
Finding the Length of a Bezier
Cubic Spline and its Subdivisions

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2005 as GuruGram #60.
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Bezier Cubic Splines are an excellent and preferred method to draw the smooth
continuous curves often found in typography, CAD/CAM, and graphics in general.

Among their many advantages is a very sparse data set allowing a mere eight
values (or four x,y points) to completely define a full and carefully controlled and
device independent curve. Many tutorials and examples are now present in our
Cubic Spline Library. A brief and useful intro appears here. The fundamental
math behind Cubic Splines appears here.

It is often of interest to try and find the exact length of a given cubic spline. First
to find the total length itself, and secondarily to be able to subdivide the spline or
find an exact point along its length for text positioning or other alignment.

It turns out that an exact closed form solution to the cubic spline length problem
is unbearably gruesome as it involves elliptic integrals on top of possible cusp
discontinuities and multiple values. Instead…

 The exact length of a cubic spline is very difficult to find.
 Instead, for most uses, a chorded approximation is easier.

 Typically, 100 chords will suffice and will be accurate to
 a fraction of a percent or better.

I’ve put together a set of utility routines as BZLNSUB1.PSL that will rapidly let you
find spline lengths. In addition, you can also find the accurate x and y values for
any subdivided position along the spline curve.

As with most of our utilities, this is written in raw PostScript, makes optional use
of my Gonzo Utilities, and is used to create standard ASCII text files sent on to
Acrobat Distiller. Used as a General Purpose Host Based PostScript Interpreter.

A crucial point before we continue…

— 60.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/santa01.asp
http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/glib/hack62.pdf
http://www.tinaja.com/glib/cubemath.pdf
http://www.tinaja.com/glib/bezlenjf.pdf
http://www.tinaja.com/psutils/bzlnsub1.psl
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/glib/distlang.pdf

 The "t" parameter is in general nonlinear and tends to
 change faster along the "more bent" curve portions.

 While a nonlinear "t" can be effectively used to find
 spline lengths, it most assuredly can NOT be used to
 find exact linear positions ALONG the spline curve.

 The workaround is to create two linked and related
 arrays, one in "t" space and one in accumulated or
 integrated "s" space that can be interpolated.

 Coincidentally, the very last entry in the "s" space
 accumulated length array will also be the spline length.

Thus, finding total spline lengths is fairly easy. Finding exact linear subdivision
points in "s" space is considerably more difficult. But solve the latter and the total
length pops out free. Which is the approach we will use here.

What follows is best understood if you have recently reviewed CUBEZMATH.PDF
and have a copy of BZLNSUB1.PSL in an open window.

In general, a typical cubic spline is entered as eight data points x0,y0 up through
x3,y3. With the end points setting the ends of the curve, and the mid points
determining the slope and enthusiasm (or tension) of the curve shape.

We can start with a few of the lower level service routines. A first order of business
is relating x0,y0 through x3,y3 to the A-H parameters of the cubic spline
equations themselves…

/findAH {

 /A x3 x2 3 mul sub x1 3 mul add x0 sub store
 /E y3 y2 3 mul sub y1 3 mul add y0 sub store
 /B x2 3 mul x1 6 mul sub x0 3 mul add store
 /F y2 3 mul y1 6 mul sub y0 3 mul add store
 /C x1 3 mul x0 3 mul sub store
 /G y1 3 mul y0 3 mul sub store
 /D x0 store /H y0 store
 } store

Details on where these formulas come from are found in CUBEMATH.PDF.

Next are the "cubeless method" evaluation of x and y data points…

— 60.2 —

http://www.tinaja.com/glib/cubemath.pdf
http://www.tinaja.com/psutils/bzlnsub1.psl
http://www.tinaja.com/glib/cubemath.pdf

/findx {/ttt exch store A ttt mul B add ttt mul C add ttt
 mul D add /curx exch store} store

/findy {/ttt exch store E ttt mul F add ttt mul G add ttt
 mul H add /cury exch store} store

Along with a standard "square root of the sum of the squares" vector calculator
to find the length of a chord given its present and previous t and y data values…

/finds {curx prevx sub dup mul cury prevy sub dup mul
 add sqrt /curs exch store} store

We need a method to create a tlist, which is simply a numerically ordered array
of the t values. As in /tlist [0 0.01 0.02 … 0.99 1.00] store . This is handled by a
stock /maketlist routine in BZLNSUB1.PSL that accepts numchords as an input
variable. As we’ve seen, a 100 chord approximation will often be acceptable.

Now for the Tricky Part…

You’ll next want to create a slist companion to the tlist. In which the
accumulated s distance appears for any given t value. For any t in the array, the
new x and y values are compared against the previous ones and a new chord is
found using finds. These values are then accumulated into the composite slist…

/makecurslist {
 /prevx 0 store % initialize previous values
 /prevy 0 store
 /curslist mark 0 % start slist array
 0 1 numchords {curtlist exch get % grab current t
 /tt exch store
 tt findx % find curx and cury
 tt findy
 finds % find current chord
 curs add dup % integrate result; dup for next
 /prevx curx store % save new chord end
 /prevy cury store
 } for
 pop] store % undo final sum, then store
 } store

— 60.3 —

http://www.tinaja.com/psutils/bzlnsub1.psl

Your total spline length is simply the last entry in your slist array…

 /findsplinelen {curslist dup length 1 sub get
 /splinelen exch store} store

And that’s all you’ll really need if your only interest is finding the spline length.
Your final high level length-finding code can look something like this…

/findbezlen {findAH % calculate cubic coefficients
 makecurtlist % create linear t array
 makecurslist % create nonlinear s array
 findsplinelen % report length as splinelen
 } store

The BZLNSUB1.PSL utility then goes on to an example or two, noting length
values of 31.2185 and 31.3125 and 31.3130 for numchords selections of 10, 100,
and 1000. Spline data of 0, 0, 0.01, 0.01, 19.9, 19.9, 20,20 has a known length of
28.28427 for which a 100 sample length returns 28.28430 . Giving us a good
accuracy check.

Secrets of Subdivision

To find a t for a given s, you work your way through your slist until you find a
"bin" that brackets the s you are after. Your entry fraction of that bin can then
become your entry fraction on the companion tlist bin…

/findtofs { /ss exch store % desired subdivision length
 1 1 curslist length 1 sub % scan each s value
 { /ii exch store
 ss curslist ii get % check bins till too big
 le {exit} if } for % then exit with high s
 /ii ii 1 sub store % one less so s is boxed
 curslist ii 1 add get
 curslist ii get sub % current s delta
 ss curslist ii get sub % excess into interval
 exch div % interpolated s fraction
 curtlist ii 1 add get % t delta
 curtlist ii get sub mul % interpolated t fraction
 curtlist ii get add % t for selected s
 } store

— 60.4 —

http://www.tinaja.com/psutils/bzlnsub1.psl

Your high level code to return xand y for a normalized 0-1 value for s is then…

/findxyofs {splinelen mul % denormalize
 findtofs % interpolated t for the LINEAR s
 dup findx % get x(t)
 findy % get y(t)
 curx cury % and return to stack
 } store

Note that findbezlen must be run before using this routine. BZLNSUB1.PSL then
winds things up with this example of a cubic spline that’s subdivided into twenty
constant "s" lengths …

For More Help

Additional info on cubic splines can be found on our Cubic Spline library page. As
are many dozens of examples of Bezier cubic spline techniques.

Additional consulting services are available per our Infopack services and on a
contract or an hourly basis. Additional GuruGrams are found here.

Further GuruGrams await your ongoing support as a Synergetics Partner.

— 60.5 —

http://www.tinaja.com/psutils/bzlnsub1.psl
http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

