
Fancy Imports of JPEG files
to PostScript or Acrobat

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2003 as GuruGram #23
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Most layout or pagemaking programs have one or more methods to import
.JPEG photo images into Acrobat files that you are creating. Just about all better
grade image conversion utilities can also handle this task. If all else fails, you can
simply print the .JPEG photo to Distiller to get a .PDF page. And optionally print
that page to disk if you want to get fancy with custom PostScript work.

But there’s times and places where you would like to get at and understand the
underlying PostScript code so you can do fancier custom stuff on your own
terms. So, I’d like to briefly go over the JPEG conversion fundamentals here. And
show you how to build an autopositioning, autosizing, autotracking, and
autoURLing picture inserter. Yes, the hotbox automatically adjusts and repositions
itself on any later text editing, guaranteeing you painless links.

We first looked at the fundamentals of .JPEG conversion back in JPEG2PDF.HTML.
Where we saw that the two key secrets included making your .JPEG file locally
available on hard disk and using the /DCTDecode filter input filter while creating
your image. Additional details on this are in the PostScript Reference Manual 3.

Let’s start with some autopositioning image code and then see what it will take to
get it to work. While this makes use of my gonzo utilities, you should easily be
able to adapt it to any host that gives you coding access…

/autofigure1 {
 save /af1 exch store % save graphics state
 xpos ypos translate % position on page
 6 0.65 923 526 .025 % xpos ypos xres yres scale
 (http://www.tinaja.com/images/bargs/flu84501.jpg)
 (C:\\windows\\desktop\\aaraw_pix\\flu84501.jpg)
 jpegimageprocwithlink % call conversion proc
 af1 restore % And restore
 } store

— 23.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/acrob01.asp
http://www.adobe.com
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/text/jpeg2pdf.html
http://partners.adobe.com/asn/developer/pdfs/tn/PLRM.pdf
http://www.tinaja.com/post01.asp#gonzo

In this case, xpos and ypos are Gonzo specific current positioning info. You can
substitute hard numbers for these when doing an absolute positioning. The first
two numbers on the next line are an additional x and y offset. These may be
useful to fine tune a location if an image is wider or taller than usual.

The next two numbers are the .JPEG horizontal and vertical image resolution…

 JPEG size MUST be exact or the image will tear badly!

If you do not already know your JPEG image size, load it into ImageViewer32 or a
similar utility, and read the size from the info line. The final value on the line is a
pixel scaling factor that you can use to resize your JPEG image to the available
space. Note that Gonzo often uses a 10X grid; your scaling may be larger.

This is followed by the url for the image clickthrough and then by the JPG image
link itself. As usual, note this important rule…

 Any SINGLE reverse slash in a PostScript filename
 string MUST be replaced by a DOUBLE reverse slash!

Our routine finally calls jpegimageprocwithlink that does all the work. Let’s break
this proc down into several pieces for analysis…

/jpegimageprocwithlink {
 save /snap2 exch def
 /infilename exch store % grab passed pix file
 /inurllink exch store % grab link filename
 /photoscale exch store % grab scale
 /vpixels exch store % grab v image size
 /hpixels exch store % grab h image size

 translate % position on page
 inurllink setareaurl % separate urllink proc

There are two separate goals to this code. We first want to create a tracking
autopositioning link for image expansion or whatever. Followed by actual image
capture and placement. Because much of the info needed by both routines is
similar, it makes sense to nest them together. Otherwise, the same variables
might have to be captured and passed twice.

Our proc starts with a save, then grabs all the needed values, does a translate to
position itself on the page, and then calls setareaurl to create the actual link.
Let’s first look at this setareaurllink before continuing along with your main
jpegimageprocwithlink code…

— 23.2 —

http://www.tinaja.com/post01.asp#gonzo
http://www.arcatapet.net/imgv32.cfm
http://www.tinaja.com/post01.asp#gonzo

 /setareaurl {
 /cururlname exch store % grab url
 mark % start pdfmark
 /Rect [0 0 % build hot zone
 hpixels photoscale mul
 vpixels photoscale mul]
 /Border [0 0 0] % no border
 /Color [.7 0 0] % but make it red anyhow

 /Action <</Subtype /URI /URI cururlname>>
 /Subtype /Link
 /ANN % annotation type
 pdfmark % call pdf operators
 } def

This is pretty much straight out of the PDFMark Reference Manual. PDF marks
are a way of including additional nonprinting instructions into a PDF file. This
particular one creates a hot spot for a url clickthrough. The hot zone itself tracks
our JPEG photo since it starts at the same 0,0 translation and is similarly scaled.

One additional tiny detail: Early in your PDF file, you’ll want to make sure any PDF
Marks are in fact non-printing so they do not present printer problems. Always
insert this code early into most any PDF file you create…

 /pdfmark where {pop}{userdict
 /pdfmark /cleartomark load put} ifelse

Now, let’s continue on with our main jpegimageprocwithlink proc definition.
The next order of business is to capture the incoming .JPEG file and convert it into
an appropriately scaled PostScript image.…

 /DeviceRGB setcolorspace % pick color model
 hpixels vpixels scale % magnify unit square
 photoscale dup scale % rescale for area

 /infile infilename (r) file def % establish input read file
 /Data {infile /DCTDecode filter} def % define data source

The image is first scaled from its 1x1 pixel space by its horizontal and vertical
resolution. It is then rescaled to fit the available space. A readfile is defined that
will grab data from the locally hard disk stashed .JPEG file.

Note that this .JPEG file is only needed during your Distill. All required image data
is optionally resampled and then internalized and compressed for later .PDF
distribution.

— 23.3 —

http://partners.adobe.com/asn/developer/acrosdk/docs.html

We continue by building an image dictionary, calling the image, restoring, and
finally exiting…

 << % start image dictionary
 /ImageType 1 % always one
 /Width hpixels % JPEG width in pixels
 /Height vpixels % JPEG height in pixels
 /ImageMatrix [hpixels 0 0 % transform to image space
 vpixels neg 0 vpixels]
 /DataSource Data % specify image data
 /BitsPerComponent 8 % color resolution
 /Decode [0 1 0 1 0 1] % per red book 4.10
 >>
 image % call image operator
 ypos snap2 restore % and exit
 } def

Details on all this are in the red book, aka the PostScript Reference Manual 3.

Note that a normal PostScript transformation matrix is of form…

 [xscale lean climb yscale xoffset yoffset]

In this case, we want to make the image hpixels wide with zero lean or climb. We
want to turn the image "upside down" so that later image data is further down
the page. Hence the neg after the vpixels scaling. Finally, we want our image
bottom to be at our starting location, so we offset the entire image vertically
upwards by vpixels.

That /Decode [0 1 0 1 0 1] is specific to 8-bit RGB data as per the red book.

What Resolution?

You can use EBAYFOTO.PDF as a demonstration program that imports four JPEG
files as thumbnails and lets you click expand them into full images.

How much .JPEG resolution is "enough"? If you do not downsample your .JPEG
images during distillation, your images will appear the best possible, and should
be click-expandable to larger sizes and still look fairly decent. But this will make
your .PDF file much larger. Especially when there are several images involved.

If you do downsample during distillation, you can gain extremely compact files,
but the images may not look (or print) quite as good initially and will fall apart
on expansion. It is often better to provide detailed larger images only to those
viewers who specifically want to click through on them.

— 23.4 —

http://partners.adobe.com/asn/developer/pdfs/tn/PLRM.pdf
http://www.tinaja.com/glib/ebayfoto.pdf

If a file of mine is to be primarily viewed as a web screen, I’ll usually downsample
everything to 144 DPI and then provide a separate larger clickthrough image for
detailed viewing. It does depend on how good printing must be and how many
images are involved. The tradeoff is to get your download times minimum while
preserving just enough quality to be useful.

The "GoBack" Problem

There is one small detail remaining that may cause you grief. If you web distribute
a .PDF file and click on a JPEG image on page three, you’ll go to that image ok,
but may return to the start of your document. And converting the expansion .JPG
file into an unlinked .PDF file does not seem to help any in most browsers. This
can be maddeningly infuriating if there are dozens to hundreds of pages involved.

Here are five possible workarounds to the "bad return" problem…

Do nothing — If the .PDF host document is only a few pages long and if there
are only one or two click-expansions and if those click thrus aren’t used all that
much, then few of your viewers will be all that much annoyed.

Use single page host documents — If your host .PDF file is only one page long,
then you will automatically return to the first page. Sometimes partitioning your
delivery one level up will thus eliminate the bogus returns. This can work well
where you have pages of gallery snapshots. See our Bargain Tour and Its Tutorial
for further assistance. The downside is the extra host page load times.

Open expansion in a new window — Since the old window remains on the
proper page, you automatically return to the proper place when the new window
is closed or you otherwise click back. The key HTML coding is…

 < A HREF="http:/www_usual_url" target="_blank" >

The downside is that many viewers do not like to have unwanted or unexpected
windows opening on their screen. But ordinary .JPG images can still be used for
expansion. I’ve yet to find out how to do this within .PDF, though.

Use a new .PDF file with named destinations — To do this, make your
expansion image a .PDF page that is mostly the .JPEG image with an added
graphic click to return box. One that returns to your specific page and
magnification. We saw an example of this technique way on back in our older
LINKPDF1.HTML. Additional info in the PDFMark Reference Manual

Ferinstance, suppose your first expandable photo is on page three of your doc.
You might place and call this destination marker code in your PDF source…

— 23.5 —

http://wwww.tinaja.com/nutour01.pdf
http://www.tinaja.com/glib/gallery.pdf
http://www.tinaja.com/glib/linkpdf1.html
http://partners.adobe.com/asn/developer/acrosdk/docs.html

 /setdest1 {[/Dest /GoBack1 /Page 3 /DEST pdfmark } store

 … and then use a URL like this for your backlink from the expanded photo done
as a .PDF file…

 http://webpage_name/jpg2pdf.pdf#nameddest=GoBack1

The crucial coding being the #nameddest=GoBack1 that should return you. In the
case of fancy pages, your /setdest can also alter your page view and position.
That nameddest part appears unnecessary, for a simple and conventional
#GoBack1 seems to work as well.

Unfortunately…

 IE sometimes PROHIBITS a .PDF file from linking to
 a named destination in another .PDF file. It instead
 may create a useless blank white screen.

One crude hack workaround to this hassle is to have the PDF image file to be
returned from link a .HTML redirect file that in turn links to the named
destination. Ferinstance, your .PDF URL return coding might be…

 http://webpage_name/iefix001.html

And your redirect iefix001.html file might look like…

 <html>
 <HEAD>
 <TITLE>IE PDF RETURN BUG FIXER</TITLE>
 <META HTTP-EQUIV="REFRESH" CONTENT="1;
 URL=http://www.tinaja.com/glib/ebayfoto.pdf#GoBack1">
 </HEAD>
 <body>
 Avoiding an IE Acrobat bug.
 </body>
 </html>

Note that an instant redirect is not a good idea as it trashes the viewer’s back
arrow. A minimum one second delay has been shown here.

— 23.6 —

An example utility appears as GRABJPG.PSL in our PostScript library. The
disadvantages of this sledgehammer method are that extra work is involved, your
"click this box to return" will be nonstandard, the redirect can be annoying, and
care in destination naming will be required if one expanded image is to be able to
return to several host docs.

Some ongoing GoBack experiments appear at EBAYFOTO.PDF. This method
appears to work equally well with NetScape or IE.

Use HTML image expansions — Instead of the above expanded .PDF file followed
by a redirect, you could simply use an HTML file consisting of a table holding a
.JPEG image and a return URL. This limits your appearance options, and is both
slower and fragmented. It does, however, eliminate the redirect delay. IE will
apparently happily return to an internal .PDF page from anything but another
.PDF file.

Other approaches to the GoBack problem might involve JavaScript or the
techniques shown in Example 8.15 of the PDF Mark Reference Manual. Also
asking your viewers to open .PDF in a new window rather than inside a browser
can also possibly be of help. Please email me if you have any better solutions to
the GoBack problem.

For More Help

Additional background along with related utilities and tutorials appears on our
GuruGram, PostScript, and Acrobat library pages.

Consulting assistance on any and all of these and related topics can be found at
http://www.tinaja.com/info01.asp. As can our image development and
processing services.

Additional GuruGrams columns await your ongoing support as a Synergetics
Partner.

— 23.7 —

http://www.tinaja.com/psutils/grabjpg.psl
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/ebayfoto.pdf
http://partners.adobe.com/asn/developer/acrosdk/docs.html
mailto:don@tinaja.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp
http://www.tinaja.com/advt01.asp

