
A PostScript Heap Sort

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2004 as GuruGram #32
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Back in our previous GuruGram #31, we looked at some PostScript approaches
to Bubble Sorting and Presorted Bubble Sorting. It turns out there is a "better"
way to sort that is called a heap sort. A heap sort is very fast and very efficient,
especially for very large n. It also uses very few resources and is exceptionally easy
on PostScript virtual memory and garbage collection.

On the negative side, the incredibly elegant heap sort is somewhat hard to
understand, involves somewhat longer and much more obtuse code, and is
somewhat slower for very small n. Ferinstance, sorting 300 items with a heap sort
might take 20 milliseconds, compared to 12 milliseconds for a presorted bubble
sort. Or 140 milliseconds for a conventional bubble sort. For nearly all values of n,
though, a heap sort is either ridiculously faster or else is more than fast enough
that it does not really matter.

What is a heap?

A heap is not just a slang term. It is instead a carefully organized binary tree
data structure . One having very exacting rules for its creation and use. Starting
with some data of [(01)(02)(50)(10)(11)(20)(41)(21)(22)(52)(30)(31)(00)
(32)(40)(42)(12)(51)(21)], a heap might initially look like this…

00

 52
01

51
02

 41
03

50
04

 30
05

 31
06

 40
07

21
08

 42
09

 10
10

 22
11

 02
12

 00
13

 20
14

 32
15

01
16

 12
17

 11
18

 21
19

20

21

22

23

24

25

26

27

28

29

30

31

(reserved)

xx = array address

— 32.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/psutils/presort1.psl
http://www.tinaja.com/psutils/presort1.psl
http://www.tinaja.com/post01.asp

We see a heap-shaped "triangular" data structure. Our first rule is that…

 A heap has to be built SLOWLY from the top down
 but RAPIDLY from left to right.

A heap can hold up to 2^n elements. n is continuously chosen to be just larger
than needed for the available data. Should more data arrive, n is bumped by one
and a new base row is added to the data structure.

From our above build rule, we can also see that…

 Any "empty" elements ALWAYS have to be at the
 LOWER RIGHT on the BOTTOM row.

Each parent or apex element of a heap triad normally has two children. One
crucially important heap rule is that…

 On any triad, the apex parent must ALWAYS be
 EQUAL or LARGER than either child.

When you are building a heap, numerous swaps that "ripple up" or upchuck
through the tree might be needed to force this rule.

Similarly, when you are extracting data from a heap, numerous swaps that "ripple
down" or downchuck through the tree might be needed as well. The beauty of a
large heap sort is that ridiculously fewer comparisons will be needed than will
be required with bubble and certain other sorts.

A heap is easily constructed inside an array. Just place each row into the array in
sequential order. Starting with location 1, NOT location 0! And, conveniently,
the results of a heap sort can go back into that very same array.

Heap array addressing is remarkable simple…

 The TOP of the heap always goes in array position #1
 Note that this is NOT position 0!

 The LEFTMOST triad address will be apex*2.
 The RIGHTMOST triad address will be (apex*2) + 1

 The APEX triad address will be Int(leftmost/2)
 The APEX triad address will also be Int(rightmost/2)

— 32.2 —

There are two steps to doing a heap sort. You first fill or create the heap. While
forcing the above rules. At this point, your highest data value will always end up
in position #1 and is easily grabbed without any comparisons or tests at all!

You then empty your heap to complete the sort. Do this by taking the current
last heap item and swapping it with the first. This should then place the highest
remaining item in proper position at the end of the array.

You then do a downchuck that ripples the moved item as far into the heap as
needed to guarantee each parent of a triad is larger than its children.

The process repeats as the heap shrinks down. Until nothing is left but your
correctly sorted array.

Some Code

As always, you can use Acrobat Distiller as a General Purpose PostScript
Computer. Following the details of GuruGram #29. More details can be found
in our PostScript library.

Let’s look at some heap sort code from the outside in.…

/heapsort {
 /heap stddat length % create heap array
 1 add array store
 fillheap % create heap from strings
 emptyheap % sort heap by emptying
 } bind store

We simply fill the heap and then empty it. All the while following our exacting
heap rules. We’ll assume you are starting with an unsorted arrray of strings that
has been named stddat. Here’s the fill routine…

/fillheap {/hposn 1 store % initialize to position 1
 stddat {upchuck % enter one string at a time
 /hposn hposn 1 add store % advance position counter
 } forall % repeat for all strings
 } bind store

Each new string is tentatively placed at the end of the heap, which is usually
towards the lower right of the binary tree. Working slowly down and rapidly left
to right.

A recursive upchuck routine is then called to move the string as far up into the
heap as is needed to force the "parent is always bigger or equal than child" rule…

— 32.3 —

http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp

/upchuck {/cposn hposn store % initialize pointer to end
 {/pposn cposn 2 idiv store % begin recursive loop
 pposn 0 le % parent address <1?
 {heap exch cposn exch % yes, save child
 put exit} if % and exit
 heap pposn get % get parent value
 2 copy ge { % is swap needed?
 heap exch cposn exch put} % yes, swap
 {pop heap exch cposn exch % no, save child
 put exit} ifelse % and exit
 /cposn pposn store % old parent = new child
 } loop % repeat until parent>child
 } bind store

For each trip, a new parent address is calculated from cposn by using 2 idiv.

There are three possible outcomes: If the parent address is less than 1, then you
have previously reached the top of the heap and you exit, saving the child.

If the pposn parent address is within the heap and the parent value equals or
exceeds the child, you are also done and exit, saving the child.

If the parent value is less than the child, you swap child and parent, save the new
child, and then recursively go up one level. The child string always remains on the
stack until needed.

It takes many iterations to get from your initial data to a properly filled heap. To
fully understand this process, start with our original data above and try to get the
heap result previously shown. Remember to fill your heap slowly from top to
bottom and rapidly from left to right and that the parent of each heap triad
must equal or exceed either child.

Here’s the mid-level emptyheap routine…

/emptyheap {
 hposn 1 sub -1 2 % loop through all strings
 {/h1posn exch store % remaining heap size
 heap h1posn get % end item to stack
 heap 1 get % get highest apex value
 heap exch h1posn exch put % place at end
 downchuck % rework heap triads
 } for % redo smaller heap
 } bind store

— 32.4 —

At any time, the largest remaining string will be on top of the heap in address
#1. This gets swapped with the last string in the heap, stacking up everything in
order from the array end. downchuck is then used to ripple the last string into its
proper mid-heap position…

/downchuck { /apex 1 store % starting at top...
 {/maybe apex 2 mul store % left child address
 maybe h1posn 2 sub le % full triad available?
 {basecheck swapcheck} % find larger base & swap?
 {maybe h1posn 1 sub eq % left only available?
 {heap maybe get % get left base then swap?
 swapcheck}
 {heap exch apex exch % no, save apex and exit
 put exit} ifelse
 } ifelse
 /apex maybe store % reset apex for next triad
 } loop % continue recursively
 } bind store

Downchucking is somewhat more complicated and time intensive than
upchucking. This time, there are four possible outcomes:

If the next child address exceeds the current heap size, you are done and exit
saving the last parent. If the next child address equals the current heap size, you
will have only one child. This child is then compared using swapcheck.

If the next child address is less than one less than the current heap size, you will
have two children. These needed tested against each other using basecheck. The
larger of the two is then compared using swapcheck.

swapcheck in turn will decide whether a swap is needed or not. If no swap is
needed, you exit while saving the last parent. If a swap is needed, that swap is
made and the test child becomes the new parent for yet another recursive round.

Here is basecheck…

/basecheck { heap maybe get % get left string
 heap maybe 1 add get % get right string
 lt {/maybe maybe 1 add % set address of larger point
 store} if
 heap maybe get % get larger
 } bind def

The left and right triad bottom strings are compared, and the larger one is
chosen.

— 32.5 —

Finally, here is swapcheck…

/swapcheck {2 copy lt % is a swap needed?
 {heap exch apex exch put} % yes, swap and save apex
 {pop heap exch apex exch % no, save apex only and exit
 put exit} ifelse
 } bind store

The stack will normally hold the maybe string on top of the apex string. Letting
swapcheck compare the two. If a swap is needed, the new apex is saved, and
testing continues. If not, the old apex is saved, and you exit.

Some ready-to-use code and sample string data appears as file HEAPPS01.PSL.

For More Help

Additional PostScript and Acrobat and assistance is available per the previously
shown web links. Custom programming and design services are now available at
our standard consulting rates. Per our InfoPack Services. Or you can directly
email me.

Additional GuruGrams columns await your ongoing support as a Synergetics
Partner.

— 32.6 —

http://www.tinaja.com/psutils/heapps01.psl
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/info01.asp
mailto:don@tinaja.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp
http://www.tinaja.com/advt01.asp

