
A Tutorial and Directory for
My Gonzo PostScript Utilities

Don Lancaster      
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2007 as GuruGram #79
http://www.tinaja.com
don@tinaja.com
(928) 428-4073
 
Few people appreciate how versatile and how powerful the PostScript general 
purpose computing language is. Or how fast and conveniently and cheaply and 
intuitively it now can handle an amazing variety of tasks for you.

PostScript is especially superb for…

         •  Uniquely creating stunning world class graphics.
         •  Acrobat .PDF file sourcing, editing, and post editing.
         •  Reading or writing most any diskfile in most any language.
         •  Exploring common or exotic mathematical concepts.
         •  Robotic or Santa Claus Machine controllers and sequences.
         •  Programmatically writing sourcecode in other computer languages.
         •  Using "real math" to generate complex charts or graphs.
         •  Sourcing real world badges, bumperstickers, cards, ad specialties, etc…
         •  Generating encoders or reconstruction of antique dialplates.
         •  Visualizing solutions to complex electromagnetic field problems.
         •  Doing detailed log file analysis of website activities.
         •  Bitmap distortion correction and ultra legible super small lettering.
         •  Fast and improved single file Powerpoint Emulations.
         •  Creating Fractal Ferns and graphically unique Fibonacci Sunflowers.
         •  Analyzing Magic Sinewave energy efficiency developments.
         •  Performing word frequency and grade level analysis on published docs.
         •  Doing ultra fancy complex nonlinear graphical transforms. 
         •  Fast and easy "what if?" exploration of engineering problems.

PostScript is best used when its batch mode one-pass interpreted processing 
output creates a graphics output file, an information reporting log file, or one or
more new disk based files in most any format or language. 

It can be useful to compare and contrast PostScript with JavaScript… 

      STYLE —     PS shares the reverse polish, stack oriented, loosely typed
                       extensible heritage of Forth; JS has a more conventional C 
                       language class architecture.

— 79.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
/http://www.tinaja.com/glib/pdfedit1.pdf
http://www.tinaja.com/santa01.asp
http://www.tinaja.com/post01.asp#begstuff
http://www.tinaja.com/glib/psnt.pdf
http://www.tinaja.com/glib/rebound1.pdf
http://www.tinaja.com/glib/histolog.pdf
http://www.tinaja.com/glib/swingtlt.pdf
http://www.tinaja.com/glib/bmfauto1.pdf
http://www.tinaja.com/glib/gonzopow.pdf
http://www.tinaja.com/psutils/fern2img.pdf
http://www.tinaja.com/glib/muse89.pdf
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/glib/wordfreq.pdf
http://www.tinaja.com/glib/nonlingr.pdf
http://www.tinaja.com/post01.asp


      REACH —    PS can easily read or write any host based disk file in most
                       any language. JS is specifically and absolutely forbidden 
                       from ever doing so.

      GRAPHICS —  PS is a world class superb graphics defining technology; JS 
                       graphics as normally used are vastly inferior and frustratingly
                       second rate.

      INTERACTIVITY — PS is pretty much limited to batch tasks involving creation 
                       of graphics files, log files, and host disk read/writes. JS can be
                       exceptionally real time user interactive.

      MATH —    PS uses 32 bit math but usually only reports to a somewhat
                       extendible six decimal places. JS has a full 64-bit floating 
                       point capability.

      TRIG —      PS works directly in degrees, while JS works directly in radians.

      VARIABLE SCOPE — PS variables are normally global unless defined otherwise.
                       JS variables are normally local unless declared otherwise.

      THE STACK —  Elegant stack manipulation is central to PS capabilities. 
                       The JS stack is an optional and seldom used sideshow.

      CALCULATED VARIABLES — These are easily done with PS, but require a 
                       much more obtuse form["fa00"]["value"]  approach with JS.

      LEARNING CURVE — Much of PS is intuitive and easily picked up. JS details 
                       can be mind-boggling and maddeningly infuriating.

      PASSING VARIABLES BETWEEN PROCS — Is vastly simpler and more intuitive 
                       in PS. JS is far more obtuse but can be more flexible.

      FORM REFERENCING — Largely unused and unneeded in PS, but confusingly 
                       and centrally essential to JS.

      NUMERIC ROUNDOFFS — A rare event in PS, but untreated 3.99999999 results
                       in JS are common and may need programmatic correction.

Getting Started with PostScript

The obvious starting point with PostScript is to download the free PostScript       
Language Reference Manual. Follow this up with this tutorial on Using Acrobat   
Distiller as a General Purpose Host Computer.

Next, visit the PostScript areas of My Website, perhaps starting off with our         
PostScript Beginner Projects, our earlier reprint collection of PostScript Secrets, 
or a truly ancient and outdated demo of our PostScript Show and Tell. 

For details on pagemaking and more advanced layout concepts, you can study 
most any of our example .PSL source code documents you’ll find here or here.

— 79.2 —

http://www.tinaja.com/glib/ps8dprp1.pdf
http://www.tinaja.com/glib/ps8dprp1.pdf
http://www.tinaja.com/post01.asp
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com
http://www.tinaja.com/post01.asp#begstuff
http://www.tinaja.com/glib/pssecrets.pdf
http://www.tinaja.com/glib/psnt.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/muse01.asp


Here is how you create and run your own PostScript program…

 1.  Install Acrobat Distiller or its GhostScript clone.
      Distiller is included in full Acrobat code, but is NOT 
      provided in free Acrobat Reader only downloads.

 2. Using any word processor or editor, create and save 
     your PostScript program as an ordinary ASCII textfile.

 3. Send the program to Distiller.

 4. View your results as a .PDF file, as a reporting log file, or
     as a newly created or modified custom disk file.

The usual way you use PostScript is "not quite" WYSIWIG. Typically, a second or 
two will be required for visual results to appear. Creative use of split or dual 
screens can greatly minimize any time delays.

Try it with your very first PostScript program…
 

                         %!PS
                         36 sin ==

This should report the sin of 36 degrees to you as 0.587785. We’ll shortly see 
another PostScript programming example that is somewhat more complex.

My Gonzo Utilities

Many years ago, I started writing an ongoing series of Gonzo Utilities that you 
can download here. These are basically a set of self-activating dictionaries that 
you can place (or run) at the beginning of your own PostScript programs. They 
can enormously simplify and speed up many common PostScript tasks. 

They are also easily expanded upon to meet your own special needs. You can 
think of these as a mix of custom combined page making, illustration, analysis, 
and presentation routines.

What the Gonzo utilities basically do is add many hundreds of new commands to 
the PostScript language. These commands can be used by themselves, or as tools 
to generate your own custom and fancier commands. Very often, the gonzo 
commands let you write PostScript code that is significantly shorter and faster 
than other approaches. Sometimes ridiculously so.

About half of the Gonzo commands involve superb text typesetting features. Such
as a premium grade word breaking progressive fill microjustify that can include 

— 79.3 —

http://www.adobe.com
http://www.cs.wisc.edu/~ghost/
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp


bells and whistles like drop caps, kerning, and even hanging punctuation. The 
other half of gonzo is an eclectic mix of convenience operators, graphing aides, 
high quality electronic schematic drawing tools, and code that lets you quickly 
generate real world products.

Here is how you use the Gonzo utilities… 

 1.  Download a free copy of the Gonzo Utilities from here.
      Place that copy in an accessible host directory.

 2.  Add a line similar to (C:\\gonzo\\gonzo.ps) run near
      the beginning of your PostScript program. Note that
      the FULL pathname must be specified and a DOUBLE 
      reverse slash needs used every time a single reverse
      slash is to be passed to Windows or a similar host.

3.   Write and save your PostScript program as an ordinary
      ASCII textfile in the usual manner.

4.   Send the program to Distiller. Then view the generated
      .PDF file, log file, or custom disk file as usual.

You also have the option of extracting only one or two Gonzo routines and 
placing them early into your code. Ferinstance, our mergestr string merging 
routine has lots of possible stand-alone uses.

As does showgrid, random, and dozens of the others.

You might also want to place your own extended Gonzo commands very near the
beginning of your PostScript code. Such as a task specific page making or layout 
routine that expands on the basic justification procs. 

A Gonzo proc named colcheck is used as your normal link between the internal 
Gonzo typesetting code and your custom (and often job specific ) layout routines.

An Example

Before we look at the Gonzo commands in detail, let’s look at a genuine and 
recent real world problem that shows how fast, simple, and powerful these 
utilities can be. 

Someone on an electronics newsgroup posed the question "What would a 
waveform look like that had all harmonics present and equal in amplitude?"

We can approach this by doing an actual plot of the target waveform. Starting 
with a fundamental and adding the needed harmonics.

Here is the annotated Gonzo code to quickly plot the answer…

— 79.4 —

http://www.tinaja.com/post01.asp#gonzo


     %! PS                                % normal header
     % Equal Harmonic gen                 %  title

     (C:\\gonzo\\gonzo.ps) run             % run Gonzo  

    50 50 10 setgrid                      % Create a grid
    40 20 showgrid                        % Show part of the grid
    /totalharms 20 store                  % Set # of harmonics

    0 10 mt                               % Set initial position
    0 0.1 720 {/priang exch store         % For one full cycle
      priang 20 mul 90 div               %   Set x position
        0 1 1 totalharms {/curharm    %  For each harmonic,  
           exch store priang curharm       %     calculate value
           mul sin add} for       
        0.67 mul 10 add lineto} for          %    %  and set y position
   line1 stroke showpage                  % Draw and show

And here is what your .PDF file result looks like…

0 360 720
phase in degrees

- 

0

+ 

am
p

li
tu

d
e

 

We see that a harmonic limited version would have a narrow positive impulse just 
beyond zero degrees and a narrow negative impulse just before 360 degrees. This
waveform could prove extremely useful in ultrawideband communications apps.

This figure was slightly enhanced by tinting the grid and adding axis callouts. 
Both tasks are trivial additions when using the Gonzo Utilities.

— 79.5 —

http://www.tinaja.com/post01.asp#gonzo


Embedded Gonzo Justification Commands

The text justification portions of the Gonzo Utilities offer you some incredibly 
sophisticated and advanced features. These include automatic word breaks, 
progressive two-stage or even three-stage fill justification, left-center-right column
or freeform justification, initial drop caps, hanging punctuation, tabbing, global 
and local character and space kerning, font microsizing, keystoning, overstriking, 
conditional page anti-orphaning, programmable macros, and dual parallel 
operation for simultaneous figures and body text.

Being proudly non-WYSIWYG, these features are (a) fully programmable and 
extensible, and (b) totally device and platform independent. With (c) all source 
code freely available and easily modified.

Just about any additional text justification feature can be easily added. The 
justification routines also form the core utilities for page layout or "pagemaking" 
software of arbitrary complexity. 

Gonzo uses the "embedded command" concept of placing markers inside text 
strings. The strings can be independent short callouts useful in figures, much 
longer document strings holding up to 65,000 page or multi-page characters, or 
can use the older PostScript currentfile methods without length limits. 

Instead of the escape sequences of early typesetters or the <x>, </x> marking 
conventions of HTML, Gonzo often will use alterable markers consisting of a 
reserved self-delimiting vertical bar followed by a single letter. Gonzo can also 
embed most any space-delimited PostScript command sequence into your text 
strings.

An <esc> control character or another printing marker can be substituted.

Here is a summary of the more important gonzo embedded text commands…

0 thru 9                  CHANGE FONT
:, ;, =, -, +, 
          When used in a Gonzo string, changes to a font predefined as 
          variables font0 through font+ using  gonzofont.

          Fonts are predefined in one of two ways by gonzofont:.
          Use font0 /Helvetica 10 gonzofont for normal sizing.
          Use font0 /Helvetica [ wide lean climb high xshift yshift] 
          gonzofont for fancy matrix sizing. For instance, a yshift
          can be used for superscripting or subscripting.

          Additional fonts can be defined as needed or block switched in 
          as style groups.

          Self delimiting.

— 79.6 —



a thru  f                  MACRO COMMANDS

          When used in a Gonzo string, executes your predefined
          amacro through fmacro commands at actual print time.

          Macros are particularly useful for indenting and outdenting titles
          while changing their fonts and sizes. These usually will end up
          document specific. And defined in the document header. 

          There are six other macros of upper case U thru Z.
          More are easily added.

          Commands are case sensitive and self-delimiting. 
          The macros must not disturb stack values!

/anystuff                  INSERT POSTSCRIPT COMMAND

                    When used in a Gonzo string, a defined PostScript proc 
                    whose name does not conflict with any other Gonzo proc can
                    be executed. The proc must not disturb stack values! 

                    The command must be followed by a space that will be
                    automatically consumed in processing. Lack of this space will
                    cause a word or line collision. Or an error message.

                    This proc is normally executed immediately during the
                    Gonzo processing time. If the proc is to end up deferred
                    so it executes during print time, a  printlist exch 3 index
                    exch put exch 1 add exch must be properly built into the
                    correctly deferred proc definition as noted below.

                    Note that only the name of the proc should get executed
                    between Gonzo strings. The name of the proc preceded by
                    a bar and a slash should get executed inside Gonzo strings. 

                    An undefined embedded PostScript command ( such as /xxxx )
                    can be used as an error trapping debugger. This can be most 
                    useful to find out  exactly where in a long or a complex doc
                    another error problem took place.   

h      HALF NEGATIVE LINEFEED

                    When used in a Gonzo string, increases the value of ypos by 
                    one half of yinc.
              
                    When used on an in-string line by itself, adds one half a line of
                    white space ledding between any paragraphs. This often gives
                    you the best viewability for modern text presentation.

                    Self-delimiting.

— 79.7 —



i      PROVIDE INITIAL DROP CAP

                    Knocks out a text hole to make room for an initial drop cap.
                    Does this by setting indententcount to the number of lines
                    the cap will take up; by setting dropflag to true so that
                    indentcount lines will be indented by dropindent; and by
                    resetting the vertical position to the initial top line.

                    The initial character font is subscripted as needed so its top
                    will be flush with the top of the top text line. 

                    A raised initial cap is much simpler and can be done by placing 
                    one larger, bolder, and colored initial character.

                    Self-delimiting.

j    POSITIVE UNIT KERN

                    When used in a Gonzo string, adds one kern unit of whitespace
                    between current adjacent characters.

                    kern is normally 1.0 for full size or 0.1 when on a 10X grid.
     
                    Used to "add a little daylight" to anything that looks a tad too 
                    crowded. Especially useful before or after parenthesis.

                    Self-delimiting. Global kerning is separately available by using
                    cstretch and sstretch.

k    NEGATIVE UNIT KERN

                    When used in a Gonzo string, subtracts one kern unit of 
                    whitespace between current adjacent characters.

                    kern is normally 1.0 for full size or 0.1 when on a 10X grid.
     
                    Used to "close in" adjacent characters that appear too far apart.
                    Useful for converting "AWARD" to "AWARD" and such.

                    Self-delimiting. Global kerning is separately available by using
                    cstretch and sstretch.

l    FULL POSITIVE LINEFEED

                    When used in a Gonzo string, decreases the value of ypos by 
                    a full yinc of ledding .
              
                    Useful to efficiently "tab downward", replacing repeated carriage
                    returns. Normally should not be used in middle of a text line.

                    Self-delimiting.

— 79.8 —



n    PARAGRAPH NOBREAK ORPHAN ELIMINATOR

                    When placed in a Gonzo string, checks to see if you are within 
                    five lines of the page bottom. And then forces a column or page 
                    change. Useful to eliminate one or two line orphans at the top of
                    the next column or page. Also prevents a header from appearing
                    too far down the page. Self-delimiting.

o    OVERSTRIKE CHARACTER

                    Useful for placing two characters on top of each other without
                    repositioning. For heading on down the can~yon, or for those
          Q

—
 complementary logic notations.

                    Uses overstrikechar to select the secondary character and
                    overstrikeht to set the vertical offset of the secondary
                    character. These values will have to be redefined for each 
                    different overstrike use. Self-delimiting.

p    NORMAL PARAGRAPH INDENT

                   Sets or resets paragraph indentation to the pm value. Alternate
                   to z which zeros any paragraph indent. Self-delimiting.

s    STOP COLCHECK

                   Sets a high negative value to ybot so that relative in-figure
                   positioning will not trip a main text column or page action. 
                   Usually internal to a save-restore context. Self-delimiting. 

y                  FULL NEGATIVE LINEFEED

                    When used in a Gonzo string, increases the value of ypos 
                    by yinc. When used on an in-string line by itself, removes
                    one line of white space between text lines. 

                    Useful to "cancel out" a line of pure commands so they leave no 
                    text ledding in their position. Self-delimiting.

z    ZERO PARAGRAPH INDENT

                   Sets or resets paragraph indentation to zero, ignoring the pm 
                   value. Complements p which sets or resets any paragraph
                   indent. Self-delimiting.

C    SWITCH TO CENTER JUSTIFY 

                   Selects the center justify mode for all text to follow. Alternate 
                   choices are  F  for fill,  L  for left, and  R  for right.

— 79.9 —



F    SWITCH TO FILL JUSTIFY 

                   Selects the fill justify mode for all text to follow. Alternate 
                   choices are  C  for center,  L  for left, and  R  for right.

L    SWITCH TO LEFT JUSTIFY 

                   Selects the left justify mode for all text to follow. Alternate 
                   choices are  C  for center,  F  for fill, and  R  for right.

P    SWITCH TO CUSTOM JUSTIFY "P"

                   Selects a custom justify macro that the user has preprogrammed
                   to a name of justP. Useful for menu justify, supertabbing,
                   keystoning, or other specialized text formatting apps.

Q    SWITCH TO CUSTOM JUSTIFY "Q"

                   Selects a custom justify macro that the user has preprogrammed
                   to a name of justQ. Useful for menu justify, supertabbing,
                   keystoning, or other specialized text formatting apps.

R    SWITCH TO RIGHT JUSTIFY 

                   Selects the right justify mode for all text to follow. Alternate 
                   choices are  C  for center,  F  for fill, and  L  for left.

U thru  Z                  MACRO COMMANDS

          When used in a Gonzo string, executes your predefined
          Umacro through Zmacro commands at actual print time.

          Macros are particularly useful for indenting and outdenting titles
          while changing their fonts and sizes. These usually will end up
          document specific. And defined in the document header. 

          There are six other macros of lower case a thru f.
          More are easily added.

          Commands are case sensitive and self-delimiting. 
          The macros must not disturb stack values!

Gonzo Text Justification Commands

There are a few service routines built into the Gonzo text justification. These are 
normally used directly as PostScript commands, rather than being embedded 
into strings for later evaluation. 

Here are some of the more common or more useful text variables and procs…

— 79.10 —



-xpos- -ypos- (text string) cc        CALLOUT CENTER JUSTIFY
   
         Center justifies a text string on the -xpos- value, starting with
         a vertical text baseline of -ypos-.  Normally increments downward
         as -yinc- and is evaluated by colcheck. Does NOT respond to
         txtwide. This allows wider titles than text columns. 

         Use internal \n or actual newline chars for multiple lines.  

-xpos- -ypos- (text string) cf        CALLOUT FILL JUSTIFY
   
         Fill justifies a text string on the left -xpos- value, starting with
         a vertical text baseline of -ypos-.  Normally increments downward
         as -yinc- and is evaluated by colcheck. Width of flush column is
         set by txtwide.

-xpos- -ypos- (text string) cl        CALLOUT LEFT JUSTIFY
   
         Left justifies a text string on the left -xpos- value, starting with
         a vertical text baseline of -ypos-.  Normally increments downward
         as -yinc- and is evaluated by colcheck. Width of ragged right
         column is maximum set by txtwide.

 /colcheck {custom user proc} store        COLUMN TESTER FOR PAGE LAYOUT

         colcheck is the crucial link between the Gonzo justification procs 
         and  any user defined custom page layout or formatting code. 

         Normally, colcheck will attempt to start a new line that is yinc 
         below the previous one. If ybot is negative, then a custom action 
         is taken to move on to the next column or the next page.
 
         The user normally places their colcheck code early in their
         program but after the Gonzo procs are installed and run.

         A custom colcheck routine will normally adjust xpos and ypos
         to go to the next column, or will do a showpage and a setup as
         needed for the following page.

-xpos- -ypos- (text string) cr        CALLOUT RIGHT JUSTIFY
   
         Right justifies a text string on the right -xpos- value, starting with
         a vertical text baseline of -ypos-.  Normally increments downward
         as -yinc- and is evaluated by colcheck. Width of ragged left
         column is maximum set by txtwide.

— 79.11 —



/cstretch 0.15 store        SET GLOBAL CHARACTER KERNING

         Adds a small amount of white space to each and every character.
         Useful to "lighten" text or to prevent collisions on very small
         point sizes. Global space kerning is separately set with sstretch.

         A little of this goes a long way, except for intentional special
         effects. Use 0.1 or 0.15 for normal text or 0.01 or 0.015 when
         you are on a 10X grid.

 /fname /family 10 gonzofont        DEFINE FONT FOR GONZO USE
       ~ or ~
 /fname /family [ wide lean climb high xshift yshift] gonzofont 

         Defines and creates fonts for internal Gonzo use. fname is 
         typically font0 through font-. /family is the normal exact 
         PostScript font name, such as /Helvetica. 

         In the first instance, one numeric sets the point size. Points can 
         be fractional such as 9.557 points or microsized if desired.

         In the second instance, the full font array is used to set the font 
         characteristics. The first value is the width of the font. The 
         second value is the amount of font lean and is normally used to 
         create italic effects. The third value is the amount of font climb 
         and is normally reserved for rotations, isometric, or any other 
         distortions. The fourth value is the height of the font.

         The fifth value is the amount of horizontal offset of the font, 
         and almost always will remain at zero. The sixth value is the 
         amount of vertical offset of the font. This is enormously useful 
         when creating superscripts or subscripts.

         Note that gonzofont only creates a Gonzo font. The font 
         must be separately activated. Perhaps by an immediate font1
         or by embedding a  0 in the string currently being justified. 

 (list string) cck        KEYSTONE JUSTIFY
 (list string) clk
 (list string) crk

        Attempts to do a keystone justify by "unifying" the progressive 
        widths in a sequential list. Per this example.

        cck does a centered keystone. clk will do a flush left keystone.
        clr does a flush right keystone. The relative lengths of the early

— 79.12 —

http://www.tinaja.com/glib/muse131.pdf


        list entries versus the later ones determines whether the keystone 
        will be fatter at the top or bottom. Considerable adjustment of
        the text line kerning may be needed to get decent results.

/lastlinestretch 0.2 store        LIGHTEN LAST FJ PARAGRAPH LINE

        A typical line in a fill justified paragraph will normally be 
        stretched somewhat. If the final line is not stretched, it may 
        appear "too dark". This somewhat arcane adjustment stretches 
        final fill justified paragraph lines that are less than 80 
        percent of maximum. Use a value of 0.0 to defeat.

-xpos- -ypos- (text string) mj        MENU JUSTIFY

        Does a "menu justify" by replacing multiple spaces with constant
        pitch dots.  Not included in this version, but is found here.

 [{proc1}{proc2}...{procn}]       THE PRINTLIST

        Fancy text justification is inherently a two step process. Each line
        first needs analyzed to find out what is needed in the way of font
        changes, kerning, stretches, and such. Each and every internally
        consistent element is then placed into a printlist for a sequential
        forall evaluation at print time. 

        Many embedded commands will automatically be deferred till  
        print time. However, any special effects ( such as making one  
        word red ) that are defined as PostScript procs may execute
        immediately instead of at the  deferred print time. 

        We will see how to insert new commands into the printlist below.
        The magic incantation you will need is printlist exch 3 index 
        exch put exch 1 add exch. 

/tabs [10 20 30 40] store       THE TAB LIST

        Defines the position of simple tabbing used in the left justify 
        modes. A single  t moves you absolutely to the next tab
        value. A double t t moves you absolutely to the second tab
        value, and so on. Tab values need not be sequential. 
   
/txtwide 43 store       SET JUSTIFICATION TEXT WIDTH

        Sets the maximum column width of all justify modes except cc.

— 79.13 —

http://www.tinaja.com/post01.asp#begstuff


/cmacro (znhL7) stringmacro def       STRINGMACRO 
       
        A convenience tool to aid in macro building. Executes every
        character in the string as an individual embedded command.

        Ferinstance, in the above title positioning macro, (z) defeats
        any paragraph margins, (n) prevents starting a title at the
        very bottom of the screen or page, (h) does a half linefeed
        upwards to improve ledding, (L) switches to a left justify,
        and (7) picks font7. Other PostScript procs can precede or
        follow stringmacro use.

/sstretch 0.15 store        SET GLOBAL SPACE KERNING

         Adds a small amount of white space to each and every space.
         Useful to "lighten" text or to prevent collisions on very small
         sizes. Global character kerning is separately set with cstretch.

         A little of this goes a long way, except for intentional special
         effects. Use 0.1 or 0.15 for normal text or 0.01 or 0.015 when
         youare on a 10X grid.

-xpos- -ypos- (data string) cst        SUPER TABBING

        Does an exotic "supertabbing" where individual column entries 
        can have their own fonts, their own justifications, and their 
        own special effects. Any occurrance of two or more sequential 
        spaces in the data string is treated as a "move to next column" 
        tab command. A stab array sets each column’s values.

        Not included in this version, but is found here.

/xpos 45 store                    SET TEXT HORIZONTAL POSITION

       xpos is normally used automatically to set the start of
       a text line. It may also be preset or manually overridden.

/ybot 0 store                    SET COLUMN BOTTOM LIMIT

       ybot is normally used automatically to set the bottom of page
       trip point for a new column or page move. This may also be
       preset or manually overridden.

/yinc 10 store                    SET TEXT LINE VERTICAL SPACING

       yinc is normally used automatically to set the ledding between
       text lines. It may also be set or overridden. 

— 79.14 —

http://www.tinaja.com/post01.asp#begstuff


/ypos 45 store                    SET TEXT VERTCAL POSITION

       ypos is normally used automatically to set the vertical
       position of a text line. It may also be preset or rewritten.

Additional Gonzo Text Justification Variables

Most of the other variables used in Gonzo text justification are somewhat 
self-explanatory. Here is a summary of many of these commands…

/altescapechar 124 def     % alternate "escape" key ( )
/dropflag false def        % use a drop cap?
/dropcount 3 def           % drop cap lines indented
/dropindent 40 def         % drop cap width reserved
/escapechar 27 def         % original "escape" key
/hangflag true def         % allow hanging punctuation?  
/hangfract 0.6 def         % hung punctuation hang amount
/justifylastline false def % fill justify last paragraph line?
/justx (justL) def         % running justification mode
/kern 1 def                % default individual kern amount
/oktoadvance true def      % don’t go to next line if false
/oktoprint true def        % print suppression flag 
/overstrikechar (—) def % overstrike character
/overstrikeht 5.5 def      % overstrike vertical shift
/pm 10 def                 % normal paragraph indent
/rslashchar 92 def         % "reverse slash" key -alterable-
/rslashok true def         % allow reverse slash processing?
/stringmode false def      % string or currentfile source?
/spacecharratio 6 def      % fj ratio of space to char stretch
/sstretch -0.3 def         % minimum space kerning 
/txtwide 350 def           % width of column
/ypara 0 def               % extra paragraph end v space
/ybot -9999 def            % default bottom reference

Deferring Execution Until Print Time

When setting fancy text, Gonzo normally does a whole line at a time. To do this, 
there is a current Gonzo printlist. The printlist is an array of executable procs that
are done in strict sequential order as a forall loop. 

Each proc typically might be a group of words having the same font, point size, 
and weight. Several procs might be needed per line if there are size, kerning, 
italic, bold, or special effect changes in the middle of the line.

— 79.15 —



The exact current xpos position on the line may not be known ahead of time! 
Especially with a fill justify. And its exact position may depend highly on what has 
already been put down.

There are all sorts of sneaky and powerful things you can do by inserting an 
additional proc or two inside your printlist. For instance, you might want to make
one word red. Or you might like to place an emphasis box or fancy graphics 
underneath a few words.

Or, most importantly, you might want to set an "action block" or a PDFMarking 
Acrobat ANN link underneath a url. One that automatically tracks the printed url
name and length. Regardless of where on the line the url text is or how much 
post editing is done. And needing no later manual intervention.

When creating a Gonzo text proc, a pointer to the last used printlist entry starts 
off as the second stack element. It becomes the third stack element when you put
your new deferred proc on the stack.

Here is the general method of inserting a top-of-stack proc into your printlist....

    1. Create an executable (but NOT executing!) array. 
        Then make the array executable.

    2. Add this magic command sequence…

              printlist exch 3 index exch       % stuff into printlist
              put exch 1 add exch               % incrementlist count  

What this does is take your top-of-stack proc, adds it as the newest array element 
to your printlist, and then increments and properly replaces the printlist pointer.

Here is how you would make one word red and the rest of the line black again...

Place this code before your text strings...

          /setred {mark 1 0 0 /setrgbcolor cvx ] cvx printlist 
           exch 3 index exch put exch 1 add exch} store

         /setblack {mark 0 0 0 /setrgbcolor cvx ] cvx printlist 
           exch 3 index exch put exch 1 add exch} store

And use it like this…

         100 200 (This /setred word /setblack  is red.) cl

Note that everything in a PostScript array executes immediately. If you want to 
create any PostScript proc that executes later rather than immediately, you have 

— 79.16 —

http://www.tinaja.com/post01.asp


to use a roundabout generation method. You thus have to use an indirect 
approach of /setrgbcolor cvx (which defers ) compared to setrgbcolor (which 
does not ). 

Yes, we could also have done our red word by defining a pair of our twelve macro
commands. And this route would be self-deferring and self-delimiting without any
printlist hassles. But there are many advantages to space delimited and named 
PostScript procs that are printlist insertable. Especially when, say, lots and lots of 
url’s or exotic (Why did I do that? ) commands may be involved.

Speaking of which, a much fancier example that does auto-positioning and 
auto-tracking for Acrobat web url’s appears here. Autotracking emphasis boxes 
can use similar techniques.

Gonzoing Gonzo

A very few characters in Gonzo are usually highly reserved. So showing them (as 
is needed in this Gonzo tutorial ) can be tricky.

For instance, a reverse slash inside a PostScript string really has to be shown as a  
double reverse slash. This gets important in a hurry when trying to write or read a
host diskfile. For a printed or screen display, it will take two Gonzo slashes to 
equal one PostScript slash and two PostScript slashes to pass one real slash on to 
Windows or whatever. To show double reverse slashes on screen, eight reverse 
slashes are needed in the original Gonzo string!

Showing a vertical bar can be tricky if this is also how we identify embedded 
commands. Two workarounds are to redefine rslashcar. Or (as we’ve done here),
simply draw the vertical slash as an embedded PostScript graphic line.  

Page Layouts

Usually, you will want to combine fancier page layout code with all of these 
fundamental justification procs. This can be done by adding new commands early
in your document but after Gonzo is first run. Detailed examples can be found in 
the sourcecode for this GuruGram, or by studying most any of the .PSL source 
codes found here, here, and elsewhere on my website.

Now for the Rest of Gonzo

The precision justification procs we just looked at are only a small portion of the   
Gonzo Utilities. Here are some of the many other available commands, arranged 
by group…

(A) SERVICE UTILITIES —

These service utilities greatly simply a wide range of common PostScript tasks…

-xside- -hypotenuse- acos —  Finds trig inverse cosine

— 79.17 —

http://www.tinaja.com/glib/autourl.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/gonzotut.psl
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/muse01.asp
http://www.tinaja.com
http://www.tinaja.com/post01.asp#gonzo


-xside- -hypotenuse- asin —  Finds trig inverse sine

backwards                       Prints backwards

bestgray                        Best gray for lores printers

blackflash                      Drum conditioner for older printers

-count- copies                  Set number of print copies

feetfirst                       Eject print feet first

flushends                        Flush path ends

flushjoins                       Flush path joins

GEniejul                             6-digit to Julian date converter

-xstart- -ystart- -yend- -linewidth- hrule                   fixed horizontal rule

inch                                  Inches

indiagray                             India ink wash at 300 DPI

landscape                             Landscape format of 8-1/2 x 11

listfonts                             List installed fonts

longjob                               Lengthen job timeout

manual                                Select manual feed on printer

 (string1) (string2) mergestr         Merge strings to stack top

 negative                             Negative printing

 outline                              Find character path

 pi                                   As in 3.1415926

 pixel                                Points to 300 DP pixels
 
 positive                             Restore positive printing

 printfonts                           Prints currently installed fonts

  -max+1- random                          Random integer 0 to max

report                                Report top of stack to host

reprogray                             Reprogray at 300 DPI

-num- romnum                          Convert 0-99 num to Roman string

roundends                        Round path ends

roundjoins                       Round path joins

— 79.18 —



-rad- [x1y1x2y2…xnyn] roundpath              Rounds path except ends  

-xpos- -ypos- -xwid- -yhgt- -crad- roundbox                 Build a rounded box     

snoop                                Activates superexec

stockends                        Normal (extended) path ends

stockjoins                       Normal (extended) path joins

-delayvalue- stall                 Stall at roughly 1000 per second

stopwatchon                      Reset and start stopwatch

stopwatchoff                      Stop and report stopwatch

-#repts- -spacing-(char)stringdown             South character repeats       

-#repts- -spacing-(char)stringleft             West character repeats   

-#repts- -spacing-(char)stringright            East character repeats       

-#repts- -spacing-(char)stringup               North character repeats   

[wd1gr1wd2gr2…wdngrn] superstroke                  Mulltiple full strokes

[wd1gr1…wdngrn] superinstidestroke               Mulltiple clipped strokes

-angle- tan                                      Find tangent of angle in degrees

tray                                      Turn off printer manual feed

-xstart- -ystart- -yend- -linewidth- vrule                   fixed vertical rule

white                                     Print in white

(string) width                                     Find width of string                                  

(B) LAYOUT GRIDS —

Much of the early grid layout code was aimed at providing exceptional graphics 
quality on first generation 300 DPI printers. While some of this portion of Gonzo 
is dated, these two commands (and their internal support procs ) remain useful…

-xposn- -yposn- -scale- setgrid        Create a scaled layout grid

Working on a magnified grid can greatly simplify layouts. You are dealing with 
smaller numbers whose relationships are more intuitive and more obvious. A 
command of 50 60 10 setgrid moves you to a point 50 points right and 60 points
up from the lower left page corner. This establishes the 0,0 or "home" position of
your grid. The invisible grid is scaled 10X and extends infinitely in all directions. 

It is important to define such values as cstretch and sstretch well after you create
the grid. Defined font sizes should also be later and proportionally smaller. 

— 79.19 —



Use of setgrid leaves an "open" gsave graphics state which may need closed later.

-#ofxblocks- -#ofyblocks- showgrid             Show a portion of the grid

This command can be used for layout visualization or as a final design element of 
a graph or chart. By changeable default, there is presently a slight emphasis of 
each fifth grid line and a stronger emphasis of each tenth grid line. The easiest 
way to turn a grid on or off is to comment the above line. you can do this by 
placing or removing a "%" at its start.

A detailed example of using a layout grid to create book covers appears here.

(C) ILLUSTRATION AIDES —

The whole point of the Gonzo Utilities is to give you absolute and total control 
of your design and layout projects. Very often resulting in code that yields much 
higher quality in files that are exceptionally short and very fast running. Yes, 
point-by-point entry of graphics instructions can get rather tedious. But this 
approach very often can give you stunning results not easily available elsewhere.

Many of these illustration aides are simply convenience operators that require far 
fewer keystrokes than "raw" PostScript. You can easily further expand and 
customize them for your own needs…

-xpos- -ypos- mt                                absolute moveto shorthand
-xpos- -ypos- rm                                relative moveto shorthand
-xpos- -ypos- rl                                relative lineto shorthand

These routines set linewidths…

 line1                                        A "normal" grid line
 line2                                        A "bold" grid line
 line3                                        A "very heavy" grid line

These routines draw a line…

-distance- d                                relative line to the south
-distance- l                                relative line to the west
-distance- l+                               relative line to the northwest
-distance- l-                               relative line to the southwest
-distance- r                                relative line to the east
-distance- r+                               relative line to the northeast
-distance- r-                               relative line to the southeast
-distance- u-                               relative line to the north

These routines append to a path…

-distance- pd                                relative path to the south
-distance- pl                                relative path to the west

— 79.20 —

http://www.tinaja.com/glib/bookcvr1.pdf


-distance- pl+                               relative path to the northwest
-distance- pl-                               relative path to the southwest
-distance- pr                                relative path  to the east
-distance- pr+                               relative path to the northeast
-distance- pr-                               relative path  to the southeast
-distance- pu-                               relative path  to the north

These routines draw a line while "erasing" any lines that are crossed. This is quite 
useful in an electronic schematic for "lines crossing but not connected". …

-distance- dx                                erase & draw to the south
-distance- lx                                erase & draw to the west
-distance- rx                                erase & draw to the east
-distance- ux                                erase & draw to the north

If you really want your electrical lines connected, you can add a dot…

-xpos- -ypos- mdot                               dot two crossed lines

Here’s some circles and some arrows…

-xpos- -ypos- darrow                        arrow points south
-xpos- -ypos- larrow                        arrow points west
-xpos- -ypos- rarrow                        arrow points east
-xpos- -ypos- uarrow                        arrow points north

-xpos- -ypos- circ1                        small circle
-xpos- -ypos- circ2                        terminal sized circle
-xpos- -ypos- circ3                        LED sized circle
-xpos- -ypos- circ4                        test point sized circle

A pair of very versatile repeat utilities. …

[{proc} -spacing- -#trips-] xrpt                       Repeat proc horizontally
[{proc} -spacing- -#trips-] yrpt                       Repeat proc vertically

Finally, a "liquid paper" path whiteout…

whitefill                               erase anything under icon

(D) ELECTRONIC SYMBOLS —

These electronic symbols offer significantly higher quality than is found in most 
schematic drawing packages. They are one example of the many possibilities that 
positionable "opaque blob icons on strings" offer. Note that you can slide the 
wires "under" the icons simply by placing them earlier in your code…

micro                  Show /Symbol font3 mu for capacitors
ohms                   Show /Symbol font3 Omega for resistors

-xpos- -ypos- tstpt    Draw electronic test point opaque circle

— 79.21 —



-xpos- -ypos- rinverter    Right facing logic inverter
-xpos- -ypos- linverter    Left facing logic inverter

-xpos- -ypos- hresistor    Horizontal resistor
-xpos- -ypos- vresistor    Vertical resistor
-xpos- -ypos- lpot         Vertical potentiometer

-xpos- -ypos- vcap         Vertical capacitor
-xpos- -ypos- uvcap        Inverted vertical capacitor
-xpos- -ypos- hcap         horizontal capacitor

-xpos- -ypos- schmitt      Schmitt trigger hysteresis symbol

-xpos- -ypos- dpdt         Double pole double throw switch
-xpos- -ypos- spdt         Single pole double throw switch

-xpos- -ypos- diode        Diode pointing east
-xpos- -ypos- udiode       Diode pointing north
-xpos- -ypos- ddiode       Diode pointing south
-xpos- -ypos- led          LED diode pointing south

-xpos- -ypos- negpulse     Negative going pulse waveform
-xpos- -ypos- pospulse     Positive going pulse waveform

-xpos- -ypos- 5vdc         Vertical stub and terminal

-xpos- -ypos- hxtal        Horizontal crystal

-xpos- -ypos- sensor       Sensor

ground        Normal south pointing ground
uground       North pointing ground
lground       West pointing ground
rground       East pointing ground

-xpos- -ypos- edgecon       Edge connector pin

-xpos- -ypos- cell       One vertical battery cell

-xpos- -ypos- -#loops- winding           Horizontal inductor or winding
-xpos- -ypos- -#loops- vwinding          Vertical primary winding
-xpos- -ypos- -#loops- vrwinding         Vertical secondary winding

-xpos- -ypos- phonejack     Full size phone jack
-xpos- -ypos- lilphonejack     Smaller phone jack

-xpos- -ypos- varistor     Varistor

-xpos- -ypos- piezo     Piezo transducer

-xpos- -ypos- pctab     Printed circuit terminal

— 79.22 —



-xpos- -ypos- npn     East facing NPN transistor
-xpos- -ypos- npn     West facing NPN transistor
-xpos- -ypos- pnp     East facing PNP transistor
-xpos- -ypos- pnp     West facing PNP transistor

Many more electronic symbols are easily added. Hundreds of improved ( for color 
options ) and more specialized examples may be found by viewing the .PSL source
code files here.

(E) THE DIPDRAW PROC —

In general, I’ve been hesitant to upgrade portions of the Gonzo Utilities. Based 
on "iffen it ain’t broke, don’t fix it". Thus, ongoing patches and add-on mods are 
the norm, compared to core revisions.

The dipdraw was an example of an ultra fancy programmable icon whose use 
kept recurring in my electronics stories…

1 2 3 4 5 6 7 8 9

18 17 16 15 14 13 12 11 10

IN2 IN3 IN4 IN5 GND DA DB DC SYNC

IN1 IN0 XIN IN6 +5V DA DB DC NC

MS28D-05X

Here is what the calling code looks like…

                14 6 moveto
                18
                (MS28D-05X)
                (IN1 IN0 XIN IN6 +5V /DA /DB /DC NC)
                (IN2 IN3 IN4 IN5 GND DA DB DC SYNC)
                dipdraw

Any forward slashes are used to force a complement bar. An improved colorized 
version of the Dipdraw code can be found in the source code for this GuruGram .
Actual chip details can be found here .

(F) STEP AND REPEATS —

Quite a few very useful real world products need a step and repeat capability. In 
which more than one item gets imaged per page. With or without sequential 
numbering or custom data base access. Examples include business cards, tickets, 
address labels, badges, bumperstickers, and great heaping bunches more.

— 79.23 —

http://www.tinaja.com/muse01.asp
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/glib/gonzotut.psl
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/magsn01.asp


A very versatile stepandrepeat capability is built into the Gonzo Utilities. Two 
new elements are needed to use this proc. The first is a named and predefined 9 
entry array that goes in a stepnrptparams dictionary. The second is a predefined  
repeatproc that contains the artwork code for one of the items being repeated. 

The usual access is…

                     /repeatproc_name stepandrepeat 

Nineteen repeat patterns have already been preprogrammed into the stock Gonzo
stepnrptparams dictionary…

        /admitonetick     45 tickets
        /babybumper       20 very small bumperstickers
        /badgeaminit      6 badges 
        /bigbumpstick     3 bumperstickers
        /buscard          12 business cards
        /busenvelope      1 business envelope
        /eightlabel       1/8 page 2x4 labels
        /fulllandpage     One entire landscape page
        /fullportpage     One entire portrait page
        /lilbumpstick     5 medium blumperstickers
        /quadsplit        1/4 page 2x2 labels
        /readerserv       300 reader service numbers
        /shiplabel        4 custom labels
        /sixlabel         1/6 page 2x3 labels
        /stdplabel        11 stock data processing labels
        /tenlabel         1/10 page2x5
        /videospline      13 VHS cassette splines
        /3.5disklabel     6 disk labels 3.5 inch
        /5.25disklabel    7 disk labels 5.25 inch

Many detailed step-and-repeat use examples are found here. For sequential 
numbering, existing startnum and runnum variables can be used. These same or 
similar numbers can extract names and addresses from an externally generated 
data array. Such an array can be built into your code or else run just like you did 
the Gonzo Utilities.

Some step-and-repeat projects will have to be carefully matched to the stock 
being printed. Especially when shear or fold points are built into the material. One
useful source of such forms is Blanks USA.

— 79.24 —

http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp#begstuff
http://www.tinaja.com/post01.asp#gonzo
http://www.blanksusa.com


If you wish to add or modify your own repeat pattern data as a stepnrptparams 
dictionary entry, the needed nine array values are…

    /myrepeatdata [

           #hrepeats     % number of horizontal repeats 
           #vrepeats     % number of vertical repeats 
           hspacing      % proc to proc horizontal spacing
           vspacing      % proc to proc vertical spacing
           hstart        % first proc horizontal offset
           vstart        % first proc vertical offset
           ticklength    % registration tick length if used
           useticks      % true-false registration tick flag
           uselandscape  % true-false landscape orientation

                           ] store

   

(G) CURVETRACING —

High quality smooth continuous curves are crucial for typography, animation, and
many similar graphical tasks. These are normally created by using cubic splines, 
often by using the PostScript curveto and rcurveto operators. Some detailed 
expositions of the underlying math appear in our cubic spline library.

Here is our Puss de Resistance done entirely in manually entered cubic splines… 

— 79.25 —

http://www.tinaja.com/cubic01.asp


Getting the ends of the continuing custom splines to meet and match is both 
non-trivial and tricky. The original Gonzo Utilities provided a rather tedious 
approach to quality spline generation. In which you entered the position and the 
angle of each chosen end point as three data values…

   [ x1 y1 ang1  x2 y2 ang2 … xn yn angn ] curvetrace 

Each selected point above a three point minimum had its horizontal position, its 
vertical position, and its slope angle entered into your array. Thus giving you 
total control of appearance at the spline joints. x1=0 and y1=0 appends path.

The actual splines used were intentionally somewhat weaker than a theoretical 
optimum. The quality of your results are highly dependent on how accurately you
entered your position and angle information. And upon how far you tried to go 
with each single spline. And, of course, how patient you were with manual data 
entry of more complex or multiple paths.

An additional variable called the tension gave you an additional "smoothness" 
control. With the usual "best" tension being somewhere around 2.8. Higher 
tensions gave you "straighter" curves between end points, while lower ones 
became moderately or extensively "loopy". 

An optional point showing showtick true-false flag was included for debugging.

A major change and improvement in the Gonzo curvetracing utilities was made    
here.  You can now optionally enter angle values of 999 for internal points. The 
code will make an amazingly sophisticated "guess" as to your best angle each 
time. And thus eliminating much (but certainly not all ) of the tedium.

A demo of the new curvetracing code appears here   .

This "guess angle" algorithm is based on taking three sequential points and then 
attempting to temporarily draw a circle through them. The slope at the midpoint
is often a good and possibly optimally correct fit for your curve of interest.  

(H) CIRCULAR ARC JUSTIFY —

An Arc Justify routine sets text along a circular path. This is useful for labels, for 
logos, badges and for large names on the back of jackets or T-shirts. A fairly fancy
arc justify routine is included in the Gonzo Utilities. For top appearance, both 
local and global kerning is supported.

Here is how you activate a Gonzo arc justify…

       -xpos- -ypos- radius (your message) karcjustify 

— 79.26 —

http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/psutils/curvetr2.psl
http://www.tinaja.com/psutils/curvetr2.pdf
http://www.tinaja.com/post01.asp#gonzo


A positive radius value causes the message to appear clockwise across the top. A 
negative radius value causes the message to appear counterclockwise across the 
bottom. In either case, the radius will be to the baseline of the text. Thus, your    
upper and lower radius will normally differ by the average character height. 

Upper and lower messages are normally centered along a vertical axis. Any 
repositioning can be done by adding leading or trailing spaces. Since each and 
every character is separately positioned, the earlier and fancier Gonzo Justification 
features are not available for an arc justify.

A predefined arckern variable will add positive kerning to each and every letter 
and space. A custom customkern variable will create a (usually negative) space 
every time a customkernchar is called. Typically, arckern might be +1, your 
customkern -1, and customkernchar a (~) string. To reduce the space between 
two printing characters, you place a "~" between them.

Several detailed examples of arc justify projects appear here.

An Important Update

Starting with Acrobat 8.1, the ability to read and write disk files has been             
disabled as a default. To use our Gonzo utilities, this read and write ability           
must be restored.

In Windows, the Distiller file read and write ability is restored by using a 
command line run command of…

                                  acrodist  -F

The read and write enabling will remain active so long as an executable version of
Distiller is on or under the desktop. To use, you simply drag and drop your Gonzo
routines into this active instance of Distiller. 

For More Help

Similar tutorials and additional support materials are found on our PostScript and 
our GurGram library pages. As always, Custom Consulting is available on a cash 
and carry or contract basis. As are seminars. 

For details, you can email don@tinaja.com. Or call (928) 428-4073.

— 79.27 —

http://www.tinaja.com/post01.asp#begstuff
http://www.adobe.com/devnet/acrobat/downloads/Acrobat_SDK_readme.html
http://www.adobe.com/devnet/acrobat/downloads/Acrobat_SDK_readme.html
http://www.tinaja.com/post01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/info01.asp
mailto:don@tinaja.com

