Build the Popular Electronics Digital Volt-Ohmmeter

COMPLETE CONSTRUCTION DETAILS IN THIS ISSUE

COVER STORY BY DON LANCASTER

December, 1968
For less than the price of many transistor multimeters, you can now build your own real digital volt-ohmmeter. Gone forever will be your days of having wobbly meter pointers, reading the wrong scales, or trying to read accurately from a cramped and highly nonlinear ohms scale. There will be no more problems caused by VOM circuit loading or bent or broken pointers resulting from circuit overload.

You can just clip the DVM to your circuit and read volts or ohms as they brightly and unquestionably pop up on the front panel of the instrument. Just clip and read—instantly! It's that simple.

Fig. 1. Ohmmeter current reference and V/F converter circuits shown make up a single PC board.
This DVM is no slouch on performance either. It has better than ±1 percent accuracy over most portions of the seven available scales. It is self-zeroing and automatically self-calibrating. Three voltage scales, 0-2, 0-20, and 0-200 volts are provided, each at reasonably high impedances—in fact, you can read down to 10 millivolts with ease. Four ohmmeter scales, useful from one ohm to over 200,000 ohms, are also available. It is self-zeroing over 200,000 ohms, are also available. If you like, you can easily add extra outside circuits to measure digitally anything you can convert into a 0-2-volt d.c. signal, including a.c. voltage and current, d.c. current, speed, and temperature.

Like its far more expensive brothers, this DVM is a multiple-slope integrating device. This means it averages the input noise and also eliminates practically all other high-frequency noise that may be present. The instrument is essentially "blind" to 60-Hz hum and only measures the d.c. component of the input, even if hum or noise is present. All this is done automatically—all you do is watch a continuous output display that updates its readings fifteen times a second.

While not a beginner’s project, the extensive use of integrated circuits makes the construction of the DVM relatively straightforward and easy on a module-by-module basis. A complete kit is available as well as individual circuit boards, dialplates, and individual module kits. If you'd rather build things on your own, all parts are obtainable on the market, and complete preparation details of all the circuit boards are given here. Either way, when you’re done, you'll have a real DVM—at a fraction of the cost of commercial equivalents and with performance untouched by anything analog.

Construction. The project has been broken down into five modules plus the case and some panel components. Module 1 is the voltage-to-frequency (V/F) converter. Modules 2 and 3 are decimal counting units (DCU's) described in the November 1968 issue of POPULAR ELECTRONICS, or you can use the improved, low-power versions described in the Winter 1969 ELECTRONIC EXPERIMENTER’S HANDBOOK.

Module 4 is the gate circuit, which simultaneously provides the 0, 1, and overrange counting needed to complete the digital display. Module 5 is the power supply.*

It is best to construct each module separately following the details very carefully. Each module has its own parts list and schematic. If you prefer to purchase circuit boards or partial kits, details are given in the parts lists.

Voltage/Frequency Converter. This circuit, shown in Fig. 1, is the "heart" of the DVM and converts the input d.c.

*Important: The circuits labeled GND throughout this project are not actually ground connections and should not be connected to the metal case. They are common connections constituting an individual circuit and grounding them to the case may produce circulating currents which interfere with the operation of the meter. The metal case should be either left floating or connected to the SW terminal on the V/F module. This is one side of the input signal and is actually the reference point for the system.
signal to a series of pulses that are counted by the DCU’s.

You can purchase the printed-circuit board for this module or you can make one using the actual-size layout shown in Fig. 2 and following the drilling details of Fig. 3. File or multiple-drill the slots required for the two trimming potentiometers (R2 and R13). If you wish, you can add optional terminals or eyelets to make wiring easier.

Components are installed on the board as shown in Fig. 4. Be sure to install all semiconductors properly and double-check electrolytic capacitor polarities. Be especially careful not to interchange R2 with R13.

Gate Module. This is actually the control center of the DVM. The start and stop signals for the V/F converter and the reset signals for the various counting circuits are generated in this module. The schematic for this module is shown in Fig. 5.

A printed-circuit board is suggested for this module. You can purchase one (see Parts List for Fig. 5), or you can etch and drill your own following the actual-size layout shown in Fig. 6 and the drilling information shown in Fig. 7. Don’t forget to install the two jumpers on the component side of the board as shown in Fig 7. Do not use a drill larger than #67 for the IC mounting holes. Optional eyelets or PC terminals can be added where indicated.

Mount the components as shown in Fig. 8. Use a low-wattage soldering iron and fine solder when mounting the IC’s. The rectangular IC’s are identified by a notch and dot at one end, while the round IC’s have either a flat or a dot at pin 8.

Power Supply. The power supply is not assembled on a PC board, but is wired point-to-point at one end of the chassis. The schematic is shown in Fig. 9. A conventional tube-type transformer is used. The 250-volt, center-tapped secondary has two functions. It provides the 125-volt a.c. reference, and its output is...
HOW IT WORKS

V/F CONVERTER

The block diagram for this module appears here while the complete schematic is shown in Fig. 1. The waveforms are keyed to test points shown on the diagrams.

The 0-2-volt input from the function selector is subtracted from a ±27-volt supply generated by the power supply module and regulated by zener diode D2. Thus the input voltage at the V/F converter actually varies from +27 to -27 volts as the instrument input goes from 0 to ±2 volts. Note that all input signals are referenced to ±27 volts and not to the power supply common (GND).

Diode D4 provides reverse polarity and overload protection for the circuit. Transistor Q1 is an emitter follower that provides a high input impedance. Transistor Q2 is a complementary emitter follower that boosts up the signal produced by Q1 and causes a voltage identical to the input voltage to appear across R5 and the front-panel CAL 1.35 control. The current through these resistors can be set for a constant input voltage by adjusting the CAL 1.35 control. The same current appears at Q2's collector as flows through R5 and the CAL 1.35 control. Transistor Q2's output current is then proportional to the original input voltage. Transistor Q2's output current drives a conventional unijunction sawtooth oscillator consisting of UJT Q6 and integrating capacitor C3. A series of pulses at 1 Hz or Q2 changes in frequency as the input voltage changes in amplitude. These output pulses are sent to the 0-199 digital counter and display modules.

The UJT oscillator is turned on and off by gating transistor Q3. This transistor is driven by the Gate module and allows the oscillator to run for 16.7 milliseconds and then shuts it out for the next 50 milliseconds and keeps this up continuously, repeating 13 times a second. The frequency produced by the oscillator is determined by the input voltage. The time this frequency is produced is determined only by the Gate module and Q3. As a result, the oscillator generates 0 to 199 pulses for a 0.1-99 volt input signal, once each measurement interval. This is how the digital display appears to be reading the actual value of the input signal.

There would be a slight linearity problem if the current on Q2 were allowed to go down to zero. Thus, a little more emitter voltage (about 0.3 volts) is added by the front-panel ZER0 potentiometer to remove a corresponding small amount of collector current (about 100 microamperes) all the time. This shifts the operating point of Q2 to a more linear region but still lets 0-2 volts of input produce 0-200 pulses per 16.7 milliseconds at the output.

The extra 100 microamperes of current is "dumped" into the collector of Q5, which is biased to set as a current sink.

The current source for the ohmmeter is also on the V/F board, but it is a completely separate circuit. The collector current of transistor Q3 is either 0.01, 0.1, or 10 milliamperes, depending on the resistor selected for its emitter circuit (R15, R16, R17, or R18). These resistors are not quite decade multiples of each other, because they compensate for slight circuit nonlinearities.

Base current for Q3 is regulated by D6, temperature-compensated by D5, and adjusted over a limited range by R13. Resistor R14 prevents oscillation but otherwise does not affect the output current.

Many hours of design went into this particular V/F circuit, which is far less expensive than the usual operational-amplifier V/F converters used in commercial gear. It is of utmost importance that you neither substitute transistors for Q1, Q2, or Q6, nor attempt any modification of the circuit unless you consider yourself an expert in analog to-digital converter design.
Fig. 4. Avoid accidentally interchanging R2 and R13. Author’s prototype is shown in photo, right.

Fig. 5. This Gate module circuit is the basic timer for the DVM.
also rectified to provide a 30-volt d.c. supply. Resistor \(R_1 \) is a voltage dropping resistor which dissipates a large amount of power and must be located where the heat produced will do no damage.

The power from the "filament" winding of \(T_1 \) is rectified to provide 6-volt and 3.6-volt d.c. supplies. Rectifier \(\text{RECT}_1 \) is a full-wave bridge. Capacitors \(C_1, C_2, \) and \(C_4 \) provide filtering for the d.c., and diodes \(D_3, D_4, \) and \(D_5 \) drop the rectified voltage from 6 to 3.6 volts. The unrectified voltage from the 6.3-volt winding is also used for the pilot or decimal-point lamps. Resistor \(R_2 \) is in series with this supply to reduce the voltage on the lamps so that they do not glow brighter than the counting lamps.

Most of the power supply components can be mounted on terminal strips or a component board as shown in Fig. 10. The rest of the components are mounted on the chassis.

Assembly. To mount the modules in the chassis, aluminum support brackets such as...
HOW IT WORKS

GATE MODULE

This module is a three-in-one board. First, it's a gate generator that produces the on-for-one,
off-for-three gating waveform used in the V/F; it's also a reset generator that automatically pro-
vides a short pulse the instant the V/F is told to start producing a new count; and finally, it
contains an 0, 1, overrange counter used to complete the 0-199 digital display. The complete
scheme is shown in Fig. 5.

The gate waveform is generated by filtering the
60-Hz supply to obtain a smooth sine wave. The
filter removes any noise from the power line that
might cause inaccuracies, while IC1, a hex inverter,
produces a rectangular wave with a fall time
sufficiently steep to trigger the next stage. Capac-
tor C3 provides positive feedback to improve the
square-wave form.

The next stage, IC2, is a divide-by-four counter
consisting of two JK flip-flops connected as cas-
caded binary dividers. Dual-stage IC3 is a 1-of-4
decoder producing a gating waveform that is
grounded for 16.7 milliseconds (one 60-Hz peri-
dod), and positive for the next 30 milliseconds
(three 60-Hz periods). Since this process takes
up four 60-Hz cycles, the frequency of the com-
posite waveform is 1/4 of 60 Hz, or 15 Hz; hence
the 15 measurements per second.

The gate output is routed to the V/F converter
and to a half-monostable reset generator consisting
of IC4 and buffer IC4. This circuit generates a
very brief (about 2 microseconds) reset pulse
which erases the display before the V/F con-
verter can produce its first output pulse. The reset
pulse goes to the two decimal counters as well as
resetting the 0, 1, overrange portion of this
module.

The 0, 1, overrange counter, IC3, has two flip-
flops. One is a binary divider; the second is a
latch that goes on when full scale is reached, re-
gardless of how many more counts arrive. This
counter takes the output of the ten's IC6 and
converts what would be an 0-99 display into an
0-199 plus overrange capability.

A power-line gate may be expected to be ac-
curate to ±0.05%, while the digital 0-199 dis-
play used is only inherently accurate to ±0.5%.
Thus, the instrument accuracy is determined by
the display and the V/F accuracy. Without a far
more expensive V/F circuit, extra decade modules
or a more precise time base will not increase the
instrument's accuracy.

Photo of author's prototype shows
properly wired Gate module board
with indicator lamps and bracket
in place and optional solder termi-
nals at left; external wiring can
be soldered directly to board.
as those shown in Fig. 11 can be used. The photos show how these brackets are used for support.

A three-hole bracket is required for the indicator lamps of the gate module. This can be fabricated as shown in Fig. 12. (One of the brackets supplied with the DCU kit can be used as a guide.) Use orange plastic covers for the 0 and 1 bulb and a red one for the overrange indicator.

The complete schematic for the DVM is shown in Fig. 13. The photos show the assembly used by the author, although any other similar neat arrangement can be used. While layout is not critical, be sure to keep the instrument neat and compact to minimize the chance of wiring error. Be sure to use very short, heavy ground connectors. A ground buss of #12 solid wire between modules is strongly recommended.

Fig. 8. Double and triple check component numbers, values, and orientation on board both before and after soldering.

Fig. 9. Single power supply provides all necessary d.c. voltages for various circuits and 60-Hz reference.

NOTE: DO NOT CONNECT CASE TO POWER SUPPLY COMMON USE HEAVY GAUGE WIRE WHERE SHOWN

POWER SUPPLY PARTS LIST

- C1—10-μF, 250-volt electrolytic capacitor
- C2, C3—6000-μF, 10-volt electrolytic capacitor
- C3—0.1-μF, 10-volt ceramic disc capacitor
- D1, D2—Lampure, 600-μA silicon diode (Motorola 1J4005 or similar)
- D3-D5—1.3-ampere, 50-volt silicon diode (Motorola 1J4003 or similar)
- RECT1—1,3-ampere, 50-volt, full-wave silicon molded bridge assembly (Motorola MDA942-1 or similar)
- F1—1-ampere fuse and fusible holder
- R1—5000-ohm, 30-watt resistor
- R2—27-ohm, 72-watt resistor

T1—Power transformer, secondary 250 volts CT @ 25 milliamps 0.3 volts 1 ampere (Knight 34E-200S, Stanley TP8410, Thordarson 22K39 or similar)

Misc.—16-point terminal board assembly with mounting hardware, a.c. line cord, strain relief, mounting hardware for T1 and F1, wire, solder, mounting clips, for capacitors, etc.

Note: Complete kit of all power supply parts available from Southwest Technical Products, 219 W. Rhapsody, San Antonio, Texas 78216, #CS-15, $10.70 postpaid in U.S.
Fig. 11. If necessary, to avoid interference with components or wiring, deepen the notched cutout.

It is best to use color-coded wiring to minimize wrong connections and facilitate any possible troubleshooting. The resistors associated with SI may be assembled directly on the switch before installation. Also, use green-colored lenses on the decimal-point indicators.

The 1.35-volt reference cell (B1) is mounted wherever convenient within the chassis. Note that there are two types of mercury cell: those for general-purpose use and those for standard or voltage-reference purposes. Make sure that you get the latter. The accuracy of the DVM will be no better than the accuracy of the calibration standard.

Setup and Calibration. After a careful wiring check, the DVM may be plugged in and SI placed in the ZERO position. One digit in each column should light brightly and continuously. Turning the ZERO control through its entire range should change the display from 000 to 030. At about the mid-point of the control, the reading should be 001.

The proper setting of the ZERO control is the position immediately before
Fig. 13. The heavy line connecting the GND terminals in this overall wiring diagram is NOT a chassis ground; it is a convenient floating common bus.

COMPLETE DVM PARTS LIST

S1—Fused deck, five-pole, ten-position, nonshorting rotary switch

S2—D.p.d.t. slide switch

M4—Gate module (see text)

M5—Power supply (see text)

R3—250-ohm, 2-watt linear potentiometer

R4—1000-ohm, 2-watt linear potentiometer

R5—1.2-megohm, 1/4-watt resistor

R6—102,000-ohm, 1/4-watt, 1% precision resistor

R7—900,000-ohm, 1/4-watt, 1% precision resistor

J2—3.5-volt binding post, (red and black)

M1—V/F module (see text)

M2, M3—Decimal counting unit. See POPULAR ELECTRONICS February 1968 or Winter 1969 ELECTRONIC EXPERIMENTERS HANDBOOK (see note).

Note—Kits for the decimal counting units are available from Electronic Products, 210 W. South St., San Antonio, Texas 78216 for $12 each, postpaid in U.S.A. Stock # DVM-1.
you get the 001 reading. If you turn the control down all the way, you'll pick up some serious low-scale errors.

After zeroing, switch to the CAL 1.35 position. When the CAL potentiometer is turned through its entire range, the indicator should go from about 1.20 to about 1.50 with 1.35 at about the middle of the range. If you cannot get the readings low enough, or if 1.35 is at the lower end of the control, add one or two 500-pF mica capacitors across integrating capacitor C3 in the V/F module till you get the proper range.

Very rarely, it may be necessary to change the value of R11. This occurs because of variations in the characteristics of Q6, the unijunction transistor. If the V/F converter oscillates but does not drive the counter, either increase or decrease the value of R11 (in a range of 6.8 to 22 ohms) until proper operation is obtained.

Always rezero the instrument before calibrating. The settings will be remarkably stable after a few minutes' warmup. A slight interaction between the CAL 1.35 and the ZERO controls is normal, so always recheck the ZERO setting after calibrating.

To check zeroing, short test leads together, and misadjust zero control to get an 001 reading. Switch S1 to 0-2 range. The reading should stay at 001. Remove the short. If the reading (Continued on page 108)
changes, adjust R_2 on the V/F module to get an identical 001 reading with the input test leads either open or shorted. Center the adjustment on the 001 reading and then adjust it slightly lower, favoring the 000 reading.

DIGITAL VOLTMETER SPECIFICATIONS

Ranges: D.c. volts: 0-2, 0-20, 0-200. Ohms: 0-200, 0-2000, 0-20,000, 0-200,000. Range extendable to anything that can be represented by a variable 0.2 volt d.c. signal.

Input Impedance (Voltmeter): 0-2, 1 meg-ohm; 0-20, 1 megohm; 0-200, 10 megohms.

Maximum Ohmmeter Current: 0-200,000 ohms, 10 μA; 0-20,000 ohms, 100 μA; 0-2000, 1 mA; 0-200, 10 mA.

Resolution: One part in 200, any range. ±5 millivolts on 0.2 volt range, ±0.5 ohms on 0.2-ohm range.

Accuracy: Better than ±1% of full scale, ±1 count over most portions of most ranges. Internal calibration with 1.35-volt secondary mercury standard.

Stability: Less than 1 count drift per 20 minutes after 15-minute warmup.

Noise Rejection: Instrument is a fully integrating, multiple slope type and is essentially "blind" to any 60-Hz line-borne hum or noise and has a high degree of rejection to all other high-frequency noise.

Update Time: 15 measurements per second; instrument integrates input for 16.7 milliseconds and displays for 50 milliseconds.

Miscellaneous: Automatic overrange indicator, floating decimal points for "actual value" indication; zener input protection; polarity reversal switch; internally self-calibrating; useful accuracy to 200% of full scale.

To calibrate the ohmmeter portion, ZERO and CALibrate the DVM as described above. Then place the test leads across a precision 1% resistor between 1300 and 1500 ohms (do not use higher or lower values) and switch to the 0-2K resistance range. If the DVM does not read exactly the resistance being measured, adjust R_{13} on the V/F module till it does. The instrument is now fully calibrated on all scales.

Readjust the ZERO and CALibrate 1.35 front-panel controls any time you like. This gives you an instant check on how the DVM is doing. The internal trimmers will rarely if ever need readjustment.