
Some Inverse Graphics Transforms

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2007 as GuruGram #85
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Certain math processes called Graphics Transformations are normally used to
change the shape, size, and distortion of an image or drawing to meet some
specific new need. These transformations can be linear to handle such tasks as
translation, rotation, or scaling. Or nonlinear to carry out fancier remappings
such as starwars, perspective, spherical, tunacan, or countless others.

A review of both linear and nonlinear graphic transformations appears here. The
usual difference between the two is that the calculations are the same multiplies
and adds for each and every pixel with a linear transformation, but are possibly
different and fancier calcs for each and every nonlinearly transformed pixel.

Linear or nonlinear, these transformations are a "goes to" sort of thing. In which
new data points are found as a result of existing pixels.

But there are also times and places when you may want to create a new image or
drawing where you instead want a "comes from" pixel calculation. For instance,
you might want to create a new image x pixels wide and y pixels high that has
been calculated from some existing data source. While creating each pixel once
and only once. All the while gracefully handling out-of-range data.

Skilled mathematicians often will perform an inverse matrix to deal with these
"comes from" inverse graphics transformations.

In this GuruGram, we will instead look at some simpler math that sometimes can
give us the same results in a more understandable way. We will see that some
inverse transforms are trivially simple. Others are subtle, might be harder to
calculate, or may introduce ambiguity or insolvability.

The Linear Inverse Graphics Transform

The linear graphics transform is normally used for translation, scaling, or rotation.
It is also often the starting point for fancier nonlinear transformations.

One way to show the linear graphics transform is…

— 85.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/glib/nonlingr.pdf
http://www.tinaja.com/gurgrm01.asp

 new(x) = ax + by + c = g
 new(y) = dx + ey + f = h

To find the inverse graphics transform, we need to find the original and unknown
x and y in terms of our known new(x) and new(y). Using plain old algebra, we
can either subtract the first equation from the second or else we can solve the first
equation for x and substitute it into the second. Either route should give us…

 x = [e(g-c) - b(h-f)] / (ae-bd)
 y = [a(h-f) - d(g-c)] / (ae-bd)

Note that once you have x, you can use a faster and simpler back substitution to
find y. Rather than making the second full calculation.

We might use a fancier method or two to check our work. Naturally, it is super
important to get the fundamental math right before you actually use it.

An older determinants method can actually be simpler…

Starting with a system determinant of…

 a b c g
 d e f h
 0 0 1 1

x can be found as…

 g b c a b c
 h e f divided by d e f
 1 0 1 0 0 1

and y can be found as…

 a g c a b c
 d h f divided by d e f
 0 1 1 0 0 1

Using the standard determinant expansion rules found in the above link should
give you exactly the same linear inverse graphics transformation equations.

We could also do this using Gauss Jordan Elimination…

— 85.2 —

http://en.wikipedia.org/wiki/Determinant
http://www.tinaja.com/glib/gaussjor.pdf

Starting with the Gauss Jordan matrix…

 a b c g
 d e f h
 0 0 1 1

Normalizations and subtractions can create…

 1 ~ ~ ~
 0 1 ~ ~
 0 0 1 1

Which, after evaluating the intermediate "~" terms gives
y by inspection. x follows by back substitution.

Translation, Scaling, and Rotation

Translation is somewhat trivial. a and c are 1, b and d are 0. c is our xshift and f
is our yshift. Substituting in our inverse linear transformation gives…

Simple translation:

 new(x) = x -xshift
 new(y) = y -yshift

Scaling involves a = xmag, c = ymag, b and d = 0, c = xshift, and f = yshift leads
to these possibilities…

Scaling only:

 new(x) = x/xmag
 new(y) = y/ymag

Scaling and translation:

 new(x) = (x -xshift)/xmag
 new(y) = (y -yshift)/ymag

Rotation through an angle (θ) needs some tricky trig with a = cos(θ), b=sin(θ),
d=sin(θ), and e = -cos(θ). The denominator becomes cos(θ)

2
 + sin(θ)

2 which by
trig identity is unity.

Leaving us with…

— 85.3 —

Rotating about lower left:

 x = - newx*cos(θ) -newy*sin(θ)
 y = +newy*cos(θ) -newx*sin(θ)

Rotating about the center:

 x = - (newx-xoffset)cos(θ) - (newy-yoffset)sin(θ)
 y = +(newy-yoffset)cos(θ) - (newx-xoffset)sin(θ)

Our xshift and yshift values should be one half of their respective widths. We
could also get at these expressions by first noting that cos(θ) = cos(-θ). And that
sin(θ) = - sin(-θ) by trig identities.

Two Side Trips

Before we get into some nonlinear inverse graphics transformations, let’s briefly
look at two side issues. The first of these is that any center rotated image has to
get bigger if the corners are not to be clipped…

For openers, note that the rotated object will always fit inside a circle whose
diameter equals the original diagonal. This diameter will range from unity to
1.41, becoming a maximum for a square image rotated by 45 degrees.

It is useful to think of two vectors that will lead and will lag the rotation angle by
atan(height/width). These vectors will "point at" two corners of your image or
bitmap.

The larger absolute cosine of lead or lag scaled by the diagonal will equal the
new width. The larger absolute sine of lead or lag times the diagonal will equal
the new height.

Like so…

— 85.4 —

To find the new size of a rotated image:

 1. Calculate the circle diameter as the square root of the
 sum of the squares of the height and the width.

 2. Find the lead and lag angle as atan(width/height).

 3. Find the new width as the LARGER ABSOLUTE COSINE
 of the rotation PLUS the lead angle and the
 rotation MINUS the lag angle. TIMES the diagonal.

 3. Find the new height as the LARGER ABSOLUTE SINE
 of the rotation PLUS the lead angle and the
 rotation MINUS the lag angle. TIMES the diagonal.

Here is some possible PostScript code…

PS utility finds the new size of a rotated image…

/findsize {

 /diag width dup mul height dup mul add sqrt store

 /laglead height width atan store

 /newwide rot laglead add cos abs rot laglead sub cos abs
 2 copy le{exch} if pop diag mul store

 /newhigh rot laglead add sin abs rot laglead sub sin abs
 2 copy le{exch} if pop diag mul store

 } store

These procs accept input variables of width and height and return new variables
of newidth and newheight. You’ll find details on using Acrobat Distiller as a
PostScript Interpreter here, and much more on PostScript in general here.

Some background color (typically black or white) will have to be inserted into
those pixels not covered by the rotated image. Similar but fancier math can be
used if the rotation is to be anywhere else but centered.

Pixel Interpolation

A second side issue is that images are normally quantized to integers. Your x
and y calculations are almost certain to demand fractional pixel values. Thus,
some sort of pixel interpolation likely will be needed.

— 85.5 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/post01.asp

A pixel interpolation tutorial appears here. Three popular choices are the nearest
neighbor, which is often too crude; bilineal interpolation which is often a usable
choice; or bicubic interpolation which can give superb results, but is quite obtuse
and computationally intensive.

Here is a partially optimized PostScript bilineal interpolation proc…

 dup cvi dup /yi exch store sub /yr exch store
 dup cvi dup /xi exch store sub /xr exch store

 data yi get dup xi get 1 xr sub mul exch xi 1 add
 get xr mul add 1 yr sub mul

 data yi 1 add get dup xi get 1 xr sub mul exch xi
 1 add get xr mul add yr mul add

This assumes your data will be in the form of an array-of-arrays or (preferably) an
array-of-strings. Typically, each internal array element will represent the x values
of an image row, while the vertical position will represent the y values of that row
in the total image. Per this tutorial.

As with a rotation, most any nonlinear transform may end up requesting some
"offscreen" values for certain x and y pixels. Which must be substituted.

Going Nonlinear I — Starwars and Architect’s Perspective

The "starwars" and "architects perspective" (or "view camera tilt") nonlinear
graphics transformations are quite similar.

In the starwars case, you purposely want the top of your image to shrink down
into infinity. Giving the illusion of a long text crawl. In the architects perspective
case, the top of your building will be too narrow, and you want to expand your
image to create perfectly vertical building edge lines.

Or, more typically, the top of the item you are photographing for eBay is "too
large" because it is closer to your camera. And you will want to contract the top
of the image. This time to create vertical product lines.

In general, finding the inverse of a nonlinear transformation works about the
same way as a linear one. Instead of finding unknowns new(x) and new(y) as a
function of known x and y, you instead find unknowns (x) and (y) as a function
of knowns new(x) and new(y). By using any of our previous techniques of simple
algebra, determinants, or Gauss Jordan reduction.

Many nonlinear graphics transformations can be found in this tutorial.

Here are the starwars transforms and their inverses…

— 85.6 —

http://www.tinaja.com/glib/pixintpl.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/bmp2psa.pdf
http://www.tinaja.com/auct01.asp
http://www.tinaja.com/glib/nonlingr.pdf

Centered starwars/architect transformation:

 Let k = fullheight tan (-θ) where 0 degrees = flat
 and 90 degrees = vertical.

 The forward nonlinear transforms will be

 new(x) = xk/(k+y)
 new(y) = yk/(k+y)

 Whose inverse nonlinear transform solves as…

 x = new(x)*(k/(k - new(y)))
 y = new(y)*(k/(k - new(y)))

Off-center inverse transform shifts by…

 x = new(x)*(k/(k - new(y))) - xshift
 y = new(y)*(k/(k - new(y)))

Some of our earlier tilt correction routines introduced distortion for tilt angle
values above fifteen degrees. The above algorithms should correct this defect.

Going Nonlinear II — Perspective and Scanner Pasteins

Our above transformations can be rotated by 90 degrees to create the equivalent
of a view camera "swing". This can be used for linear to perspective conversion. It
can also be used to paste in an originally flat scanned image. Which can provide
superb lettering with an infinite depth of field. More details on this in our Bitmap
Typewriter tutorial.

We can simply swap x for y in our previous inverse transform…

Centered perspective/scanner pastein inverse transformation:

 x = new(x)*(k/(k - new(x)))
 y = new(y)*(k/(k - new(x))) - yshift

For More Help

Our intent is to add additional nonlinear inverse graphics transforms here as the
need arises. Similar tutorials and additional support materials are found on our
PostScript and our GuruGram library pages. As always, Custom Consulting is
available on a cash and carry or contract basis. As are seminars. For details, you
can email don@tinaja.com. Or call (928) 428-4073.

— 85.7 —

http://www.tinaja.com/glib/bmfauto1.pdf
http://www.tinaja.com/glib/bmfauto1.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/info01.asp
mailto:don@tinaja.com

