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Nonlinear Graphic
Transforms
Short Cuts to Stunning Graphics

THE
GURU’S LAIR

Fancy visual mappings

onto a distorted surface

can end up quite simple

and rapid whenever you

understand all the key

secrets involved.

o
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ne of the key     
tools needed for     

stunning graphics is  
the ability to select any 

image and then suitably bend, twist, 
squash, or stretch the image to make
it conform to other visual surfaces.

The linear graphics transform is 
the industry standard tool used to do
most simple graphics mappings. But 
for really exotic stuff, you may need 
more elegant tools which use higher 
level nonlinear techniques.

LINEAR  GRAPHIC  TRANSFORMS
A digital transform is simply any

method of taking an existing pile of 
numbers and then following specific 
math rules to create another pile of 
numbers. This new pile of numbers 
will hopefully turn out to be "better"
in some specified way.

The linear graphical transform is
the stock method to change the size, 
direction, or final position of a visual
image. Matrix techniques usually get
used. Since my eyes gloss over when 
I see any matrix concatenation, we’ll
substitute ordinary algebra here.

We’ll also limit ourselves to flat 
or "two dimensional" images.

The object of a linear transform 
is to accept some pair of data values 
x,y and change them into a new and 

different pair of values at x', y'.
The linear graphics transform is 

often shown in this form…
 

              x' = Ax + By + C
              y' = Dy + Ex + F
 

Constant A sets your horizontal 
size. B sets the amount of lean. C the
x offset. D the vertical size. E is your
climb and F sets the y offset.

Three popular transforms include
translation, scaling, and rotation. To
reposition, pick a non-zero value for 
C to shift left or right. Or a non-zero 
value for F to move up or down.

To scale an image, change A and 
D to non-unity values. Parameter A 
sets the horizontal scale. D sets the 
vertical scale factor. Often, your A 
and D values will be identical. If not,
you’ll get anamorphic scaling.

Changing your sign on A should 
create a mirror image. Changing the 
sign on D will create an upside down
image. Or redefine directions.

Rotation is a tad obscure. Let θ 
be your angle of rotation. To rotate 
something, use these values…

              A = cosθ
              B  = sinθ
              C = 0
              D = cosθ
              E  = –sinθ
              F  = 0

Translation, rotation, scaling, or 
other alterations of A-F could create 
lots of different special effects.

Changing the sequence of your 
operations changes the results!

Rotating and then translating is 
vastly different than translating and 
then rotating. As first multiplying 
and then adding differs from adding 
and then multiplying.

One subtle but super important 
use of the linear graphics transform 
is to move you from math space to a 
device space. It is usually a good idea
to keep "the set of plans" in a totally 
device independent form. Having an 
arbitrary accuracy that’s subject only
to word size limits. When it comes 
time to put the image on a screen, a 
piece of film, or a sheet of paper, the 
linear graphics transform gets done 
to convert your device-independent 
math space data into numeric values 
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Figure 1 – The "isometric" linear graphics transform.

The linear isometric transform is given by…

                   x' = x cos(30) - y cos(30)
                   y' = x sin(30) + y cos(30) + z

which simplifies to…

                     x' = 0.866 x - 0.866 y
                     y' = 0.500 x + 0.500 y + z

ISOMETRICISOMETRIC

ISOMETRIC

Figure 2 – The "starwars" nonlinear graphics transform.

Select a tilt angle θ with 0° = flat and 90° = vertical.

Predefine a tilt factor geometric constant k…

                     k = fullheight tanθ

The nonlinear transform is then…

                       x' = xk / (k + y)
                       y' = yk / (k + y)

matching your pixel size, resolution, 
and any media limits.

Another subtle use for the linear 
graphics transform is in microsizing. 
Most paper swells and shrinks. Print 
engines drift. Flexographic printing 
plates distort when they get wrapped
around a press drum.

Microsizing is simply providing 
very small changes in a scale factor. 
Such as A = 1.005 or D = 0.996.

ISOMETRIC
One useful linear transform is 

figure one’s isometric transform.
Isometric drawings are often used

for assembly diagrams. The original 
vertical or z axis remains vertical on 
the page in the y' direction. And the 
original x axis slants up the page at 
an angle of +30 degrees.

And the original y axis will slant 
"backwards" up the page at an angle 
of 150 degrees. Typical circles end up
as 35.27 degree ellipses.

Advantages of isometric drawing 
are that they were reasonably easy to
draw using pen and ink, and that you
could easily measure any value along
any axis. One big negative is that the
rear corners of boxy objects all seem 
"too big". Because your eye wants to 
see perspective instead.

The isometric linear transform 
looks like this…

    x' = x cos(30) – y cos(30)
    y' = x sin(30) + y sin(30) + z

Which simplifies to…

      x' = 0.866x – 0.866y
      y' = 0.500x + 0.500y + z

These days, genuine perspective 
ends up nearly as simple to do. And 
looks far better. But isometric is still
useful whenever you purposely seek 
some "drafting 101" effect. Or might 
need to scale dimensions.

NONLINEAR  TRANSFORMATIONS
Linear graphical transformations 

often end up powerful, flexible, and 
computationally cheap. But there are
many things they cannot do.

For instance, a square might get 
changed into any other square of any 
size at any angle. Or to a rectangle, a
parallelogram, into a line, or perhaps 

collapsed into a single point. Images 
can also be repeated. Or flipped, even
reversed. But a linear transformation 
can not convert a square into the odd
trapezoid useful for 2-D architectural
perspective. Or into the quadrilateral
required for full 3-D perspective.

A nonlinear graphics transform, 
or nlt takes a group of numbers and 
applies some rule or rules to it. Some
new pile of numbers is created that 
looks graphically "different".

The key difference is that values 
A-F in a linear transformation will be
constants that remain the same over 
the entire current working area. In a 
nonlinear transformation, the values 
A-F become calculated values which 
may have to be recomputed each and

every time the transform is used.
Ferinstance, the A constant value

in a linear transform could become a 
calculated value in a nlt. This value 
may depend upon the x or y location 
on the page, involve trig, or invoke a 
random number or two.

To do a nonlinear transform, you 
calculate the immediately required 
values for A-F. And then do a linear 
transform for these "local" values.

GRAPHICAL  PRIMITIVES
In theory, you can take each and 

every pel or minimim resolvable data
value in the original image and carry 
out some non-linear transform on it. 
Which generates a new image having
the desired change or distortion you 
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Figure 3 – The "architect" nonlinear graphics transform.

Let xo, yo, and zo be the distances from the observer to the 0,0,0
perspective origin. x is left-right; y is in-out; and z is up-down.

The basic 2-point perspective transform is…

                             x' = yo (x - xo) / (y + yo)
                             y' = yo (z - zo) / (y + yo)

Figure 4 – The "tunacan" nonlinear graphics transform.

Define a tilt constant k based on the can diameter D and a tilt
angle θ. A tilt angle of 15 degrees is shown above…

                         k = (D/2) sinθ

The transform is then…

                         x' = (D/2) sin (114.591 x /D)
                         y' = y - k cos (114.591 x/D)

are after. Working pel by pel may in 
fact be the only way to go when you 
are rectifying aerial photographs.

Or are stuck with bitmap data.
Obviously, taking each point in a

high resolution image and then doing
fancy calculations on all those points
is computationally expensive. What 
you try to do instead is work with a 
sparse data set which needs far fewer
nonlinear transforms.

Graphical primitives do offer one
route towards sparse data sets. These
are simply operators which cause an 
image path to get built up. Ideally, 
these operators will demand rather 
little in the way of input data. They 
then apply algorithms to generate far
more detailed results.

A mere four graphical primitives 
is all you need for image buildups.

The first is a simple positioner. 
Given a pair of x and y values, this 
moves you to that new location. In 
deference to PostScript, we will call 
this positioner a moveto.

The second primitive appends a 
line to your existing path. This will 
assume a previous pairing of initial 
location values and accepts a newer 
pair of x and y end points. Note the 
efficiency here. Only four values are 
needed to specify a line which might 
end up thousands of pels in its total 
length. Call this a lineto.

The third primitive tries to draw 
a smooth curve. While many routes 
exist, the use of cubic splines might 
end up a very good choice. Certain 
cubic splines are also known as 
Bezier Curves. A cubic spline is just 
a pair of x(t) and y(t) polynomonials.

t is a parameter which precisely 
changes from zero to one along the 
length of your generated curve. You 
can think of t as time. You can also 
visualize a cubic spline as a certain 
three dimensional "snake" boxed into
xyt space. Look into the end of your 
box, and you see the x-y spline curve
in two dimensions. Look into the 
box side and you’ll see how y varies 

with t. Look down through the top to
see how x varies with t.

Cubic splines can draw most any 
straight line, lots of graceful curves, 
and certain restricted curves having 
single loops, single cusps, or a single 
inflection point in them. For fancier 
curves, any number of cubic splines 
can get linked end to end.

A cubic spline needs a mere eight
data points. Two of these will be the 
already known x0,y0 initial position 
information. A second pair at x1,y1 
defines the location of a magic point 
called the first influence point. Your 
third pair x2,y2 defines the location 
of the second influence point. And a 
final pair sets an x3,y3 endpoint.

Those endpoints of a cubic spline
will obviously set where the curve is
to start or finish. The first influence 
point sets both the direction and the 
enthusiasm with which the curve is 
to launch itself away from its initial 
point. Two alternate names for the 
enthusiasm are a tension or maybe a 
velocity. The second influence point 
forces the direction and enthusiasm 
with which the curve is to enter into
its final point. Influence points are 
usually well off the actual curve.

We can call a graphics primitive 
that uses two previous and six new 
data values a curveto.

A final primitive can convey the 
optional information needed to close 
the path back upon itself. Such info 
might be needed to make sure that 
each "joint" in the path gets treated 
equally. The path closure can create 
sparse data at its best. Zero new data
values are needed for a closure! We’ll
call this a closepath.

Once you apply your four graphic
primitives to define a path, you can 
build the path by a suitable stroking,
filling, shading, painting, tiling, or a 
clipping. You can also have hundreds
of high level graphical operators. But 
all of these should internally reduce 
themselves to your four absolutely 
positioned moveto, lineto, curveto, 
or closepath primitives.

To do a nonlinear transformation
with graphics primitives, you simply
redefine your primitives to intercept 
and then transform your needed data 
values. The new primitives might be 
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Figure 5 – The "spherical" nonlinear graphics transform.

For a longitude x and a latitude y in degrees and a unit
radius sphere…

                        x' = sin(x) cos(y)
                        y' = sin(y)

Figure 6 – The "rootbeer" nonlinear graphics transform.

Precalculate y0, the vertical distance from the bottom of the
cup to the 0,0 or the "point of conic" origin…

y0 = (height)(bottom) / (top - bottom)

Find a current transformation angle θ…

θ = 57.2958x/(y + y0)

Then nonlinearly transform…

x' = (y + y0) sin θ
y' = (y + y0) cosθ

definied as mt, li, ct, and cp.
An mt starts with two values, 

nonlinearly transforms them, and 
calls moveto. An li takes two data 
values, nonlinearly transforms them,
and calls lineto. A ct accepts six new
data values, nonlinearly transforms 
these values, and then calls your 
stock curveto primitive.

Nonlinearly transformed sparse 
data may or may not end up totally 
accurate everywhere. In general, if 
your nonlinear transformation maps 
a straight line into any other straight
line, sparse data will be accurate.

On the other hand, when your nlt
maps a straight line into some newer
curved line, your sparse data could 
miss badly along the middle.

Let’s look at two simple and very
useful nonlinear transforms that end 
up accurate everywhere…

STARWARS
Surely one of the most popular 

image distortions is the old Starwars
effect shown in figure two. You can 
view this as drawing on a panel and 
then tilting the panel down.

You start by defining a tilt angle 
θ such that zero degrees will end up 
"lying down" and ninety degrees is 
"sitting up". You then find a constant
k called the tilt factor…

           k = fullheight tanθ

Your starwars transform is …

             x' = xk/(k + y)
             y' = yk/(k + y)

Note that your zero x axis routes 
on down the center as shown. Offset 
values can get added to pick up an x 
"slant left" or "slant right". 

All your lettering and typography
could get handled in the same way as
lines or curves. Each letter is broken 
up into the moveto, lineto, curveto, 
and closepath primitives and is then 
translated accordingly. Typography 
based on sparse path descriptions is 
very much preferable to bitmapped 
characters on all counts.

       
ARCHITECTURAL  PERSPECTIVE

Architects do not often use true 
perspective, because buildings appear
"wrong" if their vertical lines end up 

slanted. Instead, a special two-point 
perspective is applied. In which all of
the z axis lines remain vertical, but x
and y values should proportionally 
diminish out towards a pair of left or
right vanishing points.

Figure three shows an example. 
Once again, our transform ends up 
surprisingly simple…

        x' = yo (x - xo)/(y + yo)
        y' = yo (z - zo)/(y + yo)

Those xo, yo, and zo values are the
distance from observer to the 0,0,0 
perspective origin. The basic nlt will 
work point by point, transforming 
3-D points into 2-D ones. Since you 
are now collapsing three values into 

a pair of new ones, some redundancy 
and ambiguity will be inherent in 
any perspective transformation.

There is one refinement you can 
add that makes your transform faster
and more convenient. You create a 
local transform that maps any "flat" 
plane into a designated "card" that is 
pre-positioned in perspective space. 
For instance, a roof full of shingles is
first drawn. The entire roof will then
get picked up and rotated.

Like building up a model railroad
structure out of card stock parts.

If you study the perspective math
enough, one profound simplification 
pops out. Most perspective mapping 
can be done by a linear transform! 
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Figure 7 – The "glyphpath" nonlinear graphics transform.

Use successive approximation to find a t0 +∆t value for your x
along the path. Then find your current on-path position…

xpath = At3 + Bt2 + Ct + D
ypath  = Et3 + Ft 2 + Gt + H

Next, find a the angle for the vector normal to the path…

θ = 90 + arctan ((3Et2 + 2Ft + G)/ (3At2 + 2Bt + C))

Finally, your nonlinear transform is…

                           x' = xpath + y(cosθ)
                           y' = ypath  + y(sinθ)

Figure 8 – The "scribble" nonlinear graphics transform.

Reduce the path to short line segments of acceptable accuracy.
Subdivide each line segment to n resolvable steps. For each step,
calculate a rattiness factor…

    newrat = (oldrat + random bipolar offset) (homing instinct)

and then plot a short line segment offset normally by the new
ratticity value.

The homing instinct is typically slightly less than unity to minimize
long term wanderings. This acts as a "high pass" filter.

The only nonlinear parts will divide 
by two identical (1 + y/yo) factors.

As a general rule, you want to do
as much with a linear transform as 
possible, and only what is genuinely 
neccessary with your nlt.

TUNACAN
The tunacan nonlinear transform

of figure four is especially useful for 
grocery store ads or paint cans. What
you do is "paste" a flat label onto an 
isometric or other tilted cylinder.

Define a tilt constant k based on 
diameter D and tilt angle θ…

           k = (D/2) sinθ 

The tunacan transform is…

       x' = (D/2) sin (114.591 x/D)
       y' = y - k cos (114.591 x/D)

While the tunacan transform can 
be used in an isometric drawing, the 
use of a more shallow tilt angle often
gives you more pleasing results.

DON’T  CUT  CORNERS!
With the starwars or perspective 

nlt’s, all straight lines still end up as 
straight lines. This is also often true 

for many other nlt mappings.
In your tunacan, only a perfectly 

vertical line will end up as a straight 
line. Horizontal or slanted lines are 
supposed to go around the can, not 
through it! If you throw any old art 
at your tunacan nlt, objectionable 
corner cutting will happen.

A corner cutting results because 
we are trying to use sparse data. We 
spec only four lineto end points and 
only eight curveto control points. All
the intermediate points are catch-as- 
catch-can. Since your computational 
penalties for not using sparse data 
are so severe, we’ll usually want to 
find tolerable workarounds instead of
remapping each and every point.

Other nonlinear transformations 
may create corner cutting problems. 
These problems will occur any time 
a straight line ends up as curved on 
your final mapping.

There are several tricks to avoid 
any corner cutting. Yes, these can be 
easily automated to handle typical 
input art. On the other hand, each 
corner cutting avoidance trick will 
cost you in computing time and may
increase your file length. In general, 
you’ll want to use minimum repairs 
consistent with an acceptable final 
image. If any cut corner is small and 
doesn’t "look too bad", then you will 
probably want to use it as is.

There is no corner cutting with 
moveto. Position is position.

The worst corner cutting often 
will be the closepath primitive. If 
you use closepath to complete, say, 
the fourth side of a large square, you 
might get severe corner cutting.

There are two ways to deal with 
closepath corner cutting. You can 
create your original artwork in such 
a way that closepath never extends 
over a significant distance. Or you 
can intercept all input closepaths 
and replace them with a new lineto 
followed by a closepath.

Otherwise known as the "Now it 
ain’t muh problem" ploy.

Short lineto primitives will often
give you acceptable results. Medium 
ones might need some repairs, while 
long ones definitely need mods.

Your first defense against lineto 
corner cutting is to replace a lineto 
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with a single curveto. A spline that 
has its first influence point one-third
along its straight line path, and the 
second influence point two-thirds of 
the way along its path.

Giving you a smooth curve that 
at least starts off and ends up going 
in the correct directions.

But the replacement spline still 
may miss in the middle. Possibly by 
bunches. Your way around this is to 
first split a lineto into a grouping of 
sequential lineto primitives aligned 
end to end. Then you convert each of
these shorter lineto primitives into a
"one-third, two-third" cubic spline.

As few as four of the subsplines 
should minimize the worst corner 
cutting. For a larger mapping, more 
subsplines are better. Penalties do 
include higher computation times 
and much longer file lengths. In 
general, for a given nlt which has 
potential corner cutting problems, 
you will set up an error tolerance 
that depends on the length and the 
direction of the lineto in use.

Long curveto primitives can also 
cut corners. But these usually should
not be nearly as objectionable as the 
lineto or closepath hassles. If needed,
a long curveto could be split up into 
several smaller splines. The simplest
way to handle this is to replace your 
long curveto with several sequential 
lineto approximations. Then, you’ll 
replace all the shorter linetos with 
"one-third, two-third" splines.

To recap, some of the nonlinear 
transforms might map straight lines 
into curved ones. To avoid a corner 
cutting at plot time, pick only very 
short closepath primitives, and then 
replace your lineto primitives with 
one or more curveto primitives. In 
extreme cases, any long curveto may 
also have to be subdivided.

COMPILING  FOR  SPEED
Note that extensive calculations 

and any corner cutting routines need 
only be done once at image creation 
time. You can easily apply compiling
techniques to save only the results of
your nonlinear transformations for a 
later reuse. The compiled or distilled
code will simply be a bunch of fast 
running moveto, lineto, curveto, and 

closepath operators.
Your final compiled code can be 

linearly transformed for changes in 
size, rotation, or repetition. Or might
get exported elsewhere. Any need to 
tow along custom or oddball fonts is 
eliminated when all of your fonts are
replaced by equivalent nlt paths.

SPHERICAL  MAPPINGS
Figure five shows you a spherical

nlt. Use this one to paint any image 
onto a globe. For world maps, fisheye
effects, volleyballs, or balloons.

It is probably most convenient to
use latitude and longitude, having 90
degrees west longitude define the left
circle side, 90 degrees east longitude 
set the right side, a 90 degrees north 
latitude being the top, and 90 degrees
south ending up at the bottom.

We’ll use the convention of north
and east defined positive and south 
and west being negative. We’ll also 
assume that we will clip or truncate 
any larger values that would end up 
on the "back side" of our sphere.

Here’s the spherical nlt…

  x' = sin(longitude) cos(latitude)
  y' = sin(latitude)

That’s for a sphere of unit radius,
given inputs in degrees. Such results 
can be easily scaled. Major defenses 
against corner cutting will certainly 
be needed, replacing any long lineto 
primitives with shorter end-to-end 
curveto primitives. 

THE  ROOTBEER  TRANSFORM
On your next soda break, take a 

close look at the paper cup. Observe 
how their artwork has to get "fatter" 
as the diameter increases. Take the 
cup apart and flatten it out. Note the
truncated conical shape.

The rootbeer transform of figure 
six can be used to design paper drink 
cups and megaphones. Your x values 
will map tangentally along an arc set
by the current diameter. y values 
plot radially along the vertical line 
set by the present angular position.

The transform first finds y0, the 
vertical distance from the bottom of 
the cup to your origin point…

 y0 = (height)(bottom)/(top - bottom)

For "bottom" or "top" you can use
radius, circumference, or a diameter. 
So long as you are consistent. Next, 
find a current angle θ…

θ = 57.2958x/(y + y0)

Which is just a cleverly disguised
plain old s = rθ arc in degrees.

Finally…

           x' = (y + y0) sin θ 
           y' = (y + y0) cosθ

One gotcha: That y0 value to the 
origin could end up as a rather large 
number. Thus, your origin might end
up well off your page.

GLYPHS  ALONG  A  PATH
Border artwork needs methods to 

cleanly handle corners and closures. 
As the border elements go round any 
curve, the individual glyphs should 
compress on the inside of the curve 
and stretch on the outside.

The glyphpath transform appears 
in figure seven. Besides lots of fancy 
borders, this one can be used for rope
effects (including knots and even for 
rope signatures), for model railroad 
layouts, chains, cords, braiding, and 
paths on board games.

Your nonlinearly transformed x 
values go along the underlying path, 
while your y values sit normal to the
path. Thus, the x values should walk
along the path with you. The y 
values will always be at your side, 
having positive y on your left and 
negative y on your right.

We’ll assume that your original 
path is a single cubic spline. Longer 
paths can use multiple splines.

Each position on any cubic spline
has an underlying value t associated 
with it. Your t value will range from 
zero to one along the spline. Sadly, t 
is not linearly proportional to spline 
position. t values tend to run "faster"
along the "more bent" portions of the
curve. A successive approximation is
used to find an initial t value for the 
origin of your current glyph. The big 
assumption is made that t is nearly 
linear with the length inside of any 
given glyph. Thus, all your glyph x 
values are scaled to an initial t plus a
fraction ∆t proportional to glyph 
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width. A linear delta is assumed.
Fortunately, you only have to do 

a successive approximation once for 
each glyph position.

To do the transform, you’ll first 
find the t value that corresponds to 
your x. Then you’ll calculate your 
current on-path position…

      xpath = At3 + Bt2 + Ct + D
      ypath  = Et3 + Ft2 + Gt + H

Values A-H above are related to 
the spline control points. You next 
find the slope of your curve and the 
angle of a normal slope vector…

   θ = 90 + tan-1 ((3Et2+2Ft+G)/
                         (3At2+2Bt+C))

The glyph transform is…

         x’ = xpath + y(cosθ)
         y’ = ypath + y(sinθ)

Your glyphpath transform works 
best with "fairly narrow" glyphs. If 
you venture too far away from your 
underlying path, a glyph could turn 
itself "inside out" on any sharp turns.
With often horrible results. Do strive
for a balance between glyph sizes and
how tightly they have to turn.

To get fancy, you could alternate 
glyphs along your path. Which is one
way to do multicolor braiding.

THE  SCRIBBLE  TRANSFORM
One big complaint of computer 

art is that it looks as if a computer 
did it. There is often some need to 
introduce randomness and variation 
into an image. The scribble nlt of 
figure eight replaces solid lines with 
"fuzzy" lines. You can set your fuzz 
factor from a slight hint of rattiness 
to a drunken wandering.

To apply your scribble transform,
you first reduce all elements in your 
path to short line segments of usable
accuracy. You’ll then subdivide each 
line segment into n resolvable steps. 
For each step, you’ll calculate your 
current rattiness factor…

 newrat = (oldrat + random bipolar
                offset)(homing instinct)

Next, plot a short line segment 
from your last value to a new point 
offset normally from the "true" line 
by your new ratticity value.

A random bipolar offset is gotten 
by centering and adjusting a random 
number. For instance, values in the 
range of -3.45 to +3.45 might end up 
suitable. The scale factors selected 
set the violence of the variations.

One problem with random walks 
is that they might end up wandering 
further and further astray from their 
intended path. As time goes on. The 
solution is to add a homing instinct 
that multiples the accumulated error
by some value slightly less than one.
This gives you a software high pass 
filter. One that stomps on long term 
variations, while freely passing the 
desired shorter ones.

Still, the scribble transform can’t
guarantee you a total path closure. If 
a path must close, select a different 
random seed. Until you get one that 
gives a tight enough closure.

FOR  MORE  INFORMATION…
The nonlinear graphic transforms

I have just shown you can be done in
nearly any language on virtually any 
platform. Naturally, I have found the
PostScript general purpose computer 
language to be a quite fast, powerful, 
fun, and friendly tool for exploring 
all graphical transforms.

 In particular, you can zero in on 
the transforms themselves and their 
visual results. Once again, several 
files have been posted to the Circuit 
Cellar BBS and to GEnie PSRT that 
give detailed nlg utilities. Including 
lots more cubic spline info.

To pick up ten free trial hours of 
GEnie access, have your modem dial 
(800) 638-8369. On the prompt, enter 
JOINGENIE. When you are asked for 
a keyword, enter DMD524.

Let’s hear from you.  
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