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A new class of math functions called Magic Sinewaves lets you efficiently 
produce power sinewaves that can have any chosen number of low harmonics 
forced very near zero. And do so using the fewest possible switching events for 
the highest possible energy efficiency. Two new intros appear here and here, 
along with a development proposal here, a tutorial here, visualizations here , lots 
of calculators here, and seminars and workshops here.

In this Gurugram, we’ll take a closer look at how quantization of magic sinewaves
into integer delay and width values affects the synthesis accuracy. In general, 
quantization introduces errors that dramatically raise distortion levels, creates 
amplitude jitter, and may introduce frequency jitter. While approximate 
quantization estimations are provided in the Magic Sinewave Calculators, our 
interests here will be in exact prediction of specific performance.

Some new PostScript utilities are available that can give you many of the needed 
quantization analysis tools. Such as file OPTJIT01.PSL and its OPTJIT01.PDF demo 
plots. We’ll note in passing that the 32-bit math accuracy of PostScript seems to 
be acceptable for these specific tasks. As this utility is a personal tool, it may still 
have some rough edges and may be subject to change and improvement.  

Data Formats

The original exact calculators determine a list of first quadrant event positions. In 
the case of a Best Efficiency-28 magic sinewave, there are seven pulses and eight
delays whose absolute starting points are 0, p1s, p1e, p2s, p2e, p3s, p3e, p4s,     
p4e, p5s, p5e, p6s, p6e, p7s, and p7e. For a given amplitude, these will be an 
increasing series of degree values in the 0 to 90 degree range. 

As we have seen in our Magsine Visualizations as GuruGram #24, the situation is 
somewhat more complex for delta friendly magic sinewaves in that half of the 
pulse edges must track the others to guarantee three phase compatibility. A new  
export format has been added to commercial versions of the calculators that 
outputs predelay, p5w, p1w, middelay, p2w, p4w, p3w, and postdelay.
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Because of the needed locking, derived widths p6w will equal the sum of p5w 
and p1w, while p7w must equal the sum of p2w, p4w and p3w.

Further, the predelay...postdelay sequence repeats every thirty degrees. For any 
thirty degree interval, the sourcecode will decide which phase gets pulses p1, p2 
and p3, which gets p4 and p5, and which gets p6 and p7. Of correct polarity.

The Delta friendly transform from event positions to export format is…

   predelay = 60 - p5e
   p5w = p5e - p5s
   p1w = p1e - p1s
   middelay = p2s - p1e
   p2w = p2e - p2s
   p4w = p3s - p2e
   p3w = p3e - p3s
   postdelay = 30 - p3e

And one unquantized reverse transform is…

CONTROLLABLE (INDEPENDENT) VARIABLES:

     p1s = predelay + p5w
     p1e = p1s + p1w
     p2s = p1e + middelay
     p2e = p2s + p2w
     p3s = p2e + p4w
     p3e = p3s + p3w
     p5e = 60 - predelay

LOCKED TRACKING (DEPENDENT) VARIABLES: 

     p4s = 60 p3s sub
     p4e = 60 p2e sub
     p5s = 60 p1s sub
     p6s = 120 p5e sub
     p6e = 60 p1e add
     p7s = 60 p2s add
     p7e = 60 p3e add

While any seven of the fourteen Delta-28 variables could be made independent, 
the choice of p1s, p1e, p2s, p2e, p3s, p3e and p5e appears to have some analysis
and optimization advantages. Especially when optimizing quantized distortion.
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Quantization  Tradeoffs

Quantization of magic sinewave data into integer sequences trades off the best 
achievable distortion against the clock frequency, data word size, amplitude jitter,
and possibly frequency jitter. While "reasonable" results can often be gotten by 
using "modified" 8-bit stored data, optimization methods may not be clear.

A good baseline starting point can be to let a frequency very near 10 Megahertz 
equal a magic sinewave output frequency of 60 Hertz. If 3472 clock cycles are 
used in a 30 degree interval, an entire cycle will consist of 41664 cycles . And a 
10 MegaHertz PIC clock should produce an output frequency of 60.0038 Hertz. 
Conversely, a frequency of 60 Hertz can be gotten from a 9.999360 MHz PIC 
clock. Note that a PIC clock is four times the instruction cycle time.

These particular values give us a 2.1198 degree full scale for 8-bit data, which 
corresponds to one count being 0.008641 degrees. Values above the 2.1198 full 
scale are easily handled by adding a ramp of amplitude*k. Depending on the 
actual data, inverse ramps and/or end truncated ramps can also be used. Thus, as
we have already seen in MINDIST1.PDF as GuruGram #19, we can get a lot more 
than 8-bit accuracy and still use 8-bit stored data values.

Quantization consists of converting exact degree values into a group of eight 
integers that are supposed to sum to 3272 over a 30 degree interval. The degrees
to integers algorithm is… 

   degreesperbit = 0.008641

   quantout = int ( round (degreesin/degreesperbit))

And the corresponding reverse transform is

   degreesperbit = 0.008641

   degreesout = quantin * degreesperbit

Thus an amplitude 0.54 array of  [3.929702 6.271940 1.1360694 7.174293         
0.5446923 4.7354755 2.7413283 3.466498] degrees becomes an integer 
sequence of [454 727 132 829 63 549 318 400]. Once again, note that these 
larger integers can be generated by an 8-bit table lookup plus an 8-bit function.

For instance, the 549 value might be synthesized as an 8-bit stored value of 117 
added to 8 times the desired amplitude of 54. Or 117 + (8*54) = 549. Note 
further that a delay of eight times a stored value gets easily done simply by 
creating a delay loop of eight instruction cycles per count.
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A minor gotcha

When we quantize, the "virtually zero" distortion is very likely to get a lot worse. 
How much worse can be found by converting the integers back into degrees and 
then recalculating the Fourier coefficients. But, before we do, note that…

The sum of the quantizations does NOT 
necessarily equal the quantization of the sums!  

Each and every 8 data value degree array summed to 30 degrees. But when you 
quantize, you get a Gaussian type thingy that depends on the roundup or 
rounddown stats of the individual data. Typically, one-half of your quantized 
amplitudes will sum to 3472. Most of the others will sum to 3471 or 3473, while 
a few stragglers will sum to higher or lower values.

This means that…

Direct use of quantized data can cause frequency jitter!  

In this example, a frequency jitter of 2 counts out of 3472 translates to just under 
0.05 percent jitter worst case. Which is probably negligible for most apps. But we 
can easily achieve zero jitter with minor mods to our quantized data. At only a 
negligible distortion penalty.

Ferinstance, you could manually go through the data. If you have a 3471 sum, 
find the one pre rounding value closest below 0.5 and round it up instead. I 
automated this in a utility that initially "rounds" everything at a 0.75 threshold, 
guaranteeing low data. The threshold is then lowered in tiny increments till the 
3472 value is reached for each and every quantized data array.

If a quantized array with jitter was, say, [454 727 132 829 63 549 318 400], its 
frequency dejittered improvement might look like [454 727 133 829 63 549 318  
400]. I feel that frequency dejittering is most often a very good idea.

Amplitude  Jitter

Quantizing will also give us some amplitude jitter, but this is usually not too 
significant. If you select a hundred amplitude levels, this implies you are willing to
take anything from 53.50001 to 54.44449 for amplitude 54 . Which I’ll define as 
an amplitude jitter of plus or minus fifty percent.

As we’ll shortly see, purposely allowing a max amplitude jitter around the ten 
percent range can significantly lower our quantized distortion levels.

Conversely, distortion could be traded off for lower amplitude jitter.
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Some  Results

The orange dots here give us a preliminary plot of the raw quantization errors we 
can expect from our above example…
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We see that our raw quantized total harmonic distortion for the second through 
twenty-second harmonic is under 0.2 percent for most higher amplitude values. 
And that is before any filtering. Our filter, of course, has bigger things to worry 
about. Namely the uncontrolled twenty third and higher harmonics. 

We see that 8-bit data thus gives us "acceptable" distortion after quantization in 
this 10 MHz --> 60 Hz example. We might be tempted to try and reduce our clock
frequency further. Perhaps going to 6 MHz --> 60 Hz or even using that internal   
4 MHz PIC clock option for fixed 60 Hertz apps. But these reductions may make 
synthesizing very low or very high amplitudes tricky, especially for Delta 44 or 
Delta 60 magic sinewave options.

It does turn out there is a sneaky trick we can pull that can further reduce our 
quantized harmonic distortion. I’ll call this one…

Shaking  the  Box

Compared to our quantized solution, what are the nearest adjacent 78,125 magic
sinewaves up to? It turns out that a "nearby" magic sinewave can often give us a  
two to twelve decibel thd 2-22 distortion reduction. 
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Which can result in the magenta dots in our previous figure. Reducing most 
prefiltered 2-22 distortions to well under one tenth of a percent total thd.
 
To "shake the box", you take your independent p1s, p1e, p2s, p2e, p3s, p3e, and 
p5s integers and alter each value by -2, -1, 0, 1, or 2 counts while you are doing 
an exhaustive search. The results for amplitude 54 might look like this…
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I’ve left those nearby results with higher distortions unplotted. Here, we see that 
the orange dot is what we want in the way of a "perfect" magic sinewave, the red
dot is our initial quantization, and the magenta dots offer several "better" 
tradeoffs. In this example, I’d go with the 0.0655% x 0.5409 amplitude improved
solution. 

Note that all of the new data values will still sum to 3472. Because half the delay 
and position values are dependent on (and calculated from) the other half. No 
new frequency jitter is introduced by this process.

When plotted on a different scale and allowing higher distortion values, this gives 
us a classic "dripping stalactite" plot. One that was crucial in early magic sinewave
development. When it was found that the drips could be miraculously forced to 
zero if you used accurate enough calculations.
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A  Data  Set

Here’s a preliminary data set using our above example that may be used for 
sourcecode generation…

[ [868      0    0 1730    0      0     0 868] 0.000000 0.0000000 3472 ]
[ [860    13    2 1722    0    10     6 859] 1.510760 0.0093493 3472 ]
[ [850    29    5 1701    6    22     8 851] 0.978672 0.0210324 3472 ] 
[ [845    43    7 1683    7    33   14 840] 0.477679 0.0312886 3472 ]
[ [837    56    9 1668    7    43   20 832] 0.318167 0.0406482 3472 ]

[ [830    68  11 1653  10    52   23 825] 0.337353 0.0493669 3472 ]
[ [821    85  14 1631  11    65   30 815] 0.203131 0.0617085 3472 ]
[ [815    95  16 1619  13    73   33 808] 0.259957 0.0692016 3472 ]
[ [807  110  18 1601  14    84   39 799] 0.229666 0.0798052 3472 ]
[ [800  122  20 1587  16    93   43 791] 0.271299 0.0885358 3472 ]

[ [791  138  23 1567  18  106   49 780] 0.172600 0.1005590 3472 ]
[ [784  151  25 1551  19  116   54 772] 0.1339800 0.109939 3472 ]
[ [777  163  27 1536  21  125   58 765] 0.1192960 0.118677 3472 ]
[ [768  180  30 1515  22  138   65 754] 0.1874040 0.131049 3472 ]
[ [761  193  32 1499  24  148   70 745] 0.1343130 0.140698 3472 ]

[ [754  205  34 1484  26  157   74 738] 0.1291950 0.149444 3472 ]
[ [747  218  36 1468  26  167   80 730] 0.1061010 0.158846 3472 ]
[ [738  234  39 1448  28  179   86 720] 0.0965049 0.170589 3472 ]
[ [731  246  41 1434  29  188   91 712] 0.0914561 0.179351 3472 ]
[ [723  260  43 1417  31  199   96 703] 0.1290420 0.189653 3472 ]

[ [714  276  46 1397  32  211 103 693] 0.0546426 0.201417 3472 ]
[ [707  289  48 1381  33  221 108 685] 0.1085760 0.210828 3472 ]
[ [701  300  50 1367  35  229 112 678] 0.1002610 0.218951 3472 ]
[ [691  316  53 1348  36  241 119 668] 0.1207730 0.230727 3472 ]
[ [684  330  55 1330  37  252 125 659] 0.1038410 0.241057 3472 ]

[ [677  342  57 1316  38  261 130 651] 0.0973585 0.249840 3472 ]
[ [670  354  60 1300  40  270 135 643] 0.1141750 0.259094 3472 ]
[ [663  367  62 1284  40  280 141 635] 0.0808775 0.268537 3472 ]
[ [653  384  65 1263  42  293 148 624] 0.0519740 0.281232 3472 ]
[ [647  395  67 1249  43  301 153 617] 0.0641827 0.289386 3472 ]

[ [638  411  70 1229  44  313 160 607] 0.0942731 0.301193 3472 ]
[ [630  424  72 1214  45  323 166 598] 0.0954356 0.310907 3472 ]
[ [624  435  74 1200  46  331 171 591] 0.0730116 0.319070 3472 ]
[ [615  451  77 1180  47  343 178 581] 0.0677774 0.330889 3472 ]
[ [608  463  79 1165  48  352 183 574] 0.0797174 0.339699 3472 ]
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[ [600  477  82 1147  49  363 190 564] 0.0727672 0.350554 3472 ]
[ [592  491  84 1130  50  373 196 556] 0.0859002 0.360616 3472 ]
[ [585  503  87 1114  51  382 202 548] 0.0895733 0.369923 3472 ]
[ [578  516  89 1098  51  392 209 539] 0.0823565 0.379679 3472 ] 
[ [569  531  92 1079  53  403 216 529] 0.0758395 0.391137 3472 ]

[ [562  543  94 1064  54  412 221 522] 0.0916116 0.399965 3472 ]
[ [553  558  97 1046  54  423 229 512] 0.0716472 0.411197 3472 ]
[ [547  569  99 1032  55  431 234 505] 0.0527390 0.419389 3472 ]
[ [538  584 102 1013 56  442 242 495] 0.0744991 0.430883 3472 ]
[ [530  598 105  995  56  453 249 486] 0.0643956 0.441523 3472 ]

[ [523  610 107  980  57  462 255 478] 0.0651337 0.450642 3472 ]
[ [515  624 110  962  58  472 262 469] 0.0500311 0.461231 3472 ]
[ [508  636 112  947  59  481 268 461] 0.0682797 0.470357 3472 ]
[ [501  648 115  931  59  490 275 453] 0.0390659 0.479727 3472 ]
[ [493  661 118  914  60  500 282 444] 0.0464662 0.491163 3472 ]

[ [485  675 120  897  61  510 289 435] 0.0701265 0.500383 3472 ]
[ [478  687 123  881  61  519 296 427] 0.0436721 0.509765 3472 ]
[ [470  700 126  864  62  529 303 418] 0.0589122 0.520046 3472 ]
[ [463  712 129  848  62  538 310 410] 0.0621049 0.529436 3472 ]
[ [454  727 132  829  63  549 318 400] 0.0655310 0.540979 3472 ]

[ [447  739 134  814  64  557 324 393] 0.0659652 0.549818 3472 ]
[ [440  751 137  797  64  567 332 384] 0.0608129 0.559810 3472 ]
[ [432  764 140  780  65  577 339 375] 0.0552627 0.570111 3472 ]
[ [424  777 143  764  65  586 346 367] 0.0621947 0.579854 3472 ]
[ [417  789 145  748  66  595 353 359] 0.0497526 0.589296 3472 ]

[ [409  802 149  730  66  605 361 350] 0.0498109 0.599860 3472 ]
[ [401  815 152  713  66  615 369 341] 0.0454799 0.610207 3472 ]
[ [393  828 155  696  67  624 377 332] 0.0516502 0.620493 3472 ]
[ [385  841 158  679  67  634 385 323] 0.0588497 0.630849 3472 ]
[ [379  851 160  665  68  642 391 316] 0.0342060 0.639051 3472 ]

[ [371  864 164  647  68  652 399 307] 0.0456603 0.649639 3472 ]
[ [363  877 167  630  68  662 407 298] 0.0522574 0.660009 3472 ]
[ [355  890 170  612  69  672 415 289] 0.0426991 0.670628 3472 ]
[ [348  901 173  597  69  680 423 281] 0.0480973 0.679712 3472 ]
[ [340  914 176  579  70  690 431 272] 0.0477716 0.690340 3472 ]
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[ [333   925 179  564  70  699 438 264] 0.0308037 0.699467 3472 ]
[ [324   939 183  545  70  710 447 254] 0.0686215 0.711012 3472 ]
[ [317   950 185  530  71  718 455 246] 0.0415750 0.720131 3472 ]
[ [310   961 188  514  72  727 462 238] 0.0498212 0.729513 3472 ]
[ [302   973 192  497  71  737 471 229] 0.0430787 0.739846 3472 ]

[ [294   986 195  479  72  747 479 220] 0.0405623 0.750499 3472 ]
[ [286   998 198  462  72  757 488 211] 0.0438831 0.760860 3472 ]
[ [279 1009 201  446  73  766 495 203] 0.0497878 0.770257 3472 ]
[ [271 1021 204  429  74  775 504 194] 0.0441616 0.780553 3472 ]
[ [264 1031 207  414  74  784 512 186] 0.0457397 0.789662 3472 ]

[ [256 1043 211  396  74  794 521 177] 0.0325654 0.800267 3472 ]
[ [249 1054 213  381  75  803 528 169] 0.0440074 0.809451 3472 ]
[ [241 1066 216  363  76  813 537 160] 0.0403837 0.820078 3472 ]
[ [233 1077 220  346  76  823 546 151] 0.0256970 0.830362 3472 ]
[ [225 1089 223  328  77  833 555 142] 0.0332166 0.840997 3472 ]

[ [218 1099 225  313  78  842 563 134] 0.0337785 0.850140 3472 ]
[ [210 1110 228  296  79  852 572 125] 0.0360605 0.860449 3472 ]
[ [203 1120 231  280  80  862 580 117] 0.0150460 0.869889 3472 ]
[ [195 1131 233  262  82  872 589 108] 0.0360463 0.880467 3472 ]
[ [187 1141 236  245  83  883 598   99] 0.0317396 0.890767 3472 ]

[ [180 1151 237  230  85  892 606   91] 0.0190775 0.899933 3472 ]
[ [172 1162 238  213  88  902 615   82] 0.0316686 0.910273 3472 ]
[ [165 1171 239  197  91  912 623   74] 0.0263476 0.919661 3472 ]
[ [157 1181 239  180  95  922 633   65] 0.0388174 0.929956 3472 ]
[ [150 1190 238  164 100  932 641  57] 0.0323680 0.939357 3472 ]
[ [142 1200 235  147 107  943 650  48] 0.0272150 0.949701 3472 ]

[ [134 1209 230  130 116  955 659  39] 0.0318331 0.960034 3472 ]
[ [126 1218 223  113 127  966 669  30] 0.0351219 0.970334 3472 ]
[ [119 1226 210    97 144  977 677  22] 0.0379512 0.979745 3472 ]
[ [111 1234 188    80 170  989 688  12] 0.0386641 0.990337 3472 ]
[ [103 1242 151    63 211 1001 698   3] 0.0439439 1.000650 3472 ]

As before, the quantized integer matrix is made up of predelay, p5w, p1w,          
middelay, p2w, p4w, p3w, and postdelay. Followed by the distortion in percent, 
the normalized amplitude, and the integer count per thirty degrees. The latter 
also serves as a frequency jitter checksum.

Also as before, values above an 8-bit "full scale" of 255 are realized by summing 
with an eight bit function. Typical functions are ramps of amplitude*k, its 
inverse, or truncated versions of same.
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Some Fourier Math

I overwhelmingly prefer to use the PostScript language for all of my engineering 
analysis. Especially when graphic display is involved. Sadly, PostScript uses only 
32-bit math routines making it inappropriate for actual determination of true 
magic sinewave zero nulls.

Which is why we went to the 64-bit Javascript routines for all the actual Magic     
Sinewave Calulators Typically, PostScript has a noise floor in the sixth or seventh 
decimal place, while JavaScript can easily work fifteen decimal places or more.

Fortunately, PostScript is good enough for routine magic sinewave use as we’ve 
done here. Here is how you calculate a fundamental amplitude using classic DFT  
Fourier Series…

/a1 {curdegarray 0 get cos curdegarray 1 get cos sub
        curdegarray 2 get cos add curdegarray 3 get cos sub
        curdegarray 4 get cos add curdegarray 5 get cos sub
        curdegarray 6 get cos add curdegarray 7 get cos sub
        curdegarray 8 get cos add curdegarray 9 get cos sub
        curdegarray 10 get cos add curdegarray 11 get cos sub
        curdegarray 12 get cos add curdegarray 13 get cos sub
        4 mul pi div} store

Here curdegarray is  p1s, p1e, p2s, p2e, p3s, p3e, p4s, p4e, p5s, p5e, p6s, p6e,   
p7s, and p7e. And pi is predefined as 3.1415926 or thereabouts.

A typical relative harmonic is calculated as…

/h7 {curdegarray 0 get 7 mul cos 
        curdegarray 1 get 7 mul cos sub
        curdegarray 2 get 7 mul cos add 
        curdegarray 3 get 7 mul cos sub
        curdegarray 4 get 7 mul cos add 
        curdegarray 5 get 7 mul cos sub
        curdegarray 6 get 7 mul cos add
        curdegarray 7 get 7 mul cos sub
        curdegarray 8 get 7 mul cos add 
        curdegarray 9 get 7 mul cos sub
        curdegarray 10 get 7 mul cos add 
        curdegarray 11 get 7 mul cos sub
        curdegarray 12 get 7 mul cos add 
        curdegarray 13 get 7 mul cos sub
        4 mul pi div 7 div a1 div} store
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Other harmonics are suitably scaled, such as multiplying angles by 5 and dividing 
output by 5 on the fifth harmonic, etc…

Although the triad harmonics of 3, 9, 15, and 21 should be identically zero in a    
delta friendly magic sinewave, it still may pay to calculate them. Both to find 
possible errors and to keep track of the PostScript repeat calc noise floor.

Total harmonic distortion 2-22 is then calculated by…

/thd {h3 dup mul h5 dup mul add h7 dup mul add
          h9 dup mul add h11 dup mul add h13 dup mul add
          h15 dup mul add h17 dup mul add h19 dup mul add
          h21 dup mul add sqrt 100 mul} store

For  More  Help

Additional Magic Sinewave help is available per the previously shown web links. 
Detailed analysis of system specifics are available at our standard consulting rates. 
Per our Magic Sinewave Development Proposal and our Consulting Services.

Additional GuruGrams columns await your ongoing support as a Synergetics        
Partner.
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