
A PostScript-as-Language
Search & Replace Utility

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2002 as GuruGram #12
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Ordinary word processors can create problems when editing eight bit data due
to control characters, reserved codes, and differences in line endings. Attempting
to edit an Acrobat PDF file with an ordinary word processor can cause problems
with embedded fonts and encoded Flate Compressed strings.

Instead, a PostScript-as-Language utility can easily be created that lets you
globally search and replace a file of any content without any rude surprises. Such
a program is also a good review of PostScript disk file manipulations as well.

I’ve uploaded a PostScript Search & Replace (S&R) utility to our PostScript
library as file SEAREPL.PSL. Normally, you would bring this file up into a wp or
editor, modify it for your own uses, and then send it to Acrobat distiller. Let’s
look at some key code in this utility…

I strongly recommend using my gonzo utilities for most PostScript-as-language
development. But for this file, the only utility we only immediately need is the
ability to merge two stack-top PostScript strings…

/mergestr {2 copy length exch length add string dup dup
4 3 roll 4 index length exch putinterval 3 1 roll exch
0 exch putinterval} def

We start the utility by entering the access data…

/diskfileheader (C:\\WINDOWS\\Desktop\\inherit) store
/diskfilesourcename (g9demoyx.pdf) store
/diskfiletargetname (g9demozz.pdf) store
/wuz (4 0 R) store % string to search
/wilby (3 0 R) store % string to replace

Several minor gotchas here: All PostScript strings MUST include double slashes
when a single slash is wanted!

—1—

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/psutils/searepl.psl
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/post01.asp

Also, when appropriate be sure to provide a leading space in previous content
wuz. And, when using this utility for PDF post processing, it is a very good idea to
have the same character counts in wuz and wilby. This can eliminate any need for
cross reference rebuilding.

We then create our full filenames and convert them to readable and writable
PostScript file objects…

/sourcefilename diskfileheader diskfilesourcename
 mergestr store
/targetfilename diskfileheader diskfiletargetname
 mergestr store
/readfile sourcefilename (r) file store % set input read
/writefile targetfilename (w+) file store % set output write

Note that the (w+) tells us to append file info, rather than overwriting it.

There is a 65K limit on PostScript string length, which can easily be exceeded by a
PDF or other general file. Thus, several passes might be needed for full processing.
Our main processing loop looks like this…

/workstring 60000 string def % file read workstring
/oops 4000 def % infinite loop lockout
oops { readfile workstring readstring
 {searchandreplace}
 {searchandreplace exit} ifelse
 } repeat

We simply read as much of the file as fits our workstring and then process that
piece. An unlikely infinite loop is avoided with oops should something go very
wrong with the disk reading process.

The search and replace code could look like this…

/searchandreplace {oops { wuz search % seek match
{ writefile exch writestring % save previous
pop wilby writefile exch writestring} % do replacement
{ writefile exch writestring exit} % till nothing left
 ifelse} repeat } def

Note that several trips through are needed for multiple replacements. The
remaining unprocessed string end gets passed back in to do this.

Some extra code is added to the actual utility to report each replacement done or
if no replacements took place.

—2—

Multiple searches and replacements can be done at once by extending the code
into a forall loop or a forall dictionary.

Two big gotchas: First make sure wuz and wilby have exactly the same number of
characters if you wish to avoid a risky PDF cross reference rebuild. A padding
space can usually be added if needed.

Also, make sure wuz and wilby don’t take out anything unexpected. Ferinstance, a
wuz of 4 0 R will also take out 14 0 R or 24 0 R. A leading space cures this
particular problem. Also, if your text contains a 4 0 R, add some kerning or
something else to prevent an inadvertent substitution.

Altering PDF Transparency

We saw back in GuruGram #8 several approaches to creating transparent
PostScript artwork by using raw PostScript code sent to Distiller. As of this writing,
a PDF post patch seems to still be needed to actually link the correct gstates.

This S&R utility greatly simplifies the process...

 1. In a word processor, search for all PDF Xobjects.
 2. Write down the wuz and wilby form object numbers.
 3. Enter wuz, wilby and filenames into the S&R.
 4. Run the S&R program for automatic conversion.

On any repeated editing of the PDF file, simply rerun S&R for an automatic
opaque to transparency conversion.

Consulting assistance on any and all of these topics can be found at
http://www.tinaja.com/info01.asp.

Additional GuruGrams await your support as a Synergetics Partner.

—3—

http://www.tinaja.com/glib/pstrans.pdf
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

