
Distortion Reduction Techniques
for 8-bit Magic Sinewaves

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2003 as GuruGram #19
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

A new class of math functions called Magic Sinewaves lets you efficiently
produce power sinewaves that can have any chosen number of low harmonics
forced very near zero. And do so using the fewest possible switching events for
the highest possible energy efficiency. A new Intro appears here, along with a
development proposal here, a tutorial here, and calculators here, and seminars
and workshops here.

Magic Sinewaves only work properly when their pulse positions and delays are
exactly specified. The various Magic Sinewave Calculators typically do show what
may be excessive distortion if you try to use 8-bit quantized data for your table
lookup values. Obviously, 8-bit data is desirable for lookup table simplicity and
compactness.

It turns out that…

 Some sneaky "smoke and mirror" trickery can very
 dramatically reduce 8-bit magic sinewave distortion.

These tricks include bigger chips, delta for all, offsetting, delay scaling, linear
differencing, quadratic interpolation, plot viewing, and progressive builds. All
of which seem to be fairly easily implemented. And, taken together, should be
able to dramatically reduce 8-bit Magic Sinewave distortion.

Ploy #1: Bigger chips

It is fastest and simplest to just go ahead and use 16-bit delay values instead of
8-bit ones. While this doubles the needed storage, overall microchip sizes would
often remain fairly small and economical.

Ploy #2: Delta for all

Delta magic sinewaves only need one-half the storage of best efficeicy ones, so
you could do deltas with 16-bit resolution in the same storage as a best efficiency

—1—

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/math01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/glib/msintro1.pdf
http://www.tinaja.com/glib/msinprop.pdf
http://www.tinaja.com/glib/stepsynt.pdf
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/magsn01.asp

with 8-bit resolution. The often optimum delta-28 would thus require 1400 8-bit
bytes of storage and confortably fit in a 2K address space. Note that deltas reject
only (3n/4-1) harmonics.

Ploy #3: Offsetting

By storing a few extra offset values and summing certain calculations, some
significant distortion reduction is possible. Consider p1s as it ranges from
10.097 degrees at full unity amplitude up to 11.987 degrees at one percent
amplitude. We’ll note in passing that p1s "backs up" as the pulses get fatter.

We can accurately generate a 10.097 degree offset and then only generate the
difference of 0 to 1.890 degrees using 8-bit values. For a roughly 6:1 resolution
improvement. But on top of this, we can add…

Ploy #4: Delay Scaling

The original quantization calculations assumed that "full scale" for 8-bits was 20
degrees, or somewhat more than the fattest needed pulse. By scaling to different
delay routines for different pulse positions, we can gain quite a bit. Ferinstance, in
the case of p1S, we need only use an 8-bit full scale value of two degrees. Giving
us a further 10:1 improvement, for a combined whopping 60:1. Or nearly a 14 bit
accuracy from a stored 8-bit amplitude value!

The benefits of offset and scaling do drop as you go further into the quadrant. A
separate small table could hold the needed offset and scaling values. Note that
these would apply to all amplitudes in the sequence. And thus would add only a
few additional bytes to total storage needs.

Ploy #5: Linear Differencing

In general, the pulse widths increase more or less linearly with amplitude. If a
guess was made that an 0.53 pulse width was 53/100ths the corresponding 1.00
pulse width, then only the actual difference need be stored. The difference would
then be summed with the guess. Since this difference is typically only a fraction of
a degree, table lookup storage accuracy would dramatically increase. Typically
giving four or five bits of improvement.

This may require a micro with a multiply instruction. An approximation might
involve splitting the amplitudes into four or eight groups and using shifts or
whatever to properly deal with them.

Ploy #6: Quadratic Interpolation

With quadratic interpolation, only one-tenth or fewer amplitudes need be stored
along with an increment and an increment delta value. Details of this method
appear in MUSE153.PDF.

—2—

http://www.tinaja.com/glib/muse153.pdf

If 0.50 is stored as x, 0.51 will be y=x+increment. 0.52 would be y+increment+
delta, and so on. Each new interval would get fatter by delta. Per the detailed
examples in the tutorial.

Ploy #7: Plot Viewing

Actually viewing the delay-vs-amplitude magic sinewave plots can reveal other
avenues for substantial error reduction. As in this crude Delta Friendly 28 plot and
its sourcecode. Or this Best Distortion 28 and its sourcecode.

In which we see several rather surprising features. Of the eight delay values useful
for this particular delta magic sinewave, three appear to be perfectly linear with
amplitude. And thus can be eliminated entirely from table lookup storage!
Provided a multiply function is available. Three more deviate from linearity by
only a small fraction of a degree. And easily handled by linear differencing.

The final two delay curves only require two degrees of full scale accuracy, and
thus give 10X over the 20 degree quantizations used in the calculators.
Interestingly, most of the "bent" part of these curves takes place above 0.9
amplitude. Which leaves options of not using the highest possible amplitudes or
using a few 16-bit double words to deal with these small and specific areas.

Ploy #8: Progressive Builds

When you plot view a best distortion magic sinewave, the widest pulse is also
seen to be the most nonlinear. Giving a "double whammy" to the needed
resolution. But note that best distortion pulse width is always progressive.
Suggesting that we sum previous pulse subroutines to increase build accuracy.

Ferinstance, on a best distortion 28, the critical pulse seven can be generated by
doing a pulse six delay and then adding a differential new delay to it. Pulse six
can be built by doing a pulse five delay and then adding its differential.

Setting Frequency

These more precise delay schemes could make setting the overall frequency
trickier. The best way to deal with this would appear to be a two-step process
where one microcontroller generates a variable reference clock frequency and a
second one uses that frequency to generate the desired magic sinewave. This also
nicely avoids the need for excessively high clock frequencies.

For More Help

Additional Magic Sinewave help is available per the previously shown web links.
Detailed analysis of distortion improvements are available at our standard
consulting rates. Per our Magic Sinewave Development Proposal and our
Consulting Services.

Additional GuruGrams await your ongoing support as a Synergetics Partner.
—3—

http://www.tinaja.com/glib/plo3d.pdf
http://www.tinaja.com/glib/plo3d.psl
http://www.tinaja.com/glib/plo1b.pdf
http://www.tinaja.com/glib/plo1b.psl
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/glib/msinprop.pdf
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

