
Some Possible Book
Scanning "Gutter Math"

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2009 pub 12/09 as GuruGram #103
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

The main goal of a book or bound document scanning system is no longer to
simply capture the page images. In addition, you will want to provide for reliable
OCR recognition. The latter both dramatically reduces file sizes and allows full text
searching. While greatly easing web distribution. Plus possible later editing, text
reading, or other handicapped aides.

All the while minimizing stress and damage to the book itself.

There are a number of high end solutions to content capture emerging. Google is
rumored to use a pair of 45 degree optical systems. These project an infrared grid
onto the pages and then use that sensed grid to provide for image deskewing
and distortion correction. What is also needed are effective scanning solutions
for individuals who, at reasonable costs, only wish to occasionally capture a few
dozen to a few hundred bound legacy documents.

New Opportunities

Three recent developments have greatly improved "home" book scanning. The
first of these is Adobe’s ClearScan included in Acrobat 9. ClearScan creates new
custom fonts that are a best match to the existing typography. While accurately
preserving justification and column widths. Sadly, the process is not yet perfect.
The fonts look a tad on the mangy side at lower resolutions and there is not yet
any font editing ability in place. Nonetheless, ClearScan is a major leap forward
for OCR. File sizes can approach 6K per page.

Second are the dramatic improvements in digital camera pixel counts. To the
point where they are reasonably competitive with scanning solutions. And offer
"to the page edge" opportunities that elude most scanners.

Because of the Bayer Filtering used, the fancy algorithms, and the geometry
factors, any advertised camera resolution is nowhere near its effective resolution.
But a 16 Megapixel camera might approach 12 Megapixels of effective grayscale
resolution. Approximating 450 DPI even for larger documents.

— 103.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://en.wikipedia.org/wiki/Optical_character_recognition
http://www.google.com
http://www.tinaja.com/whtnu09.asp#d11-18-09
http://diybookscanner.org/
http://www.adobe.com
http://en.wikipedia.org/wiki/Bayer_filter

There may even be enough excess resolution to allow the third opportunity of
elaborate image post processing. The PostScript language is especially adept at
reading and writing most any file in most any format. And especially in rectifying
bitmap images.

Tasks such as reversal (because of a mirror in the optic path), anamorphic scaling
(if the mirror is not at a 45 degree angle), and image rectification should now be
easily accomplished. Deskewing is already well done in ClearScan, so we can leave
it in the "ain’t broke" category.

Many examples of image post processing appear in this link. What I thought we
might do here is look at some possibly useful math to deal with…

The "Gutter Problem"

Bound books do not tend to lie perfectly flat. Especially if opened all the way.
Words near the gutter (the bound center portion) tend to appear very cramped
when scanned or photographed. Besides looking awful, OCR becomes much more
difficult with much worse error rates. One workaround, of course, is to not open
the book that far. Use a 45 degree mirror or prism or other optical path to
minimize any curvature. But some guttering may remain.

Can we mathematically define guttering? Can the math be made simple enough,
general enough, and fast enough to allow usable correction? Especially when
combined with mirroring to minimize its effects?

Let’s initially consider only a left facing page, gutter to the right. Further, let us
normalize our math so the leftmost area of interest is zero and the rightmost a
one. Often, this will coincide with the text margins.

We might at first consider using a cubic spline approach. But something that is
more maximally flat such as a sparse Taylor Series is rather likely to end up a lot
more useful.

Consider this function…

 y = ax + bx^n

Now, x will vary from 0 on the left to 1 on the right. y will vary with the page
curvature. a sets the overall linear page slope. b sets the depth of the gutter. And
our "magic" n determines how "curvey" and how wide our gutter is.

Any x^n with larger n will be 1 at x=1 regardless of n. And the higher the value
of n, the lesser its effect becomes progressively to the left.

Let’s try a plot of y = 0.15*x + 0.15*x^9.2…

— 103.2 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/expbmp.pdf
http://www.tinaja.com/glib/postproc.pdf
http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/glib/muse148.pdf

gutter proc

flatten proc

0.0 0.5 1.0
0.00

0.10

1.00

1.04

NORMALIZED PAGE POSITION

Now that black bottom "gutter proc" curve sure looks like an open book page to
me. How well it matches your book page will depend on the page size, the book
thickness, and how stressed the binding is. But with only partial page openings,
the differences should end up minor and may actually converge.

Wider book pages may have a narrower gutter, so higher powers of n (perhaps in
the 11 to 14 range) may be needed. The slope of the "flat" portion can often be
eliminated by adjusting the optical path to the camera. The gutter shape may also
vary with how far into the book the scanned page will be. All these factors should
minimize if you make the page as flat as possible before image capture.

Flattening the Page

Useful OCR pretty much demands a perfectly flat page. The next crucial question
is to find out what adjustment is needed to the gutter proc to make each letter
appear in its true position. We can call this process finding a flatten proc.

To do this, start at the left end and make a very small change in delta X, our
horizontal position. Then find out how much the true distance delta S changes.
This will be a vector sum of the horizontal and vertical changes, as found by the
Pythagorean Theorem. Perhaps looping code something like this…

 0 0.001 1 {/xcur exch store
 /ycur posn a mul posn n exp b mul sub store
 /scur scur xcur xold sub dup mul ycur yold sub
 dup mul add sqrt add store
 /xold xcur store
 /yold ycur store
 % do stuff with scur here
 } for

— 103.3 —

http://en.wikipedia.org/wiki/Pythagorean_theorem

A plot of the true page distance versus the x distance appears in red above. In this
example, the "guttermost" pixels need progressively moved to the right up to four
percent, or around 80 pixels on a 2000 pixel line.

While a tad nonobvious, our function dips slightly before increasing. Which
suggests a simplification that leaves "most" of the pixels right where they were all
along. We can make a = 0 by aligning any mirrors or whatever to end up with
a camera "film plane" that is parallel to most of the page.

A second major simplification is possible by sending…

Table Lookup to the Rescue

The math behind our red flatten proc curve can be rather nonobvious and a tad
ugly, being an integral of the inverse of a nonlinear square root. Yes, we could
find several Taylor Series terms or even Cubic Splines, but we would very much
like to avoid complex pixel-by-pixel calculations.

My favorite solution to avoiding repeated complex math calculations is to use
table lookup…

 Distance correction is best done as a one-pixel-per-entry
 table lookup to minimize individual pixel calculations.

If we try this using a "forward correcting" lookup, we might end up with some
image dropouts during our post proc. Instead, we can use an inverse table that
tells each pixel in the final image how far to go to the left for its actual data.

Except for our leftmost pixels, image interpolation may be needed to find your
intermediate values between pixels. Since these may degrade image quality, the
bicubic interpolation is probably better used than a bilineal one.

Additional details are found here.

A typical table for a flattened gutter correction might look like this…

/fixgut [1.000000 1.000000 1.000000 1.000000 1.000000

 1.000000 1.000000 1.000000 0.999999 0.999995

 0.961136 0.960588 0.960034 0.959473 0.958907
 0.958334 0.957754 0.957169 0.956577 0.955979
] store

— 103.4 —

http://www.tinaja.com/glib/muse148.pdf
http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/glib/speedup2.pdf
http://www.tinaja.com/glib/invegraf.pdf
http://www.tinaja.com/glib/pixintpl.pdf
http://www.tinaja.com/glib/pixintpl.pdf

Some more detailed code and table lookup examples appear in the sourcecode to
this GuruGram

A Plan, sort of

I don’t quite have all the details worked out on all this just yet. The long term
goal is to get many (and preferably all) of my "selectric era" sourcecode free
articles and reprints available online. Along with many of my out-of-print books.
Several dozen easier to find construction projects are already available as
searchable single files here.

Some interesting third party approaches to reasonably priced DIY book scanners
are found here.

My present thinking is to open the book only 45 degrees using an unframed
quality mirror. This should minimize the gutter problem beyond the approaches
others are using. The book could further be clamped using some potato chip bag
closures.

Again with a goal of dramatically reducing guttering. Photographing the page
images with a high resolution digital camera (preferably 16 Megapixels) should
then produce images. A one pass picture post processing should be able to
rectify, degutter, and reverse. Perhaps using improvements on these routines and
this code in particular.

More to follow as time permits.

For More Help

Many more application programs and utilities appear on our PostScript Library
page. A guide to our PostScript Gonzo Utilities and additional links appear here.

Additional consulting services are available per our Infopack services and on a
contract or an hourly basis. Additional GuruGrams are found here. Seminars also
available.

Further GuruGrams await your ongoing support as a Synergetics Partner. For
details, you can email don@tinaja.com. Or call (928) 428-4073.

— 103.5 —

http://www.tinaja.com/glib/gutter01.psl
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glair01.asp#early
http://diybookscanner.org/
http://www.tinaja.com/whtnu09.asp#d11-14-09
http://www.tinaja.com/whtnu09.asp#d11-14-09
http://www.tinaja.com/glib/postproc.pdf
http://www.tinaja.com/glib/bmp2psa.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/glib/gonzotut.pdf
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp
mailto:don@tinaja.com

