
Blatant OpportunistMar-Apr, 1994 26.1

Copyright c 1999 by Don Lancaster and Synergetics (520) 428-4073 www.tinaja.com All commercial rights and all electronic media rights fully reserved. Reposting expressly forbidden.

the blatant
opportunist 26

by Don Lancaster

Picojustification

T he attractive arrangement of words on a printed
page can be a joy to behold. But these days, a lot of
self-publishing looks downright terrible. Caused

mostly, I guess, by the lack of attention to detail, a weak
appreciation of layout fundamentals, the uncritical use of
canned software, and simply not looking close enough.

It was a very sad day when Arizona Highways magazine
dropped hanging punctuation because "it was impossible to
do with a computer." Well, with any luck at all, you should
be seeing lots of hanging punctuation right here. The only
thing I can conclude is that Arizona Highways is not using a
computer that is as good as my Apple IIe.

Hanging punctuation is trivial to provide. It is usually
inexcusable not to do so.

At any rate, text justification is the process of arranging
words on a page. Such that they create an intended visual
effect that both communicates effectively and is artistically
pleasant. While attractively filling an available space.

Let’s look at the fundamentals of text justification. Then
I’ll show you a brand new picojustification technique that
might simply and dramatically improve the quality of your
final layout work. Yes, it works with a computer.

These are the common forms of text justification…

This is text that is left justified.
This is text that is center justified.

This is text that is right justified.
This is text that is fill justified.

Although these are your big four, there are lots of other
justification possibilities. A free form justification is any
variation on a fill justify where the line lengths continually
change. You might use this to inset figures or text pulls, or
else to define an unusual paragraph shape.

Array justification gets used for connectors or pinouts.
This one usually does multiple center justifies.

A menu justification puts down all of the dots to align
selections with prices. Your goal is to mix proportionally
spaced text and fixed pitch dots. The easiest way to do this
is to put down all dots first. Then erase unneeded ones.

A tab justify is used for columns of information. This
usually arranges callouts, or small blocks of text in tabular
form. The blocks themselves are individually left, center, or
right justified. The most common right justify use is for
prices or columns of figures.

As a general rule, fill justification is the hardest to get
under control. So, let’s take a quick look at the…

Fill justification fundamentals

I feel that fill justification has been highly overrated. Its
popularity dates from the days when typewriter output was
left justified, while "real" typesetting was fill justified. In
general, fill justification usually ends up less legible and
offers less comprehension than left justification. It is also
much harder to do a really good fill justify.

For these reasons, I feel you should avoid the use of any
fill justification unless it is clearly called for.

The wider your columns, the easier your fill justification
task will be. A good rule is to never fill justify on any line
less than 1-1 /2 alphabets wide. Or 39 characters.

The big problem with narrow margins is that a greater
proportion of white space is needed to get average text to
fit. And unless you are extremely careful, that extra white
space will be visually jarring. And will detract from the
vibes you are trying to convey.

The ease of fill justification is definitely not a linear type
of thing. As your columns get narrower, the challenges get
much more difficult. Ridiculously so. Thus, you’ll want to
avoid fill justification on extremely narrow columns.

Your choice of fonts and the ledding, or extra vertical
space between your character lines, could also make a big
difference. Expanded fonts or those with wider character
forms are much harder to fill justify. If you are stuck with
narrow columns, use the narrowest characters you can by
making your fonts as small as possible. Consistent with
legibility and the resolution limits of your printer. The new
600 DPI printers can help bunches here.

Using fill microjustification

It’s very important to understand how the fill algorithms
you have operate. Inferior ones guarantee horrible results.
For instance, algorithms that only stretch the word spaces
often lead to very poor page makeups.

The object of the game is to stretch out your characters
and words so they exactly fit your text margins. And do so
without creating anything spacey.

Vertical "rivers" and huge "Jack-o-Lantern" toothing are
big no-nos. As is anything else visually jarring.

Back in the days of fixed pitch typewriters, a fill justify
got done by adding whole spaces to even out the lines. If
you were smart, you also randomized your wider space
locations to prevent any left-to-right shading.

The hot lead Linotype people instead drove wedges up to
widen the spaces between words. Fancier machines added
narrower wedges to widen spaces between characters.

Blatant Opportunist Mar-Apr, 199426.2

Copyright c 1999 by Don Lancaster and Synergetics (520) 428-4073 www.tinaja.com All commercial rights and all electronic media rights fully reserved. Reposting expressly forbidden.

On the Diablo 630 proportional daisywheels, a two-step
process got used. Words were first spaced out to a visual
limit, and then an extra 1/120th of a inch of fixed space
was added between each character.

Because there are so many of them, modest character
spacings can add up to a surprising amount of stretch. And
dramatically improve your fill justification. As much as
half of your space-gobbling can often get absorbed with
tiny values of between-character spacing.

Today’s better-done computer text setting programs use
a microjustify to stretch out the spaces at one rate and the
character spacing by a second. The spacecharratio is often
around 12 to 15 for longer lines, dropping down to 6 or so
for tighter margins. A value of 6 means that word spaces
widen 6 times faster than character spaces.

The awidthshow operator in the PostScript language is
particularly adept at fill microjustification.

Regardless of the system you use, your foremost rule is to
give your fill justification machinery as little to do as possible.

The best way to hide white space is to not need any of it.
Your usual crutch here is hyphenation, done on either a
line-by-line basis or else by working with entire paragraphs
at once. Hyphenation can be further improved by allowing
second and third syllable breaks.

And, of course, by carefully making several post-layout
passes to get rid of recurring problem lines.

I personally do not care for hyphenation. I avoid it when
and wherever possible. Hyphens reduce your legibility and
comprehension. They’ll also make keyword searches and
latter day text resetting more difficult. Besides, it is a really
fun puzzle to try and set tight text without it. Your bottom
line is that most hyphenation is completely unnecessary.

Given some extra time and effort.
My own methods for tightly setting text are rewording

and reorganization. The chances are you can still get your
same message across by using slightly different words in a
somewhat different order. I very strongly feel that tightly
set text is as important as the message itself when it comes
to smooth communication with your end reader.

Bells and Whistles

There’s lots of tricks you can pull to further improve fill
justified paragraphs. Here’s a brief sampler–

Last line stretch– The last line of any paragraph usually
gets left, rather than fill justified. Since fill justified lines
have extra white in them, your last paragraph line usually
ends up slightly darker than the rest. To beat this, add a
little extra stretch to your last line.

Smaller caps– Longer numbers or any text you set in ALL
CAPITALS just might end up looking "too big." A good
workaround is to use a slightly smaller font for upper case.
Ferinstance, if your main text is 9.5 points, use 9 points for
numbers and caps. As I have done here.

Widows and orphans– It is quite important not to have a
single short word dangling on the last line of a paragraph.
Or, worse yet, extended to the next column or page. Use
rearrangement and rewording to minimize leftovers. Aim
for mid-line paragraph endings.

Kerning– Some characters do not line up well. If you print
the word AWARD, you’ll want to reduce the space between

the slanty parts of the A and the W. Again, like I’ve shown
here. Similarly, there are times when you may want to
increase spacings that look too crowded. These tricks are
called kerning. While fancy kern pair tables are sometimes
used, all you really need is the ability to throw in or
remove an extra horizontal point or two. Vertical kerning
can also be useful to center brackets.

Real typography– That ASCII character set only contains
95 printing characters. thus, there can be lots of pressure
to substitute a hyphen for an em dash or an en dash. Or to
use periods for ellipsis. Or quoteright for quoteleft or acute
or grave. If you have the correct symbol, use it!

Hanging punctuation– The amount of "black" in typical
punctuation is much lower than most characters. If you do
nothing special, "notches" will be seen in each fill justified
line that ends in any period or comma or whatever. The
solution is called hanging punctuation. In which each line
that ends in a lighter symbol gets stretched somewhat, say
40% of the final character’s width.

Half spacing– Paragraph comprehension might often get
improved by adding extra vertical white space at the ends.
Especially in instruction manuals and tutorials where you
want the reader to digest one thought before going on to
the next. But a half line spacing may look better here than
a whole one. Separately, a traditional printer often used
French spacing (or space-and-a-half) between sentences. But
this has largely fallen into disuse.

Drop caps– Those Medieval monks always "illuminated"
their manuscripts with a giant and fancy first character.
Today, the technique is called a drop cap. And remains
useful to guide the reader into the start of your message.
Drop caps can be automated into the fill justify machinery,
or you can simply indent and leave room for a separate art
cut or character. One popular and simpler variation is the
raised cap, which is nothing but a big first character.

Picojustification

These days, we are not in the least limited to using fixed
character widths. So, we now have an incredibly powerful
new picojustificaton tool for dramatically improving your
fill justification.

Instead of putting all of your fill justified spaces between
characters or words, you instead put a good portion of the
excess space inside of all your characters by making selected
characters slightly wider.

Surprisingly little character stretch is required to greatly
improve any fill justification. At least any that is already
reasonably well done. A pixel or two either way at 600 DPI
on a 50 character line adds up to a 200 pixel correction
range. This can easily sop up a third or more of your excess
white for a 50% improvement in justification quality.

Naturally, I very strongly feel that you should be using
genuine Adobe PostScript level II anytime you want to dirty
up otherwise clean sheets of paper. Especially if you are at
all serious about doing first quality text justification. So,
while you certainly could use picojustification with any
scheme that lets you change font widths in rather small
increments, PostScript works superbly well.

Here is a PostScript runtime utility you can try. It does a
picojustify for you…

Blatant OpportunistMar-Apr, 1994 26.3

Copyright c 1999 by Don Lancaster and Synergetics (520) 428-4073 www.tinaja.com All commercial rights and all electronic media rights fully reserved. Reposting expressly forbidden.

POSTSCRIPT PICOJUSTIFICATION UTILITY

 % POSTSCRIPT FILL JUSTIFICATION IMPROVER
 % Version 3.3 January 16, 1994. c 1994 by
 % Don Lancaster & Synergetics (520) 428-4073.
 % Personal use permitted; Support via www.tinaja.com.
 % All commercial & media rights fully reserved.

 % Install this where it will redefine all print time uses of
 % the -awidthshow- operator. Use picojust for control.

 /picoflag false def % availability switch
 /picofract 0.5 def % space to be internalized
 /picothresh 0.03 def % increment per font change

 /picojust {/picoflag exch store} def % as in true picojust

 /awidthshow {1 index 4 index 6 index add add 32 eq not
 picoflag not or {//awidthshow}{/^msg exch store pop /^cst
 exch store pop pop /^sst exch store /^cct ^msg length store
 /^rwd ^msg stringwidth pop store /^sct 0 ^msg {() search
 {pop pop exch 1 add exch}{pop exit} ifelse} loop store /^jwd
 ^cct ^cst mul ^sct ^sst mul add store /^saj ^jwd dup ^rwd
 add dup 0 eq {pop 0.0001} if div picothresh div floor
 picothresh mul picofract 1.33 mul mul 1 add store gsave
 ^saj 1 scale /^rft 1 ^saj 1 sub ^rwd mul ^jwd dup 0 eq
 {pop 0.0001} if div sub ^saj div store ^sst ^rft mul 0 32
 ^cst ^rft mul 0 ^msg //awidthshow 1 ^saj div 1 scale
 grestore ^jwd ^rwd add 0 rmoveto} ifelse} def

Here is how this utility works: Most reasonable layout
programs will use the PostScript awidthshow operator to
specify a fill justified text line. Or any part of a line which
corresponds to one specific font. What awidthshow does is
let you specify one value of between-word stretching and a
separate value of between-character stretching. If taken
together, these two can stretch any text line out to most
any desired limit. At the price of getting spacey.

PostScript also permits you to redefine any unbound
operator at any time for any reason. So what this module
does is intercept the awidthshow commands as they are
about to go onto your page. It then analyzes how many
characters and how many spaces are involved. From that,
the total amount of stretch is calculated. A fraction of that
stretch then gets reserved to widen your actual characters.
Finally, a new and slightly wider font may be created that
is combined with new space and character stretch values.

Rather than mess with your font definitions, a simple
anamorphic scaling gets used instead.

The result is a subtle but significant improvement on the
quality of any fill justified text. Especially at 600 DPI and
higher resolutions.

On narrower columns, a mix of one-third word space
stretch, one-third character space stretch, and one-third
actual character stretch works out quite good. Too little
character stretch, and you still end up spacey. Too much
and the change in letter shapes becomes obvious.

Your characters get stretched in fixed increments. First
because you may not want any extra correction on already
tight lines. And second because you might not want to
generate a humongously large quantity of new fonts to
confuse your font cache. In general, one new font that is
three percent wider and a second one that is six percent
wider will take care of most reasonable lines. Note that this
stretch range translates to around a quarter point on a ten
point font. Which ends up as not very much at all.

For a powerful yet subtle change.

You can turn the picojustify on and off by using a true
picojustify or a false picojustify command. Generally, you
might want to use picojustification for your text body, but
not for typical figures, artwork, headers or borders. That
picothresh value lets you decide how much incremental
stretching you are to get, while the picofract should set the
percentage of total excess white space to be absorbed by
your new picojustification.

Usually, you can place this module at the beginning of
your code, right after your eps header. The rule is to insert
the module where it will redefine run time awidthshow.

The code as shown should end up compatible with most
layout packages. If you have problems, compile your text
using that Adobe Acrobat distiller. Note that Acrobat can
easily be taught to read most any file in most any format.

If you have problems, just do a print-to-disk to see what
you’ve really got. Naturally, this code will not work if you
are not fully using awidthshow in the first place. Or are not
including all spaces in your strings. Give me a call if you
have any problems adapting it to your current setup.

The minor speed penalty of three seconds or so per fancy
page can be eliminated by redistilling. Distilled pages
should print at the full mechanical printer speed. Your font
cache will also fill up around four times faster than usual.
But more often than not, you’ll only be using a few fonts
for your text body and this should not end up as a serious
problem. At least for most users.

You can, of course, speed things up bunches by doing a
picojustify in the first place, rather than doing last minute
repairs to older code. Your difficulty here depends on how
open your older code was.

The concept of "analyze each line on the way out the
door" can easily be extended to automatically add character
spacing, hanging punctuation, or for many other special
improvements. Thus, this is a very general tool.

As to the quality you can expect with picojustification,
you are looking at it.

For more help

I’ve got a lot more info on quality text justification up
on my Guru’s Lair. Especially on our Acrobat, PostScript, and
Book-on-demand library pages.

I’ve also got a GONZO.PS routine that gives you some
exceptionally high quality, ultra flexible text justification.
This one is totally open and extremely easy to customize.
But Gonzo is purposely not WYSIWYG for maximum
power, control, and full device independence.

Consulting and InfoPack services are also offered.
Give me a helpline call if you need any further help with

text layouts, picojustified or otherwise.
Let’s hear from you. There’s some really exciting new

possibilities here. ✦

Microcomputer pioneer and guru Don Lancaster is the
author of 35 books and countless articles. Don maintains a US
technical helpline you’ll find at (520) 428-4073, besides
offering all his own books, reprints and consulting services.

Don has catalogs at www.tinaja.com/synlib01.html and at
www.tinaja.com/barg01.html

Don is also the webmaster of www.tinaja.com You can also
reach Don at Synergetics, Box 809, Thatcher, AZ 85552. Or
you can use email via don@tinaja.com

http://www.tinaja.com
http://www.tinaja.com/acrob01.html
http://www.tinaja.com
http://www.tinaja.com/acrob01.html
http://www.tinaja.com/post01.html
http://www.tinaja.com/bod01.html
http://www.tinaja.com/psutils/gonzo.ps
http://www.tinaja.com/consul01.html
http://www.tinaja.com/info01.html
http://www.tinaja.com/amlink01.html
http://www.tinaja.com/info01.html
http://www.tinaja.com/synlib01.html
http://www.tinaja.com/barg01.html
http://www.tinaja.com
mailto:don@tinaja.com

Blatant Opportunist Mar-Apr, 199426.4

Copyright c 1999 by Don Lancaster and Synergetics (520) 428-4073 www.tinaja.com All commercial rights and all electronic media rights fully reserved. Reposting expressly forbidden.

PLEASE CLICK HERE TO…

 Get a Synergetics catalog

 Start your tech venture

 Sponsor a display banner

 Find research solutions

 Send Don Lancaster email

 Pick up surplus bargains

 Find out what a tinaja is

 View recommended books

http://www.tinaja.com/glib/syncat01.pdf
http://www.tinaja.com/glib/syncat01.pdf
http://www.tinaja.com/ismm01.html
http://www.tinaja.com/ismm01.html
http://www.tinaja.com/advt01.html
http://www.tinaja.com/advt01.html
http://www.tinaja.com/info01.html
http://www.tinaja.com/info01.html
mailto:don@.tinaja.com
mailto:don@.tinaja.com
http://www.tinaja.com/barg01.html
http://www.tinaja.com/barg01.html
http://www.tinaja.com/tinaja01.html
http://www.tinaja.com/tinaja01.html
http://www.tinaja.com/amlink01.html
http://www.tinaja.com/amlink01.html

