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Certain math processes called Graphics Transformations are normally used to 
change the shape, size, and distortion of an image or drawing to meet some 
specific new need. These transformations can be linear to handle such tasks as 
translation, rotation, or scaling. Or nonlinear to carry out fancier remappings 
such as starwars, perspective, spherical, tunacan, or countless others.

A review of both linear and nonlinear graphic transformations appears here. The 
usual difference between the two is that the calculations are the same multiplies 
and adds for each and every pixel with a linear transformation, but are possibly    
different and fancier calcs for each and every nonlinearly transformed pixel.

Linear or nonlinear, these transformations are a "goes to" sort of thing. In which 
new data points are found as a result of existing pixels. 

But there are also times and places when you may want to create a new image or 
drawing where you instead want a "comes from" pixel calculation. For instance, 
you might want to create a new image x pixels wide and y pixels high that has 
been calculated from some existing data source. While creating each pixel once    
and only once. All the while gracefully handling out-of-range data.

Skilled mathematicians often will perform an inverse matrix to deal with these 
"comes from" inverse graphics transformations. 

In this GuruGram, we will instead look at some simpler math that sometimes can 
give us the same results in a more understandable way. We will see that some 
inverse transforms are trivially simple. Others are subtle, might be harder to 
calculate, or may introduce ambiguity or insolvability.

The Linear Inverse Graphics Transform

The linear graphics transform is normally used for translation, scaling, or rotation. 
It is also often the starting point for fancier nonlinear transformations.

One way to show the linear graphics transform is…
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                          new(x) = ax + by + c = g
                          new(y) = dx + ey + f = h 

To find the inverse graphics transform, we need to find the original and unknown 
x and y in terms of our known new(x) and new(y). Using plain old algebra, we 
can either subtract the first equation from the second or else we can solve the first
equation for x and substitute it into the second. Either route should give us… 

                   x = [ e(g-c) - b(h-f)] / (ae-bd)
                   y = [ a(h-f) - d(g-c)] / (ae-bd)

Note that once you have x, you can use a faster and simpler back substitution to 
find y. Rather than making the second full calculation.
 
We might use a fancier method or two to check our work. Naturally, it is super    
important to get the fundamental math right before you actually use it.

An older determinants method can actually be simpler…

Starting with a system determinant of…

                 a b c       g 
                 d e f       h 
                 0 0 1        1

x can be found as… 

             g b c                        a b c
             h e f     divided by    d e f
             1 0 1                        0 0 1

and y can be found as…

             a g c                        a b c
             d h f     divided by    d e f
             0 1 1                        0 0 1

Using the standard determinant expansion rules found in the above link should 
give you exactly the same linear inverse graphics transformation equations.

We could also do this using Gauss Jordan Elimination…
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Starting with the Gauss Jordan matrix…

             a b c    g
             d e f    h
             0 0 1    1

Normalizations and subtractions can create… 

             1 ~ ~    ~
             0 1 ~    ~
             0 0 1    1

Which, after evaluating the intermediate "~" terms gives
y by inspection. x follows by back substitution.

Translation, Scaling, and Rotation

Translation is somewhat trivial. a and c are 1, b and d are 0. c is our xshift and f 
is our yshift. Substituting in our inverse linear transformation gives…

Simple translation:

           new(x) = x -xshift
           new(y) = y -yshift 

Scaling involves a = xmag, c = ymag, b and d = 0, c = xshift, and f = yshift leads 
to these possibilities…

Scaling only:

           new(x) = x/xmag
           new(y) = y/ymag 

Scaling and translation:

           new(x) = (x -xshift )/xmag
           new(y) = (y -yshift )/ymag 

Rotation through an angle (θ ) needs some tricky trig with a = cos(θ ), b=sin(θ ),  
d=sin(θ ), and e = -cos(θ ). The denominator becomes cos(θ )

2
 + sin(θ )

2 which by 
trig identity is unity. 

Leaving us with…
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Rotating about lower left:

       x = - newx*cos(θ ) -newy*sin(θ ) 
       y = +newy*cos(θ ) -newx*sin(θ )

Rotating about the center:

       x = - (newx-xoffset)cos(θ ) - (newy-yoffset)sin(θ ) 
       y = +(newy-yoffset)cos(θ ) - (newx-xoffset)sin(θ )

Our xshift and yshift values should be one half of their respective widths. We 
could also get at these expressions by first noting that cos(θ ) = cos( -θ ). And that 
sin(θ ) = - sin( -θ ) by trig identities.

Two Side Trips

Before we get into some nonlinear inverse graphics transformations, let’s briefly 
look at two side issues. The first of these is that any center rotated image has to  
get bigger if the corners are not to be clipped…

For openers, note that the rotated object will always fit inside a circle whose     
diameter equals the original diagonal. This diameter will range from unity to 
1.41, becoming a maximum for a square image rotated by 45 degrees. 

It is useful to think of two vectors that will lead and will lag the rotation angle by 
atan(height/width). These vectors will "point at" two corners of your image or 
bitmap.

The larger absolute cosine of lead or lag scaled by the diagonal will equal the 
new width. The larger absolute sine of lead or lag times the diagonal will equal 
the new height.

Like so…
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To find the new size of a rotated image:

   1. Calculate the circle diameter as the square root of the
       sum of the squares of the height and the width.

   2. Find the lead and lag angle as atan(width/height).

   3. Find the new width as the LARGER ABSOLUTE COSINE 
       of the rotation PLUS the lead angle and the 
       rotation MINUS the lag angle. TIMES the diagonal.

   3. Find the new height as the LARGER ABSOLUTE SINE 
       of the rotation PLUS the lead angle and the 
       rotation MINUS the lag angle. TIMES the diagonal.

Here is some possible PostScript code…

PS utility finds the new size of a rotated image…

/findsize { 

    /diag width dup mul height dup mul add sqrt store

    /laglead height width atan store

    /newwide rot laglead add cos abs rot laglead sub cos abs
     2 copy le{exch} if pop diag mul store

    /newhigh rot laglead add sin abs rot laglead sub sin abs  
     2 copy le{exch} if pop diag mul store

                } store

These procs accept input variables of width and height and return new variables 
of newidth and newheight. You’ll find details on using Acrobat Distiller as a 
PostScript Interpreter here, and much more on PostScript in general here.

Some background color ( typically black or white ) will have to be inserted into 
those pixels not covered by the rotated image. Similar but fancier math can be 
used if the rotation is to be anywhere else but centered.

Pixel Interpolation

A second side issue is that images are normally quantized to integers. Your x 
and y calculations are almost certain to demand fractional pixel values. Thus, 
some sort of pixel interpolation likely will be needed. 
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A pixel interpolation tutorial appears here. Three popular choices are the nearest 
neighbor, which is often too crude; bilineal interpolation which is often a usable
choice; or bicubic interpolation which can give superb results, but is quite obtuse
and computationally intensive.

Here is a partially optimized PostScript bilineal interpolation proc…

     dup cvi dup /yi exch store sub /yr exch store
     dup cvi dup /xi exch store sub /xr exch store

     data yi get dup xi get 1 xr sub  mul exch xi 1 add 
     get xr mul add 1 yr sub mul

     data yi 1 add get dup xi get 1 xr sub mul exch xi 
     1 add get xr mul add yr mul add

This assumes your data will be in the form of an array-of-arrays or (preferably ) an 
array-of-strings. Typically, each internal array element will represent the x values 
of an image row, while the vertical position will represent the y values of that row
in the total image. Per this tutorial.

As with a rotation, most any nonlinear transform may end up requesting some 
"offscreen" values for certain x and y pixels. Which must be substituted. 

Going Nonlinear I — Starwars and Architect’s Perspective

The "starwars" and "architects perspective" (or "view camera tilt" ) nonlinear 
graphics transformations are quite similar. 

In the starwars case, you purposely want the top of your image to shrink down 
into infinity. Giving the illusion of a long text crawl. In the architects perspective 
case, the top of your building will be too narrow, and you want to expand your 
image to create perfectly vertical building edge lines.

Or, more typically, the top of the item you are photographing for eBay is "too 
large" because it is closer to your camera. And you will want to contract the top 
of the image. This time to create vertical product lines.

In general, finding the inverse of a nonlinear transformation works about the 
same way as a linear one. Instead of finding unknowns new(x) and new(y) as a 
function of known x and y, you instead find unknowns (x) and (y) as a function 
of knowns new(x) and new(y). By using any of our previous techniques of simple 
algebra, determinants, or Gauss Jordan reduction.

Many nonlinear graphics transformations can be found in this tutorial. 

Here are the starwars transforms and their inverses…
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Centered starwars/architect transformation:

       Let k = fullheight tan ( -θ ) where 0 degrees = flat 
       and 90 degrees = vertical.

       The forward nonlinear transforms will be

                new(x) = xk/(k+y)       
                new(y) = yk/(k+y)

       Whose inverse nonlinear transform solves as…

                x = new(x)*(k/(k - new(y)))          
                y = new(y)*(k/(k - new(y)))

Off-center inverse transform shifts by…

                x = new(x)*(k/(k - new(y))) - xshift          
                y = new(y)*(k/(k - new(y))) 

Some of our earlier tilt correction routines introduced distortion for tilt angle 
values above fifteen degrees. The above algorithms should correct this defect.

Going Nonlinear II — Perspective and Scanner Pasteins

Our above transformations can be rotated by 90 degrees to create the equivalent 
of a view camera "swing". This can be used for linear to perspective conversion. It 
can also be used to paste in an originally flat scanned image. Which can provide 
superb lettering with an infinite depth of field. More details on this in our Bitmap 
Typewriter tutorial. 

We can simply swap x for y in our previous inverse transform…

Centered perspective/scanner pastein inverse transformation:

                x = new(x)*(k/(k - new(x))) 
                y = new(y)*(k/(k - new(x))) - yshift           

For More Help

Our intent is to add additional nonlinear inverse graphics transforms here as the 
need arises. Similar tutorials and additional support materials are found on our     
PostScript and our GuruGram library pages. As always, Custom Consulting is 
available on a cash and carry or contract basis. As are seminars. For details, you 
can email don@tinaja.com. Or call (928) 428-4073.
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