BUILD A HIGH-EFFICIENCY LIGHTING SYSTEM

Lower the cost of your monthly lighting bill by 90 percent!

Are you wasting electricity? If you’re using standard light fixtures in your home or office, then you definitely are spending more for illumination than you have to. The truth of the matter is that conventional lamps are nowhere near efficient. For that reason, in this article we’d like to introduce you to a more economical source of light: The High-Efficiency Lighting System.

With this easy-to-build unit you’ll save a bundle on electric bills in no time. That’s because the Lighting System uses about 10% of the electricity that a standard lamp uses! Just think how much you’ll save if you build one for every room.

Lamp Efficiency. When dealing with lamps, as well as many other types of electrical devices, achieving efficiency requires reducing the amount of energy used up, without weakening the output. Performing this with a transformer has been done, but it is rather ineffective. We needed to find a better way.

When solid-state components are used to simulate a step-down transformer, a secondary voltage is produced with the reliability of a transformer, but at a much more efficient rate. You see, as a generator rotates through its 360-degree cycle, sine-wave energy is produced. At any given fraction of a degree this energy can be conducted through a thyristor. That will result in an instantaneous voltage, unipolar power pulse.

A unipolar pulse is more efficient than a bipolar pulse. That’s because the latter consists of two identical current pulses of opposite polarity per cycle; eliminating one pulse decreases current by fifty percent. Also, the second pulse may arrive prior to the full release of heat energy, thereby wasting the energy released by the second bipolar current pulse. With pure resistive loads, heating continues after the pulse ends (the pulse actually used by the Lighting System is from 151 to 168 degrees). By correcting for these problems found in standard lamps, the High-Efficiency Lighting System (when used with the lamp specified in the Parts List) manages to use 90% less electricity.

The bar graph shown in Fig. 1 demonstrates how much less power is used by a 30-volt, 50-watt lamp connected to the Lighting System, as opposed to that used by a standard light fixture. Keep in mind that the light output by the Lighting System lamp is equal in brightness to that of the conventional light fixture.

The efficiency of the System can translate into very tangible savings on your electric bill. For example, if you have a lamp that needs to stay on 24 hours a day, seven days a week, you should save approximately $100 a year.

Circuit Description. The schematic for the Lighting System is shown in Fig. 2. Plug PL1 connects to a standard 117-VAC outlet to provide power for the circuit. A capacitive/resistive filter made up of C6 and R5 eliminates SCR tracking of
the AC source voltage; S1 is the power switch.

Capacitors C2-C4 are used to prevent undesirable triggering of SCR1-SCR3 from transient voltage, and for this reason are connected between the gates and cathodes of the thyristors. Decoupling against line-voltage transients acting on unijunction-transistor Q1 is provided by capacitor C5. As a result, positive or negative transients on the unijunction supply voltage will not trigger Q1.

Transistor Q1 is connected through resistor R3 to the voltage "low side" and directly to the gate of SCR1. The other base of Q1 connects through the serial combination of resistors R1 and R2 to the "hot side" of the supply. Resistor R1 drops the AC source voltage to the supply voltage of the timing circuit, while resistor R2 serves to compensate Q1 from thermal variations. Potentiometer R4 can be used to vary the brightness of the circuit as it determines the charging voltage on timing capacitor C1, and the range of conduction angles available (more on this later).

Thyristors SCR2 and SCR3 are connected in parallel to improve stability and to allow two lamps to be powered by the circuit. The lamps, I1 and I2, plug into AC sockets SO1 and SO2. Note that the cathodes of SCR2 and SCR3 are connected to the sockets, while the anodes connect to the hot side of the AC supply. This configuration removes the low-voltage load from the power supply of Q1 and supplies the load through the thyristors.

Construction. The author's prototype for the Lighting System was built on a printed-circuit board. It you'd like to do the same you can either etch your own board using the template shown in Fig. 3, or order a board from the source mentioned in the Parts List (complete kits of parts are available from the source as well). Another option is to build the circuit on a piece of perforated board.

For those using a PC board, refer to the parts-placement diagram while building the unit. To begin assembly, attach two wires to the board to allow for connections to toggle-switch S1 and AC-sockets SO1 and SO2. The wire leading to S1 should be red, signifying a direct connection to the house wiring.

Install R5, C3, C4, C6, SCR2, and SCR3 to the board, being careful to orient correctly the last two parts. The thyristors have an on-state current of 4-8 amps and a peak reverse voltage of 200-600 volts maximum. These parts are strongly recommended because the high conduction angle of the switching in the circuit could lead to component failure. Only use the highest-rated (in terms of amperage) SCR available; heatsink material is recommended for extended service.

Make the following off-board connections shown in the parts-placement diagram. Attach switch S1 to the red wire you installed, then connect the other terminal of the switch to PL1 with one lead of an AC line cord (make sure to use the lead that is not connected to the wide blade of PL1). Connect the other lead of the line cord (the one connected to the wide blade of

TABLE 1

<table>
<thead>
<tr>
<th>Conduction Angle (Degrees)</th>
<th>Lamp Voltage (Volts)</th>
<th>Lamp Current (Ampere)</th>
<th>Power Used (Watts)</th>
<th>Lumens (Foot Candies)</th>
<th>Lamp Simulated (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>151.10</td>
<td>12.30</td>
<td>0.60</td>
<td>7.38</td>
<td>1750</td>
<td>100</td>
</tr>
<tr>
<td>152.00</td>
<td>16.81</td>
<td>0.57</td>
<td>6.71</td>
<td>1250</td>
<td>75</td>
</tr>
<tr>
<td>158.70</td>
<td>9.28</td>
<td>0.60</td>
<td>5.54</td>
<td>1850</td>
<td>60</td>
</tr>
<tr>
<td>159.70</td>
<td>8.85</td>
<td>0.50</td>
<td>4.92</td>
<td>1100</td>
<td>50</td>
</tr>
<tr>
<td>162.50</td>
<td>7.49</td>
<td>0.45</td>
<td>4.64</td>
<td>870</td>
<td>40</td>
</tr>
<tr>
<td>167.60</td>
<td>5.42</td>
<td>0.36</td>
<td>3.46</td>
<td>520</td>
<td>25</td>
</tr>
</tbody>
</table>

Fig. 1. As shown in the bar graph, a 30-volt, 50-watt lamp connected to the High-Efficiency Lighting System uses only 10% current for the same lumens output. The standard lamp uses 18%.

Fig. 2. Here's the schematic for the Lighting System. Lamps I1 and I2 plug into AC sockets SO1 and SO2, providing two efficient sources of light.
PARTS LIST FOR THE HIGH-EFFICIENCY LIGHTING SYSTEM

SEMICONDUCTORS
Q1—NTF6401 or EG6401 N-channel unijunction transistor
SCR1—2N6239 200-volt, 4-ampere silicon-controlled rectifier
SCR2, SCR3—C1228 200-volt, 8-ampere silicon-controlled rectifier

RESISTORS
(All fixed resistors are 1/2-watt, 5% units.)
R1—33,000-ohm
R2—100-ohm
R3—47-ohm
R4—20,000-ohm, trimmer potentiometer
R5—100-ohm
R6—20,000-ohm

CAPACITORS
C1—0.1-μF, 50-WV, Mylar
C2—0.047-μF, 200-WV, Mylar
C3—0.047-μF, 50-WV, ceramic-disc
C6—0.22-μF, 230-VW, Mylar

ADDITIONAL PARTS AND MATERIALS
I1, I2—30-volt, 50-watt lamp, General Electric order code 16385, description 80A21, or equivalent
SO1, SO2—Two-terminal AC socket
PL1—Two-terminal AC plug, polarized

Note: The following are available from Advance Power System (1307 Maple Ave., South Plainfield, NJ 07080; Web: http://members.aol.com/Apsinfo/Apsinfo.html; e-mail: apsmail@aol.com), etched and drilled PC board—$9.50; kit of parts including everything except the lamps—$25.50; assembled and tested kit, not including lamps—$35.50; two lamps—$6. Add $2.50 for shipping and handling; NJ residents please include appropriate sales tax. Please allow 4 to 6 weeks for delivery.

Verify that you can vary the conduction angle with R4 (although it is board-mounted in the prototype; potentiometer R4 can be replaced with an off-board component).

Setup and Use. As hinted at earlier, you will need to select a conduction angle using R4. To do this, connect a standard 100-watt, 120-volt AC lamp to the circuit. Adjust R4 until the standard lamp is almost extinguished.

Disconnect the 120-VAC lamp and connect the 30-volt lamp specified in the Parts List (make sure you don’t use a three-way lamp, as it will drastically reduce the life of the bulb). Connect a DMM across the lamp’s terminals. As you perform the next step, be certain to keep the voltage of the lamp below 15 VDC. Adjust R4 until the values measured across the lamp are 12.3-volts DC at 0.6 amperes. These values will result in a conduction angle of 151.1 degrees, which results in a 1750-foot-candle measurement. This is equivalent to a conventional 100-watt lamp’s advertised initial lumens. The average power used at this setting is 12.3 volts × 0.6 amperes, or 7.38 watts.

It is possible to simulate conventional lamps that have other wattage values by setting a different

(Continued on page 56)
ed, the problem with actually working is its erratic schedule, caused by the cosmonauts’ scrambling to find the time to operate. They’re sometimes forced to turn off their amateur equipment altogether to avoid interference to other systems during critical duties and tests.

The Phase 3D international satellite project is a replacement for the amateur workhorse satellite, OSCAR 13, which soon will plunge into the atmosphere and be destroyed. But it’s more, being aimed squarely at reducing the cost and complexity of ground-based, satellite-capable amateur stations. It adds several new frequency and data format choices, including digital-mode capabilities.

The new satellite will have powerful transmitters, receivers, and antennas for frequencies from 21 MHz to 24 GHz. The new satellite also will be easy to find, since its orbit will place the satellite at the same position above your horizon every 48 hours.

Communications with manned spacecraft and satellites are not the only amateur digital comm. in the "outer space" realm. For several years, amateurs have experimented using "natural space objects" for station. They bounce meteor scions or their ionized trails of meteors that enter the earth’s atmosphere, allowing much greater than line-of-site between VHF and UHF packet stations.

Amateurs also have used earth-moon-earth (EME), or "moonbounce" communications, to bounce their own beacon signals off the moon and listen to them on the rebound. Two-way moonbounce is a little more difficult, however, as EME signals typically are very weak and fluttery.

DSP: Digital Magic. A promising technology that can dramatically enhance your hobby enjoyment is digital signal processing (DSP). DSP represents a highly flexible, entirely digital approach to decoding, encoding, modulating, demodulat-

Hamshack PC software used to be quite limited, and it focused on QSO and contest logging. But amateur software has come a long way since it first appeared in the late 1970s. Today, hamshack software lets you use your PC for much more, including at least a dozen-and-a-half distinct classes of hamshack software applications.

These applications include Morse Code and radio-theory practice, instruction, and testing; computer-based radio and station control; logging, contesting, and awards tracking; automated QSL card processing; directional-antenna aiming; radio propagation prediction; antenna design and modeling; satellite tracking and antenna control; CW and RTTY reception and transmission; and support for packet radio and other digital communications modes.

Other hamshack computer applications you may enjoy include support for image communications such as TAC, WeFax, SSTV, and FSTV; electronic circuit design and performance calculation; CD-ROM based call sign lookup; and online communications.

BUILD A LIGHTING SYSTEM
(Continued from page 44)

conduction angle. Use Table 1 to set your Lighting System for light levels that mimic 75-, 60-, 50-, 40-, and 25-watt lamps.

With the potentiometer set, you can complete the Lighting System by mounting it in a plastic electrical box with an AC receptacle cover. You can also modify a small project box. No matter what enclosure you use, however, never touch any of the components while the circuit is plugged in and turned on!

If the glow of the lamp seems to waver, check that other appliances on the circuit are in good condition. Also check that all outlets have the proper polarity (house wiring testers are available for this purpose); appliances with reverse polarity can adversely affect the circuit.