
Don Lancaster’s

ASK THE GURU
October, 1990

A new PostScript wish list
Using the Adobe Distillery
Double distilled compiling

Graphics on a Bezier surface
Meals-in-minutes packaging

68.1

Fig. 1 – My PostScript wish list.

1. PLATFORM INDEPENDENT DISPLAY POSTSCRIPT.

Reason: To eliminate the ludicrous transformations needed for
on-screen displays. To speed up editing and debugging.

2. EXPLICIT SUPPORT OF SHARED SCSI COMM.

Reason: Most of today’s PostScript printing is severly baud rate
limited. Shared SCSI comm provides as much as a 50:1 speedup.

3. FONT LOCK PERMANENTLY REMOVED FROM PATHFORALL.

Reason: Instantly available font paths greatly simplify and ridiculously
speed up the nonlinear transformations needed for perspective,
starwars, banner, flag, and similar creative display typography.

4. A READABLE AND RECORDABLE FRAMEDEVICE.

Reason: Dramatic speedups of most step-and-repeat routines.
Greatly simplified book-on-demand publishing, especially when
combined with CD-ROM. Incredibly powerful editing and
post-processing possibilities.

5. CEXEC OPERATOR DOCUMENTED IN DETAIL.

Reason: To level the playing field and give all end users the same
power tools that only a favored few have today.

6. A VIDEO FRAMEDEVICE OUTPUT

Reason: Fast and useful debug tool, especially when speeding up
code. Also opens up alternate applications such as printed circuit
production, CAD/CAM, Santa Claus machines, sign routers, and vinyl
cutters.

7. SYSTEM MONITOR AVAILABLE TO ALL

Reason: To allow rapid end user correction of problems such as the
fatal copypage flaw in the duplex mode.

8. A FULLY OPEN FONT CACHE ARCHITECTURE

Reason: By allowing the cacheing of anything of any size, instead of
just small typography, such things as multiple logos and other
calculation intensive routines could end up running much faster.

9. FULL SCSI HARD DISK DOCUMENTATION

Reason: Host interaction with the actual on-disk font cache allows
many speedup and post-processing opportunities.

Rumor has it that the highly
touted Apple IIe card for
the Mac LC is incapable of

running AppleWriter! Especially in
its modem record mode essential for
useful PostScript work.

I’ll try and work up some sort of a
fix on this, so stay tuned.

Let’s see. Apple has now quietly
dropped the Apple IIc Plus and its
related printers. The end of an era,
for sure.

Apple does have some interesting
new publications out. They have a
new Apple II Guide and the revised
Macintosh Development Tools and
Languages Guidebook. And for those
of you interested in disabilities, the
handicapped, or special education,
there’s a revised Connections Guide:
Computer Resources for the Disabled.
There is also a new Apple Computer
Resources for Special Education and
Rehabilitation.

Contact your dealer or local user
group for info on the first three. The
final book is available through DLM
Teaching Resources for $19.95.

The 3-M folks have now come up
with Post-It notes in a precut and
laser printable sheet form. Product
#7709. Availability does still seem
limited at this writing. The obvious
uses include custom notepads, both
personal and for resale.

Two great PostScript books now
include that gray book from Glen
Reid, otherwise known as Thinking
in PostScript, and the beige book
authored by Ross Smith, and titled
PostScript – A Visual Approach. I do
try and stock all of the very best
PostScript books for you. Write or
call for a complete list.

A reminder here that we now do
have this great PSRT RoundTable
up on GEnie with lots of PostScript
and all the other Ask the Guru and
LaserWriter Corner stuff on it. And
including lots of fully debugged
and ready-for-use downloads of
most of the printed routines you see
here and in our earlier reprints.

You can voice call (800) 638-9636
for connect info. I have also now put
together a PSRT sampler disk for
you. Call or write me per the end
trailer for details.

What Do You Really Want
From PostScript?

Did you know that all of those
LaserWriter printers have a built-in
system monitor that lets you view

68.2

ASK THE GURU

Fig. 2 – Example of Distillery Compiled PostScript.

/bdef { bind def } bind def
/ldef { load def } bind def
/selectfont { exch findfont exch scalefont setfont } bdef
/DF { selectfont currentfont def } bdef
/BEGINPAGE { pop /pagesave save def } bdef
/ENDPAGE { pop pagesave restore showpage } def
/AW { moveto awidthshow } bdef
/F /setfont ldef

1 BEGINPAGE
/F1 /Palatino-Bold 10 DF -0.6 0 32 0.1 0 (Compiled PostScript?) 128.73 720 AW
/F2 /Palatino-Roman 9.5 DF
0.65 0 32 0.1 0 (Sort of. And certainly usefully.) 110 695 AW
F2 F 1.9 0 32 0.108918 0 (You’ll find two main methods of) 110 682.5 AW
F2 F 0.00576103 0 32 0.1 0 (dealing with any computer language.) 100 670 AW
F2 F 1.9 0 32 0.282986 0 (If the language is) 100 657.5 AW
/F3 /Palatino-Italic 9.5 DF 1.9 0 32 0.282986 0 (interpreted) 187.447 657.5 AW
F2 F 1.9 0 32 0.282986 0 (, each) 232.788 657.5 AW
F2 F 0.855241 0 32 0.1 0 (instruction gets used when and as it) 100 645 AW
F2 F 0.634014 0 32 0.1 0 (occurs at the highest level. If the lan-) 100 632.5 AW
F2 F 0.222581 0 32 0.1 0 (guage is) 100 620 AW
F3 F 0.222581 0 32 0.1 0 (compiled) 138.481 620 AW
F2 F 0.222581 0 32 0.1 0 (, a special process is) 173.234 620 AW
F2 F 1.54727 0 32 0.1 0 (gone through to make the final run) 100 607.5 AW
F2 F 0.33065 0 32 0.1 0 (time code be as compact, as fast, and) 100 595 AW
F2 F 0.65 0 32 0.1 0 (as efficient as possible.) 100 582.5 AW
F2 F 1.10939 0 32 0.1 0 (Compiling also "divorces" the run) 110 570 AW
F2 F 0.459408 0 32 0.1 0 (time code far away from the original) 100 557.5 AW
F2 F 1.74072 0 32 0.1 0 (applications package that generated) 100 545 AW
F2 F 1.62958 0 32 0.1 0 (that code. Which can get handy for) 100 532.5 AW
F2 F -0.158258 0 32 0.1 0 (such things as providing fully device-) 100 520 AW
F2 F 1.48734 0 32 0.1 0 (independent printed circuit artwork) 100 507.5 AW
F2 F 0.397416 0 32 0.1 0 (on) 100 495.0 AW
/F4 /Palatino-Roman 9 DF 0.397416 0 32 0.1 0 (BBS) 113.788 495.0 AW
F2 F 0.397416 0 32 0.1 0 (systems without needing any) 129.811 495.0 AW
F2 F 0.65 0 32 0.1 0 (applications package support.) 100 482.5 AW
F2 F 0.65 0 32 0.1 0 () 110 470 AW
1 ENDPAGE

% Total non-header length: 1808 bytes
% Typical baud rate limited run time: 1064 milliseconds on QMS Turbo PS820
% Raw PostScript run time: 150 milliseconds on QMS Turbo PS820

memory, add or alter any portions
of the internal code, and change or
repair any or all routines? All you
do is jumper two secret connections
in the serial cable to activate your
monitor. A set of predetermined
bytes in your ROM chips will then
preselect the "privilege" level of
access you are granted.

This is one example of the many
secret features of the PostScript
language which you end users are
prohibited from using. At one time
long ago and far away, some of the
restrictions may have made slight
sense to somebody, somehow. But
all they do today is grievously slow
down, incapacitate, and very much
infuriate the end user.

Figure one is a list of some of the
more crucial intentionally crippling
restrictions forced upon all of you
PostScript end users. I like to call
this my wish list.

Note that most insiders already
have access to some or all of these
features. Many could be found by
nosing around the larger university
related BBS systems. The others by
rounding up all the usual suspects.
Thus, there appears to be a rather
uneven playing field. And a very
foggy one as well.

Note also that no new technology
is needed here. A few simple words
on an interoffice memo or two can
instantly provide everything the
entire wish list asks for.

And one of the big side effects of
fulfilling my wish list would be to
make PostScript so powerful to all
the end users that it would become
totally unassailable by any clone or
competing technology.

Word has it that the upcoming
PostScript Level II should have
unlocked font paths. Which would
be one major step in the right di-
rection. One down, nine to go.

Sigh.

Compiled PostScript?
Sort of. And certainly usefully.
You’ll find two main methods of

handling most any computer lan-
guage. If the language is interpreted,
each instruction gets used when and
as it occurs at the highest level. If

your language gets compiled, some
special process is gone through to
make the final run time code be as
compact, fast, and as efficient as is
reasonably possible.

Compiling also divorces the run
time code far away from the original
applications package that generated
that code. Which can get handy for
such things as providing fully de-
vice independent printed circuit art
on BBS systems without the need for
any applications support.

This can solve a crucial problem
of both the hardware hackers and
all their technical editors. Using
pseudo-compiled PostScript in its
EPS format to directly provide the
end-users accurate and first quality
printed circuit layouts, dialplates,
templates, whatever.

Repeated use of compiled code
often could run much faster than

interpreted code at the triple costs
of all your time required for your
compiling process, deferred error
messages, and moderately longer
program files.

Compiled code is also quite hard
to edit or change. To the point that
you’ll nearly always edit and then
compile and rarely vice versa. This,
of course, is true of just about any
compiling. Not just PostScript.

PostScript is an interpreted lan-
guage. While a true compiling of
your PostScript output down to the
machine language level is not yet
readily available, there are several
tricks you can attempt to pseudo-
compile your PostScript code.

The results can be an incredible
speedup. For instance, we routinely
make up a three column and 6000
character page with two figures, a
header and footer in three seconds

68.3

October, 1990

Fig. 3 – Example of Double Distilled Compiled PostScript.

/F {exch findfont exch scalefont setfont} bind def
/A {moveto 0 exch 0 32 5 2 roll awidthshow} bind def

 /Palatino-Bold 10 F
 -0.6 .1(Compiled PostScript?)128.7 720 A

 /Palatino-Roman 9.5 F
 .65 .1(Sort of. And certainly usefully.)110 695 A
 1.9 .1089(You’ll find two main methods of)110 682.5 A
 .005761 .1(dealing with any computer language.)100 670 A
 1.9 .2830(If the language is)100 657.5 A
 1.9 .2830(, each)232.8 657.5 A
 .8552 .1(instruction gets used when and as it)100 645 A
 .6340 .1(occurs at the highest level. If the lan-)100 632.5 A
 .2226 .1(guage is)100 620 A
 .2226 .1(, a special process is)173.2 620 A
 1.547 .1(gone through to make the final run)100 607.5 A
 .3307 .1(time code be as compact, as fast, and)100 595 A
 .65 .1(as efficient as possible.)100 582.5 A
 1.109 .1(Compiling also "divorces" the run)110 570 A
 .4594 .1(time code far away from the original)100 557.5 A
 1.74072 .1(applications package that generated)100 545 A
 1.630 .1(that code. Which can get handy for)100 532.5 A
 -.1583 .1(such things as providing fully device-)100 520 A
 1.487 .1(independent printed circuit artwork)100 507.5 A
 .3974 .1(on)100 495.0 A
 .3974 .1(systems without needing any)129.8 495.0 A
 .65 .1(applications package support.)100 482.5 A

 /Palatino-Italic 9.5 F
 1.9 0.2830 (interpreted)187.4 657.5 A
 0.2226 .1 (compiled)138.5 620 A

 /Palatino-Roman 9 F
 .3974 .1 (BBS)113.9 495.0 A

 showpage

% Total non-header length: 1282 bytes
% Typical baud rate limited run time: 754 milliseconds on QMS turbo PS820
% Raw PostScript run time: 133 milliseconds on QMS turbo PS820

or so. From AppleWriter on a IIe.
Most of the time, there is no point

in compiling PostScript unless you
are (1) completely happy with your
uncompiled version in its final form
except for its speed; (2) are going to
use your file at least several times in
the future, and (3) are using a comm
channel that is not at all baud rate
limited, especially with the possibly
longer compiled code.

Or, separately (4) if you do not
want the end user to require or use
the original applications package.

Or, finally (5) if you are using a
horrendously slow phototypesetter
for all of your final high resolution
camera-ready art. Even with only a
single use, you can sometimes use a
Pseudo-compiling to save bunches
of time and money.

Thus, while compiled PostScript
code is outstanding for book-on-
demand publishing from hard disk

based files or for a wide distribution
of a printed circuit board pattern,
you might not want it for everyday
routine use.

There are several approaches to
compiling. Rather than the strict
definition of "make it all machine
language", we’ll define a compiling
as any one-time stunt you can pull
to reduce to an absolute minimum
the work PostScript has to perform
during your future printings. For
instance, there is no point in making
justification calculations each time.
Instead, you save only the results of
those calculations and use these
results instead.

One simple and rather obvious
compiling trick is called binding. If
you simply use a bind def instead of
def, PostScript objects get linked
directly to other objects, eliminating
the name lookups. Those //name im-
mediately executed names also do

the same thing. Binding sometimes
gives you a ten to fifteen percent
speedup. But it can also make any
later code modifications difficult to
do. Full details in the red book.

By far the most general way of
compiling PostScript code is with an
Adobe product called the Distillery.
Adobe has graciously uploaded a
freeware copy of the Distillery to
our GEnie PSRT RoundTable as our
file #186 DISTILL.PS.

At any rate, what the Distillery
does is intercept any operator that
would make any marks on the page,
such as lineto, awidthshow, and all
the other markers.

It then asks "What is the absolute
minimum amount of info needed to
use this operator?" And then either
returns that info to your host for
recording, or else can write it to a
selected hard disk file. The new file
becomes your run time code.

Their Distillery works great for
some routines and only so-so for
others. Often you have to try it and
see. You just might want to modify
your programming style or your
original applications packages to
make better use of the Distillery.

While the Distillery often makes
code much shorter, at times it can
make a simple and short routine
into an unbelievably complex data
string. Obviously, in these cases,
you may want to mix the original
code with the compiled code to get
the tightest final package.

While it is amazing what it does
and how well it generically handles
pretty near any input, there are
some Distillery bugs. For instance,
superscript and subscript aren’t
supported in the font matrix unless
you make the character height and
width at least slightly different. And
original code that insists on using
individually spaced words, rather
than calling PostScript’s powerful
awidthshow operator, will produce
inherently longer code. As much as
three times longer on the average.

The Distillery does not seem to
know how to save a path for reuse.
This means that your entire path
gets repeated for such things as a fill
and stroke. Obviously, you could

68.4

ASK THE GURU

Fig. 4 – Accurate Graphics and Text on a Bezier Surface.

hand edit your intermediate code to
get around this limitation.

Figure 2 shows you some typical
stock Distillery output.

I have just released the latest
version #13 of my new Guru’s Gonzo
Justify Power Tools. This code now
includes an optional automatic and
Distillery-compatible but text-only
compiling feature. You can easily
download a shareware copy and its
documentation from PSRT on GEnie,
or else write me directly for a free
printed listing.

It is also possible to use a sneaky
new technique which I call double
distilling. Most PostScript end users
most of the time become baud rate
limited, especially if they are using
AppleTalk. If you can pick up find
any tricks that shorten your distillery
files while adding only a minor
computation speed penalty, you
might further speed up your run
times by as much as an extra 35
percent or so.

For instance, you could drop any
leading or trailing zeros. For most
users most of the time, you could
round off to four place accuracy.

You can eliminate spaces before
or after self-delimiting parentheses.
And trailing spaces within strings.
And empty strings. At a tiny speed
penalty, you can eliminate the "0",
"0", and "32" and their intervening
spaces which are used with a hori-
zontally set awidthshow.

You can also sort your files so that
each font only gets changed once on
each page. The Distillery already
predefines "made" or "scaled" font
dictionaries such that only the very
fast and VM free setfont operator is
used for an actual change. So your
gain by sorting is not spectacular.
Still, as the figures show us, you do
gain a fair amount of speed and
save enough characters this way to
end up more than worthwhile.

Figure 3 shows you how your
Distillery file can be further short-
ened by double distilling. At this
time, this process is custom and
labor intensive. Let me know if you
have any further interest in seeing
improved versions of this double
distilling process.

When you are baud rate limited,
your processing time is directly
proportional to the total number of
characters in your file. The "Baud
Rate Limited" times shown here are
based on the AppleTalk on a typical
Mac that’s running at a 17 kilobaud
effective rate. Your own baud rate
limiting could easily become much
worse than this.

This is why we must have shared
SCSI comm now.

Any New Product
Packaging Ideas?

All of your laser printed output,
book-on-demand published stuff, or
similar software goodies should be
delivered to the end customer in an
attractive, "see-thru", and protected
package of some sort.

The traditional method that the
printshops use is the same shrink
wrapping used in your grocery store.
You can get further information
on shrink wrap products in Printer’s
Shopper, or Quick Printing, Printing
Impressions, or the Instant & Small
Commercial Printer mags.

But I think I’ve found a better
method. A good quality look, better
touch, and best durability.

A number of years ago, several
firms introduced Meals in Minutes
pouch packaging systems. These
were intended for sealing leftovers

in plastic baggies that could be
frozen, boiled, or nuked. The best of
these included a powered vacuum
pump that actually sucked the extra
air out of the package.

I think these are absolutely great,
and these are one of the few things
around here that I actually use for
its intended purpose. Well, some of
the time anyway.

Apparently the product bombed,
or at least the market got flooded,
for all the discount houses are now
offering these at bargain prices.

In particular, do check out that
DecoSonic from The Lighter Side, the
Seal-A-Meal from COMB, PaknSave
from Heartland, or Vac-U-Pac from
Damark. The prices are in the $19-$39
range. Do make sure your model in-
cludes a vacuum pump.

Now for the secret part. These
work beautifully with the plain old
Zip-lock bags, especially those heavy
duty "freezer" versions.

One tip: You usually throw away
the zip-lock part and just make the
rest of the plastic tightly fit your
product. To do this, simply peel
away your scrap side while your
plastic is still hot and you are still
holding the lever down. With some
practice, you’ll get a tight and uni-
form edge seal every time.

We use them here at Synergetics to
seal all our book-on-demand and

68.5

October, 1990

Fig. 5a – Excerpts From my Twixt Bezier Routines…

% Copyright c 1991 by Don Lancaster and Synergetics, Box 809, Thatcher AZ, 85552.All
% commercial rights reserved. Personal use permitted if this header remains preset.
% LaserWriter Secrets book+disk $29.50 VISA/MC. Free voice helpline (602) 428-473.
% Available on GEnie PSRT library as #202 TWIXTBEZ.PS.

/mychardict 10 dict def mychardict dup

/F {611 {258 326 mt 373 320 391 304 423 177 ct 444 177 li 444 510 li 423 510 li 39 383 373 367
258 361 ct 258 590 li 258 641 265 650 301 649 ct 387 647 li 544 643 552 508 562 47 ct 582 474
li 582 681 li 17 681 li 17 660 li 69 660 99 627 99 575 ct 99 106 li 99 54 69 21 1721 ct 17 0 li 340
0 li 340 21 li 288 21 258 54 258 106 ct cp }} put dup /R {722 {498 0 mt 695 0 li 65 21 li 683 21
673 16 645 57 ct 455 335 li 516 350 561 374 594 425 ct 634 488 610 569 569 611 ct 15 666
416 681 338 681 ct 26 681 li 26 660 li 78 660 108 627 108 575 ct 108 106 li 108 5478 21 26 21
ct 26 0 li 349 0 li 349 21 li 297 21 267 54 267 106 ct 267 317 li 292 317 li cp 267 606 mt 267 633
288 645 308 647 ct 383 655 417 622 437 586 ct 451 560 458 476 442 427 ct 412 338 36 350
267 349 ct cp }} put dup /E {667 {262 326 mt 377 320 395 304 427 177 ct 448 177 li448 510 li
427 510 li 395 383 377 367 262 361 ct 262 590 li 262 641 269 650 305 649 ct 391 64 li 548 643
556 508 566 474 ct 586 474 li 586 681 li 21 681 li 21 660 li 73 660 103 627 103 57 ct 103 106 li
103 54 73 21 21 21 ct 21 0 li 593 0 li 637 206 li 610 206 li 539 62 462 18 319 30 t 268 34 262 48
262 99 ct cp }} put dup /space {250 {250 0 mt }} put dup /O {778 {733 336 mt 733 44 681 569
591 627 ct 525 669 455 690 388 690 ct 321 690 251 669 185 627 ct 95 569 43 454 43 36 ct 43
218 95 103 185 45 ct 251 3 321 -18 388 -18 ct 455 -18 525 3 591 45 ct 681 103 733 18 733 336
ct cp 388 8 mt 370 8 349 12 327 23 ct 287 42 259 80 236 147 ct 221 190 211 261 211336 ct 211
411 221 482 236 525 ct 259 592 287 630 327 649 ct 349 660 370 664 388 664 ct 406 64 427
660 449 649 ct 489 630 517 592 540 525 ct 555 482 565 411 565 336 ct 565 261 555 10 540
147 ct 517 80 489 42 449 23 ct 427 12 406 8 388 8 ct cp }} put dup /N {722 {617 -1 mt 617 575 li
617 627 645 660 697 660 ct 697 681 li 498 681 li 498 660 li 550 660 578 627 578 57 ct 578 249
li 230 681 li 20 681 li 20 660 li 47 660 57 639 71 622 ct 108 577 li 108 106 li 10 54 80 21 28 21
ct 28 0 li 227 0 li 227 21 li 175 21 147 54 147 106 ct 147 529 li 588 -10 li cp }}put dup /T {667
{409 649 mt 433 648 498 661 554 603 ct 603 553 602 505 607 479 ct 629 479 li 629 61 li 30
681 li 30 479 li 52 479 li 57 505 56 553 105 603 ct 161 661 226 648 250 649 ct 250106 li 250 54
220 21 168 21 ct 168 0 li 491 0 li 491 21 li 439 21 409 54 409 106 ct cp }} put po

/pcurveto {8 copy /y3 exch def /x3 exch def /y2 exch def /x2 exch def /y1 exch def/x1 exch def /y0
exch def /x0 exch def} def /xtt {x3 x2 3 mul sub x1 3 mul add x0 sub tt 3 exp mul 2 3 mul x1 6
mul neg add x0 3 mul add tt dup mul mul add x1 3 mul x0 3 mul neg add tt mul add x add} def
/ytt {y3 y2 3 mul sub y1 3 mul add y0 sub tt 3 exp mul y2 3 mul y1 6 mul neg add y 3 mul add tt
dup mul mul add y1 3 mul y0 3 mul neg add tt mul add y0 add} def

book+disk products, as well as for
protecting business cards and out-
the-door orders. The sealers are also
great for protecting stuff at trade
shows from wear and tear.

You could get "real" polyethelene
tubing through the Associated Bag
Company or from Harwil, but that is
no fun at all.

As usual, all of our Names and
Numbers have now been gathered
together for you in the ending ap-
pendix to this volume.

For this month’s contest, just tell
me about any other gross abuse or
obscene misuse that you’ve been
making in applying something well
away from its intended purpose.
For fun or profit.

This Month’s PostScript
Utility?

I thought I’d throw a real heavy
at you this month. A new method
that I’ve recently developed that lets
you quickly and accurately place
text and graphics on any surface

defined by a pair of cubic spline
curves. One typical "flag waving"
example is shown you in figure
four, while enough excerpts of my
PostScript code to get you going
appear in figure five.

Other obvious uses for my new
TWIXTBEZ.PS routines are for ban-
ner fonts, text on a cylinder, twisted
film effects, pennants, any curved
perspective surfaces, fancy logos,
lettering on a scroll, a funhouse
mirror reversal, and just about any
other distortion you can think of.
The processing speed is ridiculously
faster than the earlier pixel line re-
mapping we looked at earlier.

The method uses bits and pieces
of stuff from previous columns and
from the Ask The Guru III reprints.
Especially the nonlinear transfor-
mations, the length of Bezier curves,
and stopping at the selected point
along a single Bezier curve.

The new black magic added here,
though, will involve automatically
converting straight lines into smooth

flowing curves, given only the end
points of those lines! Thus, the tops
and bottoms of all your letters will
properly curve themselves to con-
form to your new surface.

In the routines shown here, all
vertical lines are kept that way. This
is what you usually will want in any
text-oriented logo or clip art.

Where do you start? Your text or
graphics must first get completely
converted into combinations of one
of four allowed routines. These are
mt movetos, li linetos, ct curvetos,
and cp closepaths. Characters in any
font must be predefined into a 1000
point high proc definition of form
{ -charwidth- {char defs using only mt,
li, ct, and cp}}.

Now for the tricky part. You can
optionally convert any of those lt
linetos into a curve that smoothly
flows over your new surface! To do
this, you first set showlinesascurves
to true. Your code then takes any
linetos and neatly breaks them up
into individual numcurvesperlineto
segments. Each individual segment
is then changed into a cubic spline,
both of whose influence points lie
halfway along their original line
path, thus "bending" it.

What this does is convert your
original line into an end aligned
group of fairly weak curved splines.
This guarantees you are at the right
point on the surface at each end of
each spline, rather than the "short
cut" your single straight line would
attempt. Since each spline itself can
end up curved, this further helps
"adhere" to your new surface.

In figure four, four curves per
lineto are used to bend the tops and
bottoms of all the letters, while
sixteen curves per lineto are used
for your upper and bottom lines
which have to sweep clear across
the entire surface. Naturally, the
more curves you use, the better
looking your result, but the slower
the calcs.

While not immediately obvious,
the closepath operator also needs
modified so it does not take any
shortcuts. One rather easy way to
handle this is to close up the path
yourself, and then only use closepath

68.6

ASK THE GURU

Fig. 5b – …Twixt Bezier Routines, continued.

/bezierlength {pcurveto /oldx x0 def /oldy y0 def /blength 0 def 0 1 numpoints 1 sub div
1.0001 {/tt exch def xtt ytt /newy exch def /newx exch def newx oldx sub dup mul newy oldy
sub dup mul add sqrt blength add /blength exch def /oldy newy def /oldx newx def} for
blength }def /numpoints 30 def

/buildpatharray {/mat exch def mat 0 get /xx0 exch def mat 1 get /yy0 exch def mat 3 get /xx3
exch def mat 4 get /yy3 exch def xx0 xx3 sub dup mul yy0 yy3 sub dup mul add sqrt 3 div
gunghofactor mul /zz0 exch def mat 2 get cos zz0 mul xx0 add /xx1 exch def mat 2 get sin
zz0 mul yy0 add /yy1 exch def xx3 mat 5 get cos zz0 mul sub /xx2 exch def yy3 mat 5 get sin
zz0 mul sub /yy2 exch def mark xx0 yy0 xx1 yy1 xx2 yy2 xx3 yy3 bezierlength]} def

/setlowerpath {buildpatharray /lowerpath exch def} def /setupperpath {buildpatharray
/upperpath exch def} def /botftt {lowerpath twixtftt} def /topftt {upperpath twixtftt} def

/twixtftt {/arry exch def /tt exch def arry 0 get /x0 exch def arry 1 get /y0 exch def arry 2 get
/x1 exch def arry 3 get /y1 exch def arry 4 get /x2 exch def arry 5 get /y2 exch def arry 6 get
/x3 exch def arry 7 get /y3 exch def x3 x2 3 mul sub x1 3 mul add x0 sub tt 3 exp mul x2 3
mul x1 6 mul neg add x0 3 mul add tt dup mul mul add x1 3 mul x0 3 mul neg add tt mul add
x0 add y3 y2 3 mul sub y1 3 mul add y0 sub tt 3 exp mul y2 3 mul y1 6 mul neg add y0 3 mul
add tt dup mul mul add y1 3 mul y0 3 mul neg add tt mul add y0 add} def

/mt {savecp exch fontsize 0 get mul .001 mul xoffset add exch fontsize 3 get mul .001 mul
yoffset add nlt moveto} def /origli {savecp exch fontsize 0 get mul .001 mul xoffset add exch
fontsize 3 get mul .001 mul yoffset add nlt lineto} def /ct {savecp 3 {6 2 roll exch fontsize 0
get mul .001 mul xoffset add exch fontsize 3 get mul .001 mul yoffset add nlt} repeat curveto}
def /cp {closepath} def /savecp {2 copy /ycp exch def /xcp exch def} def /lict {/yy exch def /xx
exch def yy ycp sub numcurvesperlineto dup add div /yd exch def xx xcp sub
numcurvesperlineto dup add div /xd exch def numcurvesperlineto {xcp xd add ycp yd add 2
copy xcp xd 2 mul add ycp yd 2 mul add ct} repeat} def /li {showlinesascurves {lict}{origli}
ifelse} def

/twsshow {/msg exch def /yoffset exch def /xoffset exch def /strrx (X) def msg {strrx exch 0
exch put strrx dup () eq {pop (space)} if cvn mychardict exch get exec exec bezcharproc
fontsize 0 get mul 0.001 mul extrakern add xoffset add /xoffset exch def} forall} def
/sketchmode {/fontsize [1000 0 0 1000 0 0] def /xoffset 0 def /yoffset 0 def} def /nlt {/yyyy
exch def /xxxx exch def upperpath 1 get lowerpath 1 get sub /unitheight exch def xxxx
lowerpath 8 get div /tt exch def tt botftt /ybotpos exch def /xbotpos exch def tt topftt /ytoppos
exch def /xtoppos exch def xbotpos yyyy unitheight div ytoppos ybotpos sub mul ybotpos add
} def

% //// demo - remove or alter before reuse. ////

100 200 moveto 10 dup scale /showlinesascurves true def /gunghofactor 2 def 106 45 {dup
mul exch dup mul add 1.0 exch sub} setscreen [2 1 80 32 14 55] setlowerpath [2 14 45 32 16
50] setupperpath

sketchmode 0.2 setlinewidth 1 setlinejoin 1 setlinecap /numcurvesperlineto 16 def 0 13 mt 34
13 li 34 0 li 0 0 li cp gsave 0.95 setgray fill grestore stroke

/numcurvesperlineto 4 def /extrakern 0.1 def /bezcharproc {fill} def /fontsize [5.5 0 0 10 0 0]
def 2 3 (FREE F) twsshow xoffset 0.3 sub yoffset (O) twsshow xoffset 0.3 sub yoffset (N)
twsshow /fontsize [4.5 0 0 10 0 0] def xoffset yoffset (T) twsshow showpage quit

as a zero-length formality.
You select your upper and lower

Bezier surfaces using an [x0 y0 ang0
x1 y1 ang1] matrix. Regular Ask the
Guru readers will recognize this as
the same matrix employed for a two
point gonzo curvetracing. In this
matrix, x0 and y0 are the starting
coordinates of your curve, while
ang0 is the angle you want to head
out in as a first step.

Similarly, x1 and y1 form your
ending coordinates of your curve,
and ang1 is the final direction the
curve is heading in just as it reaches
the end point. As usual, 0 degrees is
dead east, while 90 degrees points
due north.

With a single curve, you can be
"bent", have an "S" shaped inflection
point, could have a single cusp, or
might even loop. For fancier paths,
you can repeat the entire process as
often as you need to.

The upper curved path will only
be approximate. This does happen
because we want to keep verticals
straight up and down, and because
things occur faster in the "t" space
along the "more bent" portions of
any spline. Any exact solution here
might involve repeatedly solving
ugly cubic equations.

Thus, if your upper path doesn’t
give you quite what you want on
the first cut, just bend it a little more
or a little less, and it should fall in
place the way you intend it to.

Drawing and graphics gets done
by using your sketchmode feature.
You should call the sketchmode proc
immediately before any drawing is
done. This scales things so you are
working directly in points on your
Bezier surface. The x direction is
now along your curved surface, and
your y direction stays vertical.

Characters are shown using my
new nonlinear variant of the ashow
operator called twsshow. The height
and width of each individual letter
is selected by a /fontsize [width 0 0
height 0 0] def matrix.

What you do with your character
path is set by bezcharproc.

Instead of the simple fill shown
here, you could outline and stroke,
shadow, choke, spread, flow, or do

most any combination of the special
effects. Note that this is insanely
more flexible than what the original
ashow operator permitted.

You can do individual character
kerning by following the examples
detailed in figure five. In this case,
we have tightened the distance on
either side of the "O" and made the
final "T" somewhat narrower than is
normal. Note that things happen
faster on the "more bent" portions of
your curved surface. You can also
mix character heights and vertical
offsets for special effects, especially
for menus or product labels.

We will be seeing several more
examples of these non-linear text

transformations right here, on my
GEnie PSRT, and in my LaserWriter
Secrets reprint series.

Those rumored improvements in
PostScript level II should make an
on-the-fly font path grabbing and
nonlinear transformation a quick
and easy process. Sadly, we are not
quite there yet.

Fully commented TWIXTBEZ.PS
routines appear in the GEnie PSRT
library as file #202. You can call me
for a free printed copy.

As a second contest this month,
just send me any old clip art, use
example, or any extensions to my
TWIXTBEZ.PS routines that you’ve
found handy. ❆

