
Some Fast and Efficient
PostScript Sorting Utilities

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2003 as GuruGram #31
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

I have long had a pair of BUBLSORT.PS and a INSORT.PS utilities over on my       
PostScript library page. I recently needed to improve and update these for our 
new Log File Analyzer and eBay Reporter routines. The actual code can be found
in our new PRESORT1.PSL utility. This GuruGram gives you an intro tutorial.

Classic Alphanumeric Bubble Sort

The Bubble Sort is the oldest and simplest of computer sorting algorithms. It is 
easy to understand and implement, uses few resources, and is largely data 
independent. Here is one bubble version…

Go through a list or array of N items.
Compare the PRESENT item against the PREVIOUS one. 
Swap the two if PRESENT is SMALLER than PREVIOUS.

Repeat for the first N-1 items on the list. Then for N-2. 
Continue until no unsorted items remain.

On the first pass, the largest item ends up at the end of the list. Several other 
items also may have their position improved, working towards where they belong.
On pass two, the second largest item is second from the end, and so on. After all 
passes, the list is sorted. The smallest items "bubble up" to the list start.

The only little problem with bubble is that it takes a lot of comparisons. These go 
up with the square of n, making bubble excruciatingly slow for very large n. 
Ferinstance, sorting 400 items may take almost 80,000 comparisons, while 1000 
items will demand nearly 500,000.

Although bubble is usually the laughing stock of all sort algorithms, it really is 
hard to beat for low n sorts. Where its simplicity, data independence, minimal 
resources, and low overhead completely blow everything else away.

Here is a new alphabetical bubble sort for PostScript string arrays…
— 31.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/psutils/bublsort.ps
http://www.tinaja.com/psutils/insort.ps
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/analogeb.pdf
http://www.tinaja.com/glib/analogeb.pdf
http://www.tinaja.com/glib/presort1.psl
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp


/alphabubblesort2 { /curmat1 exch store curmat1 length 
1 sub -1 1 {curmat1 0 get exch 1 exch 1 exch {/posn exch
store curmat1 posn get 2 copy lt {exch} if curmat1 exch
posn 1 sub exch put} for curmat1 exch posn exch put } for
curmat1 } bind store

When using Distiller as a General Purpose PostScript Computer, this utility sorts 
400 items in a quarter of a second on an 800 MHz Pentium host machine. And is 
thus more than fast enough for routine use on shorter lists.

More detailed comments on this routine appear in PRESORT1.PSL. The initially 
assumed data format will be an array of strings to be sorted alphabetically. Such 
as [ (string0) (string1) (string2) … (stringN)]. 

In general, there is a loop within a loop. The inside loop compares, tests, and 
sometimes swaps sequential items using exch. The outside downcounting loop 
decides how many progressively fewer sequential items to test.

The utility keeps the previous list item on the stack top, gets the next item, 
compares them, and swaps them if needed. The smaller item then gets resaved 
to the original array, and the larger item becomes previous for the next pass. No 
additional resources are used except for a few stack positions.

Note that the PostScript search command does a full lexigraphic "dictionary" 
search when applied to two strings. But does not combine upper and lower case.

Normally, you will insert this utility into your larger PostScript program, save it as
a standard ASCII textfile, and send it to Acrobat Distiller following the full 
details shown in DISTLANG.PSL or GuruGram #28.

Popularity Bubble Sort

A simple modification lets you sort on item popularity . This is useful for Logfile   
Analysis where you want a list of files downloaded by user interest.

Assume your data is an array of arrays of form [ [(string0) popcount0 ][(string1)
popcount1 ][(string2) popcount2 ] … [(stringN) popcountN ] ]. This time, 
instead of directly comparing present and previous, you instead add a 0 get if you
want to sort alphanumerically. Or a 1 get if you want to sort by popularity…

/popbubblesort2 { /curmat1 exch store curmat1 length 
1 sub -1 1 {curmat1 0 get exch 1 exch 1 exch {/posn exch
store curmat1 posn get 2 copy 1 get exch 1 get lt {exch}
if curmat1 exch posn 1 sub exch put} for curmat1 exch
posn exch put } for curmat1 } bind store

— 31.2 —

http://www.tinaja.com/psutils/distlang.html
http://www.tinaja.com/glib/presort1.psl
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/psutils/distlang.html
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/analogeb.pdf
http://www.tinaja.com/glib/analogeb.pdf


In this example, the most popular string appears at the start of the list. You can 
easily reverse the list by changing the lt to gt.

Presorting for Speed

There’s a surprisingly easy extension to bubble that can ridiculously speed it up 
for longer sorts. Letting it approach the n*log(n) speed of fancier sorts rather 
than the n^2 of bubble…

Pre-sorting your data into K bins can speed up a bubble sort
by over K times!

Which really lets bubble hunt with the big dawgs. Say you had a 260 entry string 
array consisting only of uppercase letters. Sort them into 26 bins A-Z. Temporarily
assume further the best case of each letter being equally likely. You’ll end up with
ten strings in each bin. Now sort them.

With bubble, n sorts will need n(n-1)/2 comparisons. Without the bins, you will 
need 260*259/2 = 33,670 bubble comparisons. Any given n=10 bin now needs 
only 10*9/2 = 45 bubble comparisons. But since there are 26 bins, you will need 
26*45 = 1170 comparisons total. Which is less than 1/26th of what you would 
need without the bins! 

Naturally, the extra overhead and any nonuniform bin distribution cuts into your 
speed gains. But bin presorting almost always will give you a dramatic speedup. 
There’s also no need to sort any empty bins or those with only a single entry.

There’s little overhead for using a lot of bins. And Acrobat Distiller usually has 
tons of resources to spare. A PostScript string might be presorted into 128 bins 
for low ASCII only. Or even into 256 bins if the string involves high ASCII or is 
used for general data storage.

Here’s a sample alphanumeric string sorting routine using bins…  

/alphabubwithbins {/curdat2 exch store /matmat mark 256
{[]} repeat ] store curdat {dup 0 get  /curint exch
store mark exch matmat curint get aload pop ] matmat
exch curint exch put} forall mark matmat { dup length 1
ge {dup length 2 ge {alphabubblesort2 { } forall} if}
{pop} ifelse} forall ]} bind store

You first save your input array, followed by defining an empty array of 256 
subarrays. Next, you fill your bins. Do this by viewing one string at a time and 
extracting the 0-255 ASCII character to find out which bin to add the string to. 
When finished, all your "A" strings will be in the "A" bin and so on.

— 31.3 —

http://linux.wku.edu/~lamonml/algor/sort
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/post01.asp


Additional string and array conversion info appears in STRCONV.PDF in our           
GuruGram library.

Finally, you build an output array that ignores empty bins, uses single string bins 
as is, and bubble sorts bins having more than one string. The overhead on all this 
seems low enough that you are likely to gain even for n=25 strings. Anything 
higher gets much faster. And anything less does not matter.

A Presorted Popularity Variation

Using bins gets even faster and more interesting when sorting on popularity. 
Many times, you will have an exponential or a Raleigh data distribution in which 
you will have lots and lots of single hits, fewer doubles, some triples, and 
progressively fewer of the higher numbers.

This time, you once again use 256 bins. Only you make bin 256 special in that it 
will hold all popularities of 256 or higher. Chances are good it will remain empty 
with typical web log data popularity counts. You can easily bubble sort it if you 
have to.

On the lower bins, you only have to bubble sort if you want, say, all the "three" 
popularity items to be further alpha sorted. Very often, no bubble sorting at all 
will be needed! In this case, what you really have done a very fast variation on an 
insertion sort.

I’ll save details on this one as an exercise for the student.

For  More  Help

Additional PostScript and Acrobat and assistance is available per the previously 
shown web links. Custom programming and design services are now available at 
our standard consulting rates. Per our InfoPack Services. Or you can directly        
email me.

Additional GuruGrams columns await your ongoing support as a Synergetics        
Partner.

— 31.4 —

http://www.tinaja.com/glib/strconv.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/analogeb.pdf
http://linux.wku.edu/~lamonml/algor/sort
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/info01.asp
mailto:don@tinaja.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp
http://www.tinaja.com/advt01.asp

