names.
Id’s and names have to start with a letter.
Delimiting spaces are now often mandatory.
JavaScript interpretation is now stricter.

A very useful validator can be found here. I was rudely surprised to find my older
web pages generating thousands and even tens of thousands of errors per page.
After manually correcting a few pages, I decided that most of the revalidation and
verification could easily be handled by some hand written PostScript utilities.

As we have seen countless times in the past, PostScript excels as a General
Purpose Computing Language when its unique features can be properly
exploited. In particular, PostScript is especially adept at modifying most any
uncompressed text based disk file written in virtually any other computer
language.

— 102.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://validator.w3.org/
http://www.tinaja.com
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/post01.asp

In this GuruGram, we will explore a few ways that PostScript can dramatically
speed up and simplify reverification of older website content to newer html and
xhtml standards. Much more on our PostScript utilities appears here.

Repairing Ampersands

An ampersand is used as an "escape" character in both HTML and XHTML.
Ferinstance creates a nonbreaking space, while > gives you a "greater
than" closing carat text character not to be used as a command delimiter. When a
lone ampersand was found in an earlier browser, it was guessed to be a printing
character. But such guesses are not permitted in current HTML or XHTML.

All printing ampersands must now be shown in their & format.

Repairing ampersands gets ugly in a hurry. Lone ampersands are quite common
in URL’s such as eBay Listings or Acme Mapper locations, among many others.
But only those ampersands that are not followed by a semicolon within a few
characters should get corrected.

To make matters worse, there is an insidious bug in DreamWeaver that may
change all of your ampersands back the way they were hours after you fixed
them! If you must use DreamWeaver to change ampersands, ALWAYS close your
file immediately afterward and NEVER click on the refresh button.

Instead, a simple and versatile utility can be created in PostScript that opens any
file, inspects each ampersand to make sure there in no semicolon following in the
next few characters, and then alters only those that need changed. One example
program is FIXAMPS1.PSL. It simply reads one character at a time of an HTML or
XHTML file and tests to see if a correction is needed.

The high level code looks something like this…

/correctampersands {
 /readfilename fileheader infilename mergestr store
 /readfile readfilename (r) file store
 /writefilename fileheader outfilename mergestr store
 /writefile writefilename (w+) file store

 0 1 10000000 {
 readfile (x) readstring not {exit} if
 /curchar exch store
 writefile curchar writestring
 testforampersand} repeat

 readfile closefile
 writefile closefile} store

— 102.2 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/gonzotut.pdf
http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100
http://mapper.acme.com/
http://www.adobe.com
http://www.adobe.com
http://www.tinaja.com/post01.asp
http://www.tinaja.com/psutils/fixamps1.psl

 … while the substitution utility is…

/testforampersand {curchar (&) eq {

 readfile bytesavailable 8 gt {

 /curposn readfile fileposition store
 readfile (x) readstring pop (;) eq
 readfile (x) readstring pop (;) eq or
 readfile (x) readstring pop (;) eq or
 readfile (x) readstring pop (;) eq or
 readfile (x) readstring pop (;) eq or
 readfile (x) readstring pop (;) eq or
 readfile (x) readstring pop (;) eq or
 not {writefile (amp;) writestring } if

 readfile curposn setfileposition} if
 } if } store

If the present character is an ampersand and if none of the next few characters
are a semicolon, then a new amp; is written between the existing ampersand and
the continuing text.

One known bug is that ampersands inside a Visual Basic script internal to an .asp
file will need separate attention as they must not be changed.

Our Banner Rotator uses a VB script line of pattern = a(0) & a(1) … & a(8) which
must remain intact. Such exceptions are very rare and easily dealt with.

"Search and Destroy" Phrase Substitution

A different approach can be used to try and repair the majority of earlier HTML
errors. In which big chunks of the code are bulk scanned for problem phrases.
Should a problem phrase be found, it can be replaced with corrected code. We
might call any earlier phrase Wuz and the replacement phrase Wilby.

Now, some Wuz phrases will be generic and common to most all early HTML.
Such as converting a
 to a
. Others will be specific to your web page
style. Such as changing a color=$FFCC99 to a color="FFCC99" . Such substitutions
will be useful only if this particular color is of importance in your page layouts.

It is important to decide how much generic and how much specific code you wish
to correct. In general, taking out most of the errors with an automated routine
will greatly simplify and speed up your revalidation. But, try for a perfect repair
and you will end up spending much more time coding and testing than you
would fixing the problems in the first place.

— 102.3 —

http://www.tinaja.com/glib/bouncy.pdf
http://validator.w3.org/

AUTOVAL1.PSL is an example of a PostScript phrase substituter. It can be used on
most any uncompressed text file in most any language, but clearly excels at html
and xhtml repair.

At present, the repairs take place on sequential 40K strings. These are all long
enough for surprisingly fast operation but still stay within a 64K limit should your
wilby strings add to your file size.

A srpairs scripting data file is first created listing your possible wuz and wilby
substitutions. This is an array of form [[(wuz1)(wilby1)] … [(wuzn)(wilbyn)]]
The wuz and wilbys can be a mix of your generic and specific code. Such as this
partial example…

/srpairs [
 [(
)(
)]
 [(
)(
)]
 [()(<blockquote>)]
 [()(</blockquote>)]
 [()(<blockquote>)]
 [()(</blockquote>)]
 [(<name=)(<name=")]
 [(<href=h)(<href="h)]
 [(<a href=h)(<a href="h)]
 [(<A href=h)(<a href="h)]
 [(href=m)(href="m)]
 [(HREF=) (href=)]
 [("")(")]

 [(color=#FF9999) (color="#FF9999")]
 [(width=87) (width="87")]
 [(height=25) (height="25")]
] def

The entries before the break are generic examples, while those after the break are
specific to a particular website style. Wuz and Wilby entries can be much longer,
especially when changing from older to newer html versions. A srpairs file will
typically be dozens to hundreds of entries long. You could directly study our
AUTOVAL1.PSL for current examples. These are easily customized for your
particular needs.

It is important to chose your Wuz phrases with care. It is usually best to have an
ending space or closing carat. This prevents, say, a (width=65) conversion from
doing both a (width="65") and an unwanted (width="65"0). Or picking up only
part of a URL because of trailing slashes.

— 102.4 —

http://www.tinaja.com/psutils/autoval1.psl
http://www.tinaja.com/post01.asp
http://www.tinaja.com/psutils/autoval1.psl

Your high level code might look something like this…

/autovalidate {
 /readfilename fileheader infilename mergestr store
 /readfile readfilename (r) file store
 /writefilename fileheader outfilename mergestr store
 /writefile writefilename (w+) file store
 /curstring 40000 string store

 {readfile curstring readstring % early strings
 not{exit}if searchandreplace
 writefile exch writestring} loop

 searchandreplace % final string
 writefile exch writestring

 readfile closefile
 writefile closefile} def

The high level code breaks up the input file into 40K chunks and then will do a
searchandreplace on each chunk. The Wilby for Wuz substitution code can be…

/searchandreplace { /curstring exch store

 srpairs { dup 1 get /wilby exch store
 0 get /wuz exch store
 {curstring wuz search not {exit} if
 exch pop wilby mergestr
 exch mergestr
 /curstring exch store } loop

 } forall

 curstring} store

The PostScript search operator normally returns three strings: Everything up to
Wuz which simply gets written to your new file. Wuz, which gets replaced by
Wilby in your new file; and all post characters which become the next curstring
for the continuing search. The forall operator goes through the Wuz and Wilby
pairs in order.

Speed is typically faster than one second, but varies with the complexity of your
srpairs array and the length of the html file being corrected.

— 102.5 —

http://www.tinaja.com/post01.asp

Yes, there is a remote possibility that a repair might be needed spanning two
repaired chunks. But the odds of this happening are very low and your validation
routines will quickly spot them. Again, your usual goal should be to have the
automated code dramatically reduce and ease your total revalidation time. But
perhaps not eliminate it entirely.

Fancier code can easily be written that makes a second pass with an offset to deal
with chunk spanning. You could also isolate html carat strings to make sure
what you are changing is in fact html and not coincidental content text.

Working with carat strings can also greatly eases any changes you want to make
to the end of an html command. Such as changing the ending of to an
. Or adding an id= after each name=.

Or putting an ending quote on some href="…" without worrying about every
possible filename extension or slash.

Custom code services are available.

Again, I was overjoyed that the automated PostScript code reduced the per page
errors from thousands of difficult and obscure ones to a dozen or so of simpler
ones. And did so astonishingly fast with remarkably simple and easy code.

Scripting

The AUTOVAL1.PSL utility is easily modified so it can work with an entire list of
web pages to be revalidated. You first create a scripted list of files to be
corrected…

/filestofix [

(bkpz.asp)
(bkradast.asp)
(bkrecomm.asp)
(bkreview.asp)
(bkrfid.asp)
(bkrobot.asp)
(bksanta.asp)
(bkseismo.asp)
(bkseti.asp)
(bkspect.asp)
(bksvg.asp)
 …
] store

Your new SCRIPVAL.PSL uses a high level loop similar to…

— 102.6 —

mailto:don@tinaja.com
http://www.tinaja.com/post01.asp
http://www.tinaja.com/psutils/autoval1.psl
http://validator.w3.org/
http://www.tinaja.com/psutils/scripval1.psl

/scriptvalidate {
 filestofix {/curfile exch store
 /readfilename infileheader curfile mergestr store
 /readfile readfilename (r) file store
 /writefilename outfileheader curfile mergestr store
 /writefile writefilename (w+) file store

 /curstring 40000 string store
 {readfile curstring readstring % earlier strings
 not{exit}if searchandreplace
 writefile exch writestring
 } loop

 searchandreplace % final string
 writefile exch writestring
 readfile closefile
 writefile closefile
 } forall} def

A second forall loop get used to step through the file page names in order.
Amazingly, many hours of hand labor is replaced with a very few seconds of
instant results.

One detail: Apparently there is no direct way in Windows XP to capture directory
listings. As would be handy to make your list of files to be corrected. Instead, a
free utility called CopyFilenames can be installed to provide directory-to-clipboard
transfers.

Some JavaScript Considerations

Older client side JavaScript programs also can also present problems with newer
versions of HTML or XHTML. For instance, this example originally would display
but not calculate at all.

Our first rule in dealing with JavaScript revalidation problems…

 Make sure the HTML or XTML code revalidates
 before attacking JavaScript specific issues.

Note that most modern browsers may have an optional JavaScript Debugging
Console that can be activated with a mouse click or two. This can be a highly
useful tool to locate and repair compliance issues.

— 102.7 —

http://www.extrabit.com/copyfilenames/download/
http://www.tinaja.com/demo28a.asp

One major compatibility problem is…

 While HTML ignores scripts,
 XHTML parses them as data!

There are two recommended workarounds. The "best" appears to be to import
your JavaScript code from another file. Like so…

 <script type="text/Javascript"
 scr="externalfilename.js">
 </script>

A second workaround is to tell XHTML to ignore your JavaScript code. This
approach may be better for very short routines of only a few lines…

 <script type="text/javascript">
 /* <![CDATA[*/
 // JavaScript content goes here
 /*]]> */
 </script>

Some sneakiness is involved here. The CDATA portion tells XHTML to ignore the
enclosed data. While the /* and */ bracketing tells JavaScript that this is to be
ignored by treating as a JS comment.

Another issue is that some early browsers introduced their own features that
were not part of the JavaScript standard. In particular, the problem with our
Magic Sinewave calculator was that IE allowed a "short form" of i.d. that was not
part of the JavaScript standard, but got picked up by other browsers. Some newer
browsers (especially Firefox 3.5 or later) may place a more strict interpretation of
what is or is not legal in JavaScript.

Specifically, these may no longer be legal or allowed…

 cfh05.bgColor="#CCFFFF" ;
or
 eval (unrejHarm1 + ".bgColor=’#66FFCC’") ;

— 102.8 —

http://www.tinaja.com/magsn01.asp
http://www.firefox.com

Instead, replace with these…

 document.getElementById(’cfh05’).style.backgroundColor =
 "#CCFFFF";
or
 eval ("document.getElementById(’" + unrejHarm1 +
 "’).style.backgroundColor = ’#66FFCC’") ;

Our first example defines the color of a fixed location called cfh05 , while the
second one allows a calculated or changing color for a variable location. These
also created messages trapped by the error console, making them relatively easy
to find and fix.

Proofing

Having a "green" validation does not mean your web pages are error free! All
green means is that your work is not so bad that a browser will choke on it. You
could still have broken links or changes in format that you did not intend.

So, it is extremely important to carefully proof each and every page after
your validation!

Such proofing is best done by a third party. While a url checker is found here, a
manual recheck of each and every link is strongly recommended.

It is also important to use your ISP’s log files to keep track of 404 trends and
similar errors. It is usually not possible to get much below a one percent error
rate. But anything above should be suspect. As should more than a very few hits
on one particular error. More on log file use and manipulation here.

For More Help

Many more application programs and utilities appear on our PostScript Library
page. A guide to our PostScript Gonzo Utilities and additional links appear here.

Additional consulting services are available per our Infopack services and on a
contract or an hourly basis. Additional GuruGrams are found here. Seminars also
available.

Further GuruGrams await your ongoing support as a Synergetics Partner. For
details, you can email don@tinaja.com. Or call (928) 428-4073.

— 102.9 —

http://validator.w3.org/checklink
http://www.tinaja.com/glib/analogeb.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/glib/gonzotut.pdf
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp
mailto:don@tinaja.com

