
Drawing a Bezier Cubic Spline
Through Four Data Points

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2005 as GuruGram #59.
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Bezier Cubic Splines are an excellent and preferred method to draw the smooth
continuous curves often found in typography, CAD/CAM, and graphics in general.

Among their many advantages is a very sparse data set allowing a mere eight
values (or four x,y points) to completely define a full and carefully controlled and
device independent curve. Many tutorials and examples are now present in our
Cubic Spline Library. A brief and useful intro appears here. The fundamental
math behind Cubic Splines appears here.

A normal and typical Bezier cubic spline accepts four data points of x0,y0, x1,y1,
x2,y2, and x3,y3. It turns out that x0,y0 and x3,y3 define the end points of the
curve, while x1,y1 and x2,y2 establish the initial and final slope and the
"enthusiasm" or "tension" with which the curve enters or leaves the final points.
These interior control points are normally distant from the actual final curve.

We might instead like to fit a Bezier Cubic Spline to four data points, all of which
are on the curve. New point variables of x4,y4, and x5,y5 might be introduced as
these on-curve points. The underlying math problem would then be to relate or
transform the on-curve points x4,y4, and x5,y5 to the standard control points of
x1,y1, and x2,y2.

It turns out you can draw an infinite number of cubic spline curves through four
data points, depending upon your choice of t1 and t2 for your intermediate point
locations…

— 59.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/santa01.asp
http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/glib/hack62.pdf
http://www.tinaja.com/glib/cubemath.pdf

While the black curve looks "best", the red one and the blue one are both "too
loopey" in some areas and "too straight" in others. The dilemma is to pick the
"best" or "most aesthetic" solution. While such terms are hard to quantify, they
most likely would take place with the shortest possible cubic spline curve. Such a
curve would be the "most efficient" as well.

Optimizing the length of a cubic spline might involve some horrendous math and
repeated converging approximations. Instead, we will use a apportioned chords
approximation that is far simpler and seems to give acceptable results…

APPORTIONED CHORDS —

 An approximation to the "best" cubic spline
 four point curve fit. Straight lines C1, C2,
 and C3 are drawn between the points and their
 lenthts are calculated.

 The t values for the inside points are then
 calculated as t1 = C1/(C1 + C2 + C3) and as
 t2 = (C1 + C2)/(C1 + C2 + C3).

Some Utility Code

A greatly improved replacement for our earlier four-point code can be found as
IMBZ4P01.PSL. As with most of our utilities, this is written in raw PostScript,
makes optional use of my Gonzo Utilities, and is used to create standard ASCII
text files sent to Acrobat Distiller. With the latter acting as a General Purpose
Host Based PostScript Interpreter.

What follows can be best understood by having IMBZ4P01.PSL viewable as an
open window. Basis Functions can enormously simplify use and understanding of
cubic splines. Any point on the curve can be expressed as…

 x(t) = x0B0(t) + x1B1(t) + x2B2(t) + x3B3(t)

Separating our knowns and our unknowns…

 x4 - x0B0(t1) - x3B3(t1) = x1B1(t1) + x2B2(t1)

 x5 - x0B0(t2) - x3B3(t2) = x1B1(t2) + x2B2(t2)

Or, in English, "The x4 value we need at t1 is made from known contributions of
x0 and x3 and as yet unknown contributions of x1 and x2". Similarly "The x5

— 59.2 —

http://www.tinaja.com/psutils/imbz4p01.psl
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/psutils/imbz4p01.psl
http://www.tinaja.com/glib/cubemath.pdf

value we need at t2 is made from known contributions of x0 and x3 and as yet
unknown contributions of x1 and x2". We thus have two plain old algebraic
equations in two unknowns of x0 and x1.

A similar set of two equations can be written and solved for the y values. Our first
order of business should be creating an equation solver sub-utility…

% Linear equation solver utility for ai + bj = c and di + ej = f

/solvexy {/ff exch store % grab data values
 /ee exch store
 /dd exch store
 /cc exch store
 /bb exch store
 /aa exch store

 cc aa dd div ff mul sub % find j
 bb aa ee mul dd div sub div
 /jj exch store

 /ii cc bb jj mul sub aa div store % find i

 ii jj } store % return to stack

This works by scaling the second equation by a/d and subtracting it from the first
one to produce variable j. Variable i is then found by back substitution.

We can now start our actual 4-point plotting code…

/bez4pts1 {/y3 exch store % grab data
 /x3 exch store
 /y5 exch store % strange numbering
 /x5 exch store
 /y4 exch store
 /x4 exch store
 /y0 exch store
 /x0 exch store

 /c1 x4 x0 sub dup mul y4 y0 % find chord lengths
 sub dup mul add sqrt store
 /c2 x5 x4 sub dup mul y5 y4
 sub dup mul add sqrt store
 /c3 x3 x5 sub dup mul y3 y5
 sub dup mul add sqrt store

— 59.3 —

The chords are simply the vector sum of the x axis and y axis differences between
the data points. Continuing…

 /t1 c1 dup c2 add c3 add div store % guess "best" t
 /t2 c1 c2 add dup c3 add div store

 /b0 {1 exch sub dup dup mul mul} store % basis functions
 /b1 {dup 1 exch sub dup mul mul 3 mul} store
 /b2 {dup 1 exch sub exch dup mul mul 3 mul} store
 /b3 {dup dup mul mul} store

 t1 b1 t1 b2 x4 x0 t1 b0 mul sub % transform x1 and x2
 x3 t1 b3 mul sub t2 b1 t2 b2 x5
 x0 t2 b0 mul sub x3 t2 b3 mul sub
 solvexy /x2 exch store /x1 exch store

 t1 b1 t1 b2 y4 y0 t1 b0 mul sub % transform y1 and y2
 y3 t1 b3 mul sub t2 b1 t2 b2 y5
 y0 t2 b0 mul sub y3 t2 b3 mul sub
 solvexy /y2 exch store /y1 exch store

 x0 y0 moveto % and draw the curve
 x1 y1 x2 y2 x3 y3 curveto
} def

t1 and t2 are found by chord apportioning. The basis functions are standard
definitions per this tutorial. The transforms to get from the on-curve points to
the off curve control points may look a little obtuse, but they are nothing but the
equations in the last aqua box above. Once the two linear equations in two
unknowns are found, they are sent to the equation solver sub-utility. First to find
x1 and x2, and second to find y1 and y2.

Finally, a plain old PostScript curveto is used to generate the actual Bezier Cubic
Spline through four points.

While chord apportionment seems "good enough" for most uses, you can further
optimize for shortest spline by subdividing the chords or going to multi-pass
schemes. IMBZ4P01.PSL has been updated with a new example and demo.

For More Help

Additional info on cubic splines can be found on our Cubic Spline library page. As
are many dozens of examples of Bezier cubic spline techniques.

Additional consulting services are available per our Infopack services and on a
contract or an hourly basis. Additional GuruGrams are found here.

Further GuruGrams await your ongoing support as a Synergetics Partner.

— 59.4 —

http://www.tinaja.com/glib/cubemath.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com/psutils/imbz4p01.psl
http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

	NextPage:
	PrevPage:
	StartPage:

