
Don Lancaster

Nonlinear Graphic
Transforms
Short Cuts to Stunning Graphics

THE
GURU’S LAIR

Fancy visual mappings

onto a distorted surface

can end up quite simple

and rapid whenever you

understand all the key

secrets involved.

o

48 Issue #61 September 1995 Circuit Cellar INK

ne of the key
tools needed for

stunning graphics is
the ability to select any

image and then suitably bend, twist,
squash, or stretch the image to make
it conform to other visual surfaces.

The linear graphics transform is
the industry standard tool used to do
most simple graphics mappings. But
for really exotic stuff, you may need
more elegant tools which use higher
level nonlinear techniques.

LINEAR GRAPHIC TRANSFORMS
A digital transform is simply any

method of taking an existing pile of
numbers and then following specific
math rules to create another pile of
numbers. This new pile of numbers
will hopefully turn out to be "better"
in some specified way.

The linear graphical transform is
the stock method to change the size,
direction, or final position of a visual
image. Matrix techniques usually get
used. Since my eyes gloss over when
I see any matrix concatenation, we’ll
substitute ordinary algebra here.

We’ll also limit ourselves to flat
or "two dimensional" images.

The object of a linear transform
is to accept some pair of data values
x,y and change them into a new and

different pair of values at x', y'.
The linear graphics transform is

often shown in this form…

 x' = Ax + By + C
 y' = Dy + Ex + F

Constant A sets your horizontal
size. B sets the amount of lean. C the
x offset. D the vertical size. E is your
climb and F sets the y offset.

Three popular transforms include
translation, scaling, and rotation. To
reposition, pick a non-zero value for
C to shift left or right. Or a non-zero
value for F to move up or down.

To scale an image, change A and
D to non-unity values. Parameter A
sets the horizontal scale. D sets the
vertical scale factor. Often, your A
and D values will be identical. If not,
you’ll get anamorphic scaling.

Changing your sign on A should
create a mirror image. Changing the
sign on D will create an upside down
image. Or redefine directions.

Rotation is a tad obscure. Let θ
be your angle of rotation. To rotate
something, use these values…

 A = cosθ
 B = sinθ
 C = 0
 D = cosθ
 E = –sinθ
 F = 0

Translation, rotation, scaling, or
other alterations of A-F could create
lots of different special effects.

Changing the sequence of your
operations changes the results!

Rotating and then translating is
vastly different than translating and
then rotating. As first multiplying
and then adding differs from adding
and then multiplying.

One subtle but super important
use of the linear graphics transform
is to move you from math space to a
device space. It is usually a good idea
to keep "the set of plans" in a totally
device independent form. Having an
arbitrary accuracy that’s subject only
to word size limits. When it comes
time to put the image on a screen, a
piece of film, or a sheet of paper, the
linear graphics transform gets done
to convert your device-independent
math space data into numeric values

Circuit Cellar INK Issue #61 September 1995 49

Figure 1 – The "isometric" linear graphics transform.

The linear isometric transform is given by…

 x' = x cos(30) - y cos(30)
 y' = x sin(30) + y cos(30) + z

which simplifies to…

 x' = 0.866 x - 0.866 y
 y' = 0.500 x + 0.500 y + z

ISOMETRICISOMETRIC

ISOMETRIC

Figure 2 – The "starwars" nonlinear graphics transform.

Select a tilt angle θ with 0° = flat and 90° = vertical.

Predefine a tilt factor geometric constant k…

 k = fullheight tanθ

The nonlinear transform is then…

 x' = xk / (k + y)
 y' = yk / (k + y)

matching your pixel size, resolution,
and any media limits.

Another subtle use for the linear
graphics transform is in microsizing.
Most paper swells and shrinks. Print
engines drift. Flexographic printing
plates distort when they get wrapped
around a press drum.

Microsizing is simply providing
very small changes in a scale factor.
Such as A = 1.005 or D = 0.996.

ISOMETRIC
One useful linear transform is

figure one’s isometric transform.
Isometric drawings are often used

for assembly diagrams. The original
vertical or z axis remains vertical on
the page in the y' direction. And the
original x axis slants up the page at
an angle of +30 degrees.

And the original y axis will slant
"backwards" up the page at an angle
of 150 degrees. Typical circles end up
as 35.27 degree ellipses.

Advantages of isometric drawing
are that they were reasonably easy to
draw using pen and ink, and that you
could easily measure any value along
any axis. One big negative is that the
rear corners of boxy objects all seem
"too big". Because your eye wants to
see perspective instead.

The isometric linear transform
looks like this…

 x' = x cos(30) – y cos(30)
 y' = x sin(30) + y sin(30) + z

Which simplifies to…

 x' = 0.866x – 0.866y
 y' = 0.500x + 0.500y + z

These days, genuine perspective
ends up nearly as simple to do. And
looks far better. But isometric is still
useful whenever you purposely seek
some "drafting 101" effect. Or might
need to scale dimensions.

NONLINEAR TRANSFORMATIONS
Linear graphical transformations

often end up powerful, flexible, and
computationally cheap. But there are
many things they cannot do.

For instance, a square might get
changed into any other square of any
size at any angle. Or to a rectangle, a
parallelogram, into a line, or perhaps

collapsed into a single point. Images
can also be repeated. Or flipped, even
reversed. But a linear transformation
can not convert a square into the odd
trapezoid useful for 2-D architectural
perspective. Or into the quadrilateral
required for full 3-D perspective.

A nonlinear graphics transform,
or nlt takes a group of numbers and
applies some rule or rules to it. Some
new pile of numbers is created that
looks graphically "different".

The key difference is that values
A-F in a linear transformation will be
constants that remain the same over
the entire current working area. In a
nonlinear transformation, the values
A-F become calculated values which
may have to be recomputed each and

every time the transform is used.
Ferinstance, the A constant value

in a linear transform could become a
calculated value in a nlt. This value
may depend upon the x or y location
on the page, involve trig, or invoke a
random number or two.

To do a nonlinear transform, you
calculate the immediately required
values for A-F. And then do a linear
transform for these "local" values.

GRAPHICAL PRIMITIVES
In theory, you can take each and

every pel or minimim resolvable data
value in the original image and carry
out some non-linear transform on it.
Which generates a new image having
the desired change or distortion you

50 Issue #61 September 1995 Circuit Cellar INK

Figure 3 – The "architect" nonlinear graphics transform.

Let xo, yo, and zo be the distances from the observer to the 0,0,0
perspective origin. x is left-right; y is in-out; and z is up-down.

The basic 2-point perspective transform is…

 x' = yo (x - xo) / (y + yo)
 y' = yo (z - zo) / (y + yo)

Figure 4 – The "tunacan" nonlinear graphics transform.

Define a tilt constant k based on the can diameter D and a tilt
angle θ. A tilt angle of 15 degrees is shown above…

 k = (D/2) sinθ

The transform is then…

 x' = (D/2) sin (114.591 x /D)
 y' = y - k cos (114.591 x/D)

are after. Working pel by pel may in
fact be the only way to go when you
are rectifying aerial photographs.

Or are stuck with bitmap data.
Obviously, taking each point in a

high resolution image and then doing
fancy calculations on all those points
is computationally expensive. What
you try to do instead is work with a
sparse data set which needs far fewer
nonlinear transforms.

Graphical primitives do offer one
route towards sparse data sets. These
are simply operators which cause an
image path to get built up. Ideally,
these operators will demand rather
little in the way of input data. They
then apply algorithms to generate far
more detailed results.

A mere four graphical primitives
is all you need for image buildups.

The first is a simple positioner.
Given a pair of x and y values, this
moves you to that new location. In
deference to PostScript, we will call
this positioner a moveto.

The second primitive appends a
line to your existing path. This will
assume a previous pairing of initial
location values and accepts a newer
pair of x and y end points. Note the
efficiency here. Only four values are
needed to specify a line which might
end up thousands of pels in its total
length. Call this a lineto.

The third primitive tries to draw
a smooth curve. While many routes
exist, the use of cubic splines might
end up a very good choice. Certain
cubic splines are also known as
Bezier Curves. A cubic spline is just
a pair of x(t) and y(t) polynomonials.

t is a parameter which precisely
changes from zero to one along the
length of your generated curve. You
can think of t as time. You can also
visualize a cubic spline as a certain
three dimensional "snake" boxed into
xyt space. Look into the end of your
box, and you see the x-y spline curve
in two dimensions. Look into the
box side and you’ll see how y varies

with t. Look down through the top to
see how x varies with t.

Cubic splines can draw most any
straight line, lots of graceful curves,
and certain restricted curves having
single loops, single cusps, or a single
inflection point in them. For fancier
curves, any number of cubic splines
can get linked end to end.

A cubic spline needs a mere eight
data points. Two of these will be the
already known x0,y0 initial position
information. A second pair at x1,y1
defines the location of a magic point
called the first influence point. Your
third pair x2,y2 defines the location
of the second influence point. And a
final pair sets an x3,y3 endpoint.

Those endpoints of a cubic spline
will obviously set where the curve is
to start or finish. The first influence
point sets both the direction and the
enthusiasm with which the curve is
to launch itself away from its initial
point. Two alternate names for the
enthusiasm are a tension or maybe a
velocity. The second influence point
forces the direction and enthusiasm
with which the curve is to enter into
its final point. Influence points are
usually well off the actual curve.

We can call a graphics primitive
that uses two previous and six new
data values a curveto.

A final primitive can convey the
optional information needed to close
the path back upon itself. Such info
might be needed to make sure that
each "joint" in the path gets treated
equally. The path closure can create
sparse data at its best. Zero new data
values are needed for a closure! We’ll
call this a closepath.

Once you apply your four graphic
primitives to define a path, you can
build the path by a suitable stroking,
filling, shading, painting, tiling, or a
clipping. You can also have hundreds
of high level graphical operators. But
all of these should internally reduce
themselves to your four absolutely
positioned moveto, lineto, curveto,
or closepath primitives.

To do a nonlinear transformation
with graphics primitives, you simply
redefine your primitives to intercept
and then transform your needed data
values. The new primitives might be

Circuit Cellar INK Issue #61 September 1995 51

Figure 5 – The "spherical" nonlinear graphics transform.

For a longitude x and a latitude y in degrees and a unit
radius sphere…

 x' = sin(x) cos(y)
 y' = sin(y)

Figure 6 – The "rootbeer" nonlinear graphics transform.

Precalculate y0, the vertical distance from the bottom of the
cup to the 0,0 or the "point of conic" origin…

y0 = (height)(bottom) / (top - bottom)

Find a current transformation angle θ…

θ = 57.2958x/(y + y0)

Then nonlinearly transform…

x' = (y + y0) sin θ
y' = (y + y0) cosθ

definied as mt, li, ct, and cp.
An mt starts with two values,

nonlinearly transforms them, and
calls moveto. An li takes two data
values, nonlinearly transforms them,
and calls lineto. A ct accepts six new
data values, nonlinearly transforms
these values, and then calls your
stock curveto primitive.

Nonlinearly transformed sparse
data may or may not end up totally
accurate everywhere. In general, if
your nonlinear transformation maps
a straight line into any other straight
line, sparse data will be accurate.

On the other hand, when your nlt
maps a straight line into some newer
curved line, your sparse data could
miss badly along the middle.

Let’s look at two simple and very
useful nonlinear transforms that end
up accurate everywhere…

STARWARS
Surely one of the most popular

image distortions is the old Starwars
effect shown in figure two. You can
view this as drawing on a panel and
then tilting the panel down.

You start by defining a tilt angle
θ such that zero degrees will end up
"lying down" and ninety degrees is
"sitting up". You then find a constant
k called the tilt factor…

 k = fullheight tanθ

Your starwars transform is …

 x' = xk/(k + y)
 y' = yk/(k + y)

Note that your zero x axis routes
on down the center as shown. Offset
values can get added to pick up an x
"slant left" or "slant right".

All your lettering and typography
could get handled in the same way as
lines or curves. Each letter is broken
up into the moveto, lineto, curveto,
and closepath primitives and is then
translated accordingly. Typography
based on sparse path descriptions is
very much preferable to bitmapped
characters on all counts.

ARCHITECTURAL PERSPECTIVE

Architects do not often use true
perspective, because buildings appear
"wrong" if their vertical lines end up

slanted. Instead, a special two-point
perspective is applied. In which all of
the z axis lines remain vertical, but x
and y values should proportionally
diminish out towards a pair of left or
right vanishing points.

Figure three shows an example.
Once again, our transform ends up
surprisingly simple…

 x' = yo (x - xo)/(y + yo)
 y' = yo (z - zo)/(y + yo)

Those xo, yo, and zo values are the
distance from observer to the 0,0,0
perspective origin. The basic nlt will
work point by point, transforming
3-D points into 2-D ones. Since you
are now collapsing three values into

a pair of new ones, some redundancy
and ambiguity will be inherent in
any perspective transformation.

There is one refinement you can
add that makes your transform faster
and more convenient. You create a
local transform that maps any "flat"
plane into a designated "card" that is
pre-positioned in perspective space.
For instance, a roof full of shingles is
first drawn. The entire roof will then
get picked up and rotated.

Like building up a model railroad
structure out of card stock parts.

If you study the perspective math
enough, one profound simplification
pops out. Most perspective mapping
can be done by a linear transform!

52 Issue #61 September 1995 Circuit Cellar INK

Figure 7 – The "glyphpath" nonlinear graphics transform.

Use successive approximation to find a t0 +∆t value for your x
along the path. Then find your current on-path position…

xpath = At3 + Bt2 + Ct + D
ypath = Et3 + Ft 2 + Gt + H

Next, find a the angle for the vector normal to the path…

θ = 90 + arctan ((3Et2 + 2Ft + G)/ (3At2 + 2Bt + C))

Finally, your nonlinear transform is…

 x' = xpath + y(cosθ)
 y' = ypath + y(sinθ)

Figure 8 – The "scribble" nonlinear graphics transform.

Reduce the path to short line segments of acceptable accuracy.
Subdivide each line segment to n resolvable steps. For each step,
calculate a rattiness factor…

 newrat = (oldrat + random bipolar offset) (homing instinct)

and then plot a short line segment offset normally by the new
ratticity value.

The homing instinct is typically slightly less than unity to minimize
long term wanderings. This acts as a "high pass" filter.

The only nonlinear parts will divide
by two identical (1 + y/yo) factors.

As a general rule, you want to do
as much with a linear transform as
possible, and only what is genuinely
neccessary with your nlt.

TUNACAN
The tunacan nonlinear transform

of figure four is especially useful for
grocery store ads or paint cans. What
you do is "paste" a flat label onto an
isometric or other tilted cylinder.

Define a tilt constant k based on
diameter D and tilt angle θ…

 k = (D/2) sinθ

The tunacan transform is…

 x' = (D/2) sin (114.591 x/D)
 y' = y - k cos (114.591 x/D)

While the tunacan transform can
be used in an isometric drawing, the
use of a more shallow tilt angle often
gives you more pleasing results.

DON’T CUT CORNERS!
With the starwars or perspective

nlt’s, all straight lines still end up as
straight lines. This is also often true

for many other nlt mappings.
In your tunacan, only a perfectly

vertical line will end up as a straight
line. Horizontal or slanted lines are
supposed to go around the can, not
through it! If you throw any old art
at your tunacan nlt, objectionable
corner cutting will happen.

A corner cutting results because
we are trying to use sparse data. We
spec only four lineto end points and
only eight curveto control points. All
the intermediate points are catch-as-
catch-can. Since your computational
penalties for not using sparse data
are so severe, we’ll usually want to
find tolerable workarounds instead of
remapping each and every point.

Other nonlinear transformations
may create corner cutting problems.
These problems will occur any time
a straight line ends up as curved on
your final mapping.

There are several tricks to avoid
any corner cutting. Yes, these can be
easily automated to handle typical
input art. On the other hand, each
corner cutting avoidance trick will
cost you in computing time and may
increase your file length. In general,
you’ll want to use minimum repairs
consistent with an acceptable final
image. If any cut corner is small and
doesn’t "look too bad", then you will
probably want to use it as is.

There is no corner cutting with
moveto. Position is position.

The worst corner cutting often
will be the closepath primitive. If
you use closepath to complete, say,
the fourth side of a large square, you
might get severe corner cutting.

There are two ways to deal with
closepath corner cutting. You can
create your original artwork in such
a way that closepath never extends
over a significant distance. Or you
can intercept all input closepaths
and replace them with a new lineto
followed by a closepath.

Otherwise known as the "Now it
ain’t muh problem" ploy.

Short lineto primitives will often
give you acceptable results. Medium
ones might need some repairs, while
long ones definitely need mods.

Your first defense against lineto
corner cutting is to replace a lineto

Circuit Cellar INK Issue #61 September 1995 53

with a single curveto. A spline that
has its first influence point one-third
along its straight line path, and the
second influence point two-thirds of
the way along its path.

Giving you a smooth curve that
at least starts off and ends up going
in the correct directions.

But the replacement spline still
may miss in the middle. Possibly by
bunches. Your way around this is to
first split a lineto into a grouping of
sequential lineto primitives aligned
end to end. Then you convert each of
these shorter lineto primitives into a
"one-third, two-third" cubic spline.

As few as four of the subsplines
should minimize the worst corner
cutting. For a larger mapping, more
subsplines are better. Penalties do
include higher computation times
and much longer file lengths. In
general, for a given nlt which has
potential corner cutting problems,
you will set up an error tolerance
that depends on the length and the
direction of the lineto in use.

Long curveto primitives can also
cut corners. But these usually should
not be nearly as objectionable as the
lineto or closepath hassles. If needed,
a long curveto could be split up into
several smaller splines. The simplest
way to handle this is to replace your
long curveto with several sequential
lineto approximations. Then, you’ll
replace all the shorter linetos with
"one-third, two-third" splines.

To recap, some of the nonlinear
transforms might map straight lines
into curved ones. To avoid a corner
cutting at plot time, pick only very
short closepath primitives, and then
replace your lineto primitives with
one or more curveto primitives. In
extreme cases, any long curveto may
also have to be subdivided.

COMPILING FOR SPEED
Note that extensive calculations

and any corner cutting routines need
only be done once at image creation
time. You can easily apply compiling
techniques to save only the results of
your nonlinear transformations for a
later reuse. The compiled or distilled
code will simply be a bunch of fast
running moveto, lineto, curveto, and

closepath operators.
Your final compiled code can be

linearly transformed for changes in
size, rotation, or repetition. Or might
get exported elsewhere. Any need to
tow along custom or oddball fonts is
eliminated when all of your fonts are
replaced by equivalent nlt paths.

SPHERICAL MAPPINGS
Figure five shows you a spherical

nlt. Use this one to paint any image
onto a globe. For world maps, fisheye
effects, volleyballs, or balloons.

It is probably most convenient to
use latitude and longitude, having 90
degrees west longitude define the left
circle side, 90 degrees east longitude
set the right side, a 90 degrees north
latitude being the top, and 90 degrees
south ending up at the bottom.

We’ll use the convention of north
and east defined positive and south
and west being negative. We’ll also
assume that we will clip or truncate
any larger values that would end up
on the "back side" of our sphere.

Here’s the spherical nlt…

 x' = sin(longitude) cos(latitude)
 y' = sin(latitude)

That’s for a sphere of unit radius,
given inputs in degrees. Such results
can be easily scaled. Major defenses
against corner cutting will certainly
be needed, replacing any long lineto
primitives with shorter end-to-end
curveto primitives.

THE ROOTBEER TRANSFORM
On your next soda break, take a

close look at the paper cup. Observe
how their artwork has to get "fatter"
as the diameter increases. Take the
cup apart and flatten it out. Note the
truncated conical shape.

The rootbeer transform of figure
six can be used to design paper drink
cups and megaphones. Your x values
will map tangentally along an arc set
by the current diameter. y values
plot radially along the vertical line
set by the present angular position.

The transform first finds y0, the
vertical distance from the bottom of
the cup to your origin point…

 y0 = (height)(bottom)/(top - bottom)

For "bottom" or "top" you can use
radius, circumference, or a diameter.
So long as you are consistent. Next,
find a current angle θ…

θ = 57.2958x/(y + y0)

Which is just a cleverly disguised
plain old s = rθ arc in degrees.

Finally…

 x' = (y + y0) sin θ
 y' = (y + y0) cosθ

One gotcha: That y0 value to the
origin could end up as a rather large
number. Thus, your origin might end
up well off your page.

GLYPHS ALONG A PATH
Border artwork needs methods to

cleanly handle corners and closures.
As the border elements go round any
curve, the individual glyphs should
compress on the inside of the curve
and stretch on the outside.

The glyphpath transform appears
in figure seven. Besides lots of fancy
borders, this one can be used for rope
effects (including knots and even for
rope signatures), for model railroad
layouts, chains, cords, braiding, and
paths on board games.

Your nonlinearly transformed x
values go along the underlying path,
while your y values sit normal to the
path. Thus, the x values should walk
along the path with you. The y
values will always be at your side,
having positive y on your left and
negative y on your right.

We’ll assume that your original
path is a single cubic spline. Longer
paths can use multiple splines.

Each position on any cubic spline
has an underlying value t associated
with it. Your t value will range from
zero to one along the spline. Sadly, t
is not linearly proportional to spline
position. t values tend to run "faster"
along the "more bent" portions of the
curve. A successive approximation is
used to find an initial t value for the
origin of your current glyph. The big
assumption is made that t is nearly
linear with the length inside of any
given glyph. Thus, all your glyph x
values are scaled to an initial t plus a
fraction ∆t proportional to glyph

54 Issue #61 September 1995 Circuit Cellar INK

width. A linear delta is assumed.
Fortunately, you only have to do

a successive approximation once for
each glyph position.

To do the transform, you’ll first
find the t value that corresponds to
your x. Then you’ll calculate your
current on-path position…

 xpath = At3 + Bt2 + Ct + D
 ypath = Et3 + Ft2 + Gt + H

Values A-H above are related to
the spline control points. You next
find the slope of your curve and the
angle of a normal slope vector…

 θ = 90 + tan-1 ((3Et2+2Ft+G)/
 (3At2+2Bt+C))

The glyph transform is…

 x’ = xpath + y(cosθ)
 y’ = ypath + y(sinθ)

Your glyphpath transform works
best with "fairly narrow" glyphs. If
you venture too far away from your
underlying path, a glyph could turn
itself "inside out" on any sharp turns.
With often horrible results. Do strive
for a balance between glyph sizes and
how tightly they have to turn.

To get fancy, you could alternate
glyphs along your path. Which is one
way to do multicolor braiding.

THE SCRIBBLE TRANSFORM
One big complaint of computer

art is that it looks as if a computer
did it. There is often some need to
introduce randomness and variation
into an image. The scribble nlt of
figure eight replaces solid lines with
"fuzzy" lines. You can set your fuzz
factor from a slight hint of rattiness
to a drunken wandering.

To apply your scribble transform,
you first reduce all elements in your
path to short line segments of usable
accuracy. You’ll then subdivide each
line segment into n resolvable steps.
For each step, you’ll calculate your
current rattiness factor…

 newrat = (oldrat + random bipolar
 offset)(homing instinct)

Next, plot a short line segment
from your last value to a new point
offset normally from the "true" line
by your new ratticity value.

A random bipolar offset is gotten
by centering and adjusting a random
number. For instance, values in the
range of -3.45 to +3.45 might end up
suitable. The scale factors selected
set the violence of the variations.

One problem with random walks
is that they might end up wandering
further and further astray from their
intended path. As time goes on. The
solution is to add a homing instinct
that multiples the accumulated error
by some value slightly less than one.
This gives you a software high pass
filter. One that stomps on long term
variations, while freely passing the
desired shorter ones.

Still, the scribble transform can’t
guarantee you a total path closure. If
a path must close, select a different
random seed. Until you get one that
gives a tight enough closure.

FOR MORE INFORMATION…
The nonlinear graphic transforms

I have just shown you can be done in
nearly any language on virtually any
platform. Naturally, I have found the
PostScript general purpose computer
language to be a quite fast, powerful,
fun, and friendly tool for exploring
all graphical transforms.

 In particular, you can zero in on
the transforms themselves and their
visual results. Once again, several
files have been posted to the Circuit
Cellar BBS and to GEnie PSRT that
give detailed nlg utilities. Including
lots more cubic spline info.

To pick up ten free trial hours of
GEnie access, have your modem dial
(800) 638-8369. On the prompt, enter
JOINGENIE. When you are asked for
a keyword, enter DMD524.

Let’s hear from you.

Microcomputer pioneer and guru
Don Lancaster is the author of 33
books and countless articles. Don
offers a no-charge technical helpline
you’ll find at (520) 428-4073, besides
offering all his own books, reprints,
and various services. Don has a free
new catalog crammed full of all his
latest insider secrets waiting for you.
Your best calling times are from 8-5
weekdays, MST. Internet email:
SYNERGETICS@GENIE.GEIS.COM

