
"Level II" Enhancement of
PreCyber eBook Conversions

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2011 pub 1/11 as GuruGram #117
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

We looked at much that is involved in remastering a classic precyber book for
web eBook distribution back in GuruGram #115. And details on how to improve
any worn or scuffed covers here in GuruGram #116.

Adobe’s Acrobat X does an incredible job of converting scanned text into viable
PDF eBook files. But it does have some obvious and glaring shortcomings. But, by
combining Acrobat X with my Gonzo Utilities, a "second pass" can be made at a
generated PDF ebook. One that potentially has these compelling advantages…

• Files can end up as much as 6:1 shorter.
• Text appearance is considerably better.
• Searchability is preserved during rework.
• Reduced images now cleanly magnifiable.
• Cleaner files have fewer prepress problems.
• Color and other value-added easily provided.
• Fully and automatically self-tracking web linkable.
• Images can be greatly improved, especially halftones.

But with these limitations…

• May be inappropriate with historic, legal or IP restrictions.
• Considerable time per page demands profitable project.
• Proudly non-WYSIWYG bare metal programming needed.

The demo speaks for itself…

RUN
LEVEL II
DEMO

COMPARE
LEVEL I

ORIGINAL

VIEW
LEVEL II

SOURCECODE

— 117.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/glib/remastbk.pdf
http://www.tinaja.com/ebksamp1.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/fadescuf.pdf
http://www.tinaja.com/gurgrm01.asp
http://acrobat.buy.na.sem.adobe.com/content/a10_pro?sdid=IAZWJ
http://www.tinaja.com/ebksamp1.asp
http://www.tinaja.com/glib/gonzotut.pdf
http://www.tinaja.com/ebksamp1.asp
http://www.tinaja.com/glib/demlev2r.pdf
http://www.tinaja.com/ebooks/MLP1cb.pdf
http://www.tinaja.com/glib/demlev2r.psl

The Level II Demo begins on page nine of the comparable Level I original. The
new file sizes are about 8K per page.

The OCR in Acrobat X basically generates text and images. Each may be
optimized separately…

Improving the Text

The usual text in a ClearScan generated .PDF file consists of bunches of custom
generated font glyphs that were based on an average of the original bitmap
characters. If done a page at a time, the number of embedded custom fonts in an
eBook can range from several hundred to several thousand. Most fonts will
remain slightly irregular and tend to favor rounded, rather than pointed serifs.

These fonts have their own coding scheme. Some elaborate unicode conversion
object tables are needed if full text searchability is to be provided. Such full text
searchability is easily lost on any PDF-->PostScript-->PDF rework.

Thus…

 It is usually a good idea to replace all custom
 font glyphs with a standard unicoded font.

 Benefits include file size, text appearance, and
 retaining full text searchability.

There is a procedure in Acrobat X to replace the ClearScan fonts with a standard
font, but the process can be awkward and ungainly. Especially for page after page
of fill justification. On the other hand, our Gonzo Utilities easily handle extremely
fancy text progressive microjustifications.

GETTING FROM CLEARSCAN TO GONZO

 1. Load the .pdf file into Acrobat X.

 2. Do a Save As ---> More Options --> Text (plain)

 3. Transfer the page textfile into a gonzo (…) cf

A number of variables give you Gonzo fill justification flexibility. These are covered
in this tutorial. The two numbers preceding the (…) cf set the horizontal and
vertical position. A predefined yinc sets the normal line spacing, while txtwide
adjusts the fill justification width. Your definition of /font0 through /font: lets
you mix and match fonts.

— 117.2 —

http://www.tinaja.com/ebksamp1.asp
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/5411.ToUnicode.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/5411.ToUnicode.pdf
http://www.tinaja.com/pssamp1.asp
http://acrobat.buy.na.sem.adobe.com/content/a10_pro?sdid=IAZWJ
http://www.tinaja.com/glib/gonzotut.pdf
http://www.tinaja.com/glib/picojust.pdf
http://www.tinaja.com/glib/gonzotut.pdf

Other commands provide for paragraph indents, half line ledding, emphasis,
tabbing, hanging punctuation, last line stretch, and similar sophisticated features.
Many use examples can be found in the GuruGram .PSL sourcecode files.

Note that very little text rekeying is required. Once your gonzo utilities .PSL text
file is complete and edited, it is sent back to the Distiller in Acrobat X for .PDF
reconversion. Per these details.

In our example, my favorite Stone ended up an amazingly close match to the
ClearScan glyphs for the regular text, while the stock MyriadPro-Bold multiple
master did a nice job on the larger point sizes. Some editing may be needed if
the ClearScan process got confused. Or was unable to convert certain glyphs.

For instance, one recurring theme was 1/O rather than I/O. Hyphenation can also
bury hidden characters that may need removed. And some in-figure text can be
easily confused with the main story. Such editing is fast and simple, but demands
careful attention to detail.

Providing Text Value Added

Web delivery provides more benefits than any printed book could ever hope to
provide. It is thus reasonable to try and "improve" any scanned text when it is
legal and sensible to do so. At one time, it was outrageously expensive to add
color to a printed book. But web color is essentially free. So, one simple add-on
would be adding color tints when and where appropriate.

The real value-added biggie, of course, is URL linking. Gonzo provides for elegant
auto-tracking linking. This is done in the text by adding a marker and filename
trailer. Combined with a simple dictionary of filename to URL links. These links
will automatically move around on the page as needed for any later editing.

Some more minor modifications can make your text more attractive and more
readable. Such as adding half ledding between paragraphs. Or replacing italic
emphasis with bolded color. I despise hyphenation, so adjusting minor words in
your text to eliminate end-of-line hyphens can be a challenging exercise.

Improving Images

What is not text in a ClearScan result is usually in the form of a group of images.
Any very small images are likely to be scanner speckle. These can be removed and
ignored once you identify them. Somewhat larger images are sometimes text that
ClearScan was unable to identify. These can get repaired in your text file editing.
Alternately, you can go back to the original bitmap you scanned in Paint and then
adjust these enough to become recognizable text.

"Real" images of stuff you actually want are likely to be larger. Several obvious
improvement routes are (1) Leave them alone; (2) Retouch them as bitmaps; (3)
Retouch them as bitmaps and improve the lettering with the Bitmap Typewriter;

— 117.3 —

http://www.tinaja.com/gurgrm01.asp
http://acrobat.buy.na.sem.adobe.com/content/a10_pro?sdid=IAZWJ
http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/glib/autourl.pdf
http://www.tinaja.com/glib/bmfauto1.pdf

(5) Retouch them as bitmaps and improve the lettering with Custom Glyphs; (5)
Rework any halftones into grayscale or RGB; (6) Colorize black and white where
appropriate; or (7) Redo entirely as PostScript vector art.

Choice (7) will give you by far the smallest file size. Plus the best appearance and
maximum searchability. But it might end up quite time intensive for such things
as electronic schematics. Other tools in the Gonzo Utilities greatly ease building
top quality schematics or line art.

One of the most obvious image problems in our Level I example was the gray text
boxes. ClearScan did these as halftones that did not look all that great to start out
with and became unacceptable if file sizes were reduced. Worse, all of their text
remained unrecognized and unsearchable.

As the Level II demo shows us, these were reworked as aqua background boxes
with full text searchability. A minor amount of rekeying was involved here. Some
similarly reworked text highlighting boxes appear in orange and magenta. An
example of a total Gonzo rework of another gray halftone was the Address Space
figure on page 17.

Here’s how to go about…

EXPORTING IMAGES FROM ACROBAT

 1. Raise the resolution by Edit --> Preferences -->
 Convert From PDF --> PNG --> Resolution to at
 least 600 pixels per inch.

 2. To save an entire page as an image, do Save
 As --> Image --> PNG.

 3. To save one object as an image, Use the selection
 tool to highlight the image in blue, then right
 click on Save Image As or Copy Image. A Control-V
 after Copy Image can move your image directly
 into Paint.

 4. To save all image objects, go to Tools-->Document
 Processing --> Export All Images

 5. Convert the .PNG image to .BMP by using Paint.
 Some other useful manipulation tools include
 ImageViewer32 or else IrfanView.

 6. Your image must end up in .JPG format before
 returning to Acrobat Distiller.

— 117.4 —

http://www.tinaja.com/glib/fadescuf.pdf
http://www.tinaja.com/glib/gonzotut.pdf
http://www.arcatapet.net/imgv32.cfm
http://www.irfanview.com/

And here’s how your Gonzo textfile can link your images back…

RETURNING IMAGES TO ACROBAT DISTILLER

1. Make sure your edited images are in .JPG format. Then very
 carefully note the image resolution.

2. Define the following procs early in your Gonzo textfile…
 /jpegimageprocwithlink { %offset voffset hres vres
 save /snapjpg exch def /infilename exch store /inurllink
 exch store /photoscale exch store /vpixels exch store
 /hpixels exch store inurllink setareaurl /DeviceRGB
 setcolorspace 0 0 translate hpixels vpixels scale photoscale
 dup scale /infile infilename (r) file def /Data {infile
 /DCTDecode filter} def <</ImageType 1 /Width hpixels
 /Height vpixels /ImageMatrix [hpixels 0 0 vpixels neg
 0 vpixels] /DataSource Data /BitsPerComponent 8 /Decode
 [0 1 0 1 0 1]>>image ypos jpgsnap restore /ypos exch
 def} def

 /setareaurl {/cururlname exch store mark /Rect [0 0
 hpixels photoscale mul vpixels photoscale mul /Border
 [0 0 0] /Color [.7 0 0] /Action <</Subtype /URI
 /URI cururlname>> /Subtype /Link /ANN pdfmark} def

3. Define the custom Gonzo textfile linking info…

 /autoimageandlink21 {save /af1 exch store xpos ypos
 yinc add translate
 0 0 1630 1252 .026 % xpos ypos xres yres pixscale
 (http://www.tinaja.com/images/gorsort1.jpg) % url first
 (C:\\Docu....) % image source second
 jpegimageprocwithlink af1 restore} store

4. Call the image for placement when and where wanted…

 4.5 10 (/autoimageandlink21) cl

These routines handle two tasks for you. They first get a .JPG image back into
Acrobat’s Distiller. And secondly, they provide a click to expand feature.

Normally, a reduced file size .PDF image will look awful if it is magnified. The
workaround here is to replace the awful magnification with a web delivered larger
image of chosen size, quality, and sharpness. Note that only a very few bytes are
needed inside the .PDF file for this web-delivered linking.

— 117.5 —

Note that seven parameters need passed to jpegimageprocwithlink. These are
the x and y offset from the present page position, the horizontal and vertical
resolution, the image size scaling, the click-to-expand URL, and the local .JPG
image source. Note that the resolution values must be exact; Otherwise the
image will end up slanted or even totally trashed. Watch this detail.

While the passed JPG images may be quite large, they will get properly resized
during Acrobats Reduced File Size operation. Should a bitmap or image ever end
up wildly the wrong size, chances are its header was modified. The resolution is
easily reset with Irfanview.

Should the quality of an image degrade, consider raising and maintaining its
resolution in all process steps.

Our gorilla images in the demo show us several value-added features. They first
were colorized by using the bucket in Paint. This is an amazingly fast, fun, and
easy task. But you do have to get rid of the B/W line breaks and make sure each
"pour" area is surrounded by black or color pixels. A single white edge pixel can
cause a major breakout.

Both fonts and images in any .PDF file are easily viewed by getting into Acrobat X
and selecting the rather buried Tools-->Print Production-->Preflight-->Options
-->Create Inventory.

Be sure to remember that Distiller versions after 8.1 default to preventing most
disk access. The workaround is to run acrodist-F from your XP command line.

For More Help

Additional examples and tutorials appear in our GuruGram and PostScript
libraries.

Seminars, training, consulting, and direct eBook conversion projects are available.
You can email me or call (928) 428-4073 for more details.

— 117.6 —

http://www.irfanview.com/
http://www.tinaja.com/ggsamp1.asp
http://www.tinaja.com/pssamp1.asp
http://www.tinaja.com/info01.asp
mailto:don@tinaja.com

