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Gaussian Elimination is the process of initially playing around with some array 
values ahead to time to greatly simplify the final solution to a large class of "nxn" 
linear equations. While a Jordan Further Processing often can greatly simplify any
automated computer programming.

Presented here is a tutorial on Gauss-Jordan theory. Along with some remarkably 
simple and powerful JavaScript routines for your own Gauss-Jordan solutions. 
Applications include everything from Digital Filters to Magic Sinewaves. 

Actual working code can be extracted from here.

Consider five linear equations in five unknowns...

                       A0*v + B0*w + C0*x +D0*y + E0*z = K0
                       A1*v + B1*w + C1*x +D1*y + E1*z = K1
                       A2*v + B2*w + C2*x +D2*y + E2*z = K2
                       A3*v + B3*w + C3*x +D3*y + E3*z = K3
                       A4*v + B4*w + C4*x +D4*y + E4*z = K4

While all sorts of solution methods exist, we seek one that is computationally 
efficient. If we dink around with some manipulations ahead of time, we can 
eventually end up with a solution that will be obvious by inspection!

Arrange the coefficients into a group of arrays...

                                   [ A0 B0 C0 D0 E0 K0 ] 
                                   [ A1 B1 C1 D1 E1 K1 ] 
                                   [ A2 B2 C2 D2 E2 K2 ]
                                   [ A3 B3 C3 D3 E3 K3 ] 
                                   [ A4 B4 C4 D4 E4 K4 ]  

The rules for our "Gauss" part of rearrangement are that any row can be scaled by
any constant term by term without changing the results. And that any row can 
be subtracted from any other row term by term and substituted. Again without
changing the results.
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In interests of sanity, let "~" be any coefficient that resulted from any and all 
previous manipulation. Scale the top row by dividing by its initial value...

                                   [  1   ~    ~    ~    ~   ~  ]
                                   [ A1 B1 C1 D1 E1 K1 ] 
                                   [ A2 B2 C2 D2 E2 K2 ]
                                   [ A3 B3 C3 D3 E3 K3 ] 
                                   [ A4 B4 C4 D4 E4 K4 ] 

Scale the top row by A1 and subtract it from the next row down and replacing...

                                   [  1   ~    ~    ~    ~   ~  ]
                                   [  0   ~    ~    ~    ~   ~  ]
                                   [ A2 B2 C2 D2 E2 K2 ]
                                   [ A3 B3 C3 D3 E3 K3 ] 
                                   [ A4 B4 C4 D4 E4 K4 ] 

Similarly, scale the top row by A2 and subtract it from the middle row. Then scale
by A3 for row 3 and A4 for row4...

                                   [  1   ~    ~    ~    ~   ~  ]
                                   [  0   ~    ~    ~    ~   ~  ]
                                   [  0   ~    ~    ~    ~   ~  ]
                                   [  0   ~    ~    ~    ~   ~  ]
                                   [  0   ~    ~    ~    ~   ~  ]

Now, scale the second row down by its first nonzero coefficient...

                                   [  1   ~    ~    ~    ~   ~  ]
                                   [  0   1    ~    ~    ~   ~  ]
                                   [  0   ~    ~    ~    ~   ~  ]
                                   [  0   ~    ~    ~    ~   ~  ]
                                   [  0   ~    ~    ~    ~   ~  ]

Next, force zeros in the second column the same as we did with the first, but 
using the second row for subtraction and substitution...

                                   [  1   ~    ~    ~    ~   ~  ]
                                   [  0   1    ~    ~    ~   ~  ]
                                   [  0   0    ~    ~    ~   ~  ]
                                   [  0   0    ~    ~    ~   ~  ]
                                   [  0   0    ~    ~    ~   ~  ]

Keep working your way through the array, this time scaling the third row down 
by its first nonzero term and then using scaled subtractions to zero out everything
below in the same column.

Eventually, you should end up with…
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                                   [  1   ~    ~    ~    ~   ~  ]
                                   [  0   1    ~    ~    ~   ~  ]
                                   [  0   0    1    ~    ~   ~  ]
                                   [  0   0    0    1    ~   ~  ]
                                   [  0   0    0    0    1   ~  ]

This completes the Gauss part of the process. The lower right squiggle will be z 
by inspection! 

Relabel the above array…

                                [  1    c01  c02  c03  c04  j05 ]
                                [  0     1    c12  c13  c14  j15 ]
                                [  0     0      1   c23   c24  j25 ]
                                [  0     0      0     1    c34   j35 ]
                                [  0     0      0     0      1      z   ]

where cxx is the row and column coefficient for the left side equation terms, and  
jxx is the similar row and column coefficient for the right side equation term.

The traditional way to solve this was by back substitution. You can start off with  
y = j35 - z*c34 and so on. And then work your way up a row at a time, making 
more complex calculations until you have v through z all solved.

The Jordan approach starts off the same way, but it works one column at a time,
greatly simplifying computer programming. Especially when more than one n x n 
equation set size is to be accommodated. The new rule is that any constant can   
be subtracted from one term in the left side of the equation as long as that     
same constant get subtracted from the right side of the equation.

Subtract z*c34 from row 4...

                                [  1    c01  c02  c03  c04  j05 ]
                                [  0     1    c12  c13  c14  j15 ]
                                [  0     0      1   c23   c24  j25 ]
                                [  0     0      0     1      0      y   ]
                                [  0     0      0     0      1      z   ]

So far, this is the same as the usual back substitution. We now can observe y by 
inspection The difference with Jordan is to continue by working columns instead 
of rows. Modify the rows by subtracting z*c24, z*c14, and z*c04 to get…

                                [  1    c01  c02  c03    0     ~   ]
                                [  0     1    c12  c13   0      ~   ]
                                [  0     0      1   c23    0      ~   ]
                                [  0     0      0     1      0      y   ]
                                [  0     0      0     0      1      z   ]
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Next, modify column three by subtracting y*c23, y*c13, and y*c03. And then 
column two by subtracting x*c12 and x*c02. And finally column one by 
subtracting w*c01 to get…

                                     [  1    0    0    0    0    v ]
                                     [  0    1    0    0    0    w ]
                                     [  0    0    1    0    0    x ]
                                     [  0    0    0    1    0    y ]
                                     [  0    0    0    0    1    z ]

Your values v through z are now instantly readable by inspection!

Once again, the Jordan method takes just as many calculations as does a back 
substitution, but it greatly simplifies computation. In that loops do not have any 
multiple calculations or complicated cross-coefficients in them. This is especially 
handy when it comes to making the code n independent.

A Code Example

Here’s a JavaScript program that solves nxn linear equations. It is amazingly 
compact, offers 64 bit arithmetic, and works for most any sane value of n. But it 
does not trap any div0’s or handle wild coefficients. Per this main proc…

      function solveGaussJordan() {
         gjNsize = eqns.length ;
         for (var iii = 0; iii <=(gjNsize-1); iii++){
         normaLize ( eqns[iii],iii ) ;
             for (var jjj = iii; jjj <=(gjNsize-2); jjj++) {
             subScaled (eqns[iii],eqns[(jjj+1)],iii)} } ;
         normaLize ( eqns [(gjNsize-1)],(gjNsize-1) ) ;
         jorDanify () } ;

It needs these three support subs...

        function normaLize (bb,cc) { xx = bb[cc] ;
            for (var ii = 0; ii <= gjNsize; ii++)
                 { bb[ii] = (bb[ii]/xx) } } ;

 

        function subScaled (aa,bb,cc) { xx = bb[cc] ;
            for (var ii = cc; ii <=gjNsize; ii++)
                  { bb[ii] -= aa[ii] *xx } } ;
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       function jorDanify() {
            for (var i3 = (gjNsize-1); i3 >=1; i3--){
                 zz = eqns[i3][gjNsize] ;
                for (var i4 = (i3-1); i4 >=0 ; i4--)
                    eqns[i4][gjNsize] -= eqns [i4][i3]*zz
                    eqns[i4][i3] = 0 } } } ;

And here is how you would use it...

       eq0 = [ 4, 3, -2, 1 , 22 ]  eq1 = [ 2, 1, -2, 2,  9 ]
       eq2 = [ 1,-1, 1, 5 ,  8 ]   eq3 = [ 3, 1, 3, 1 , 22 ]

       eqns = [ eq0, eq1, eq2, eq3] ;
       solveGaussJordan () ;

eq0 represents 4w + 3x - 2y + z = 22. There is an implicit equals sign before the 
rightmost column.

Reals as well as integers can be used. Processing time increases sharply with 
increasing n. But is well under one second for n = 30x30. 

Returned via Gauss-Jordan elimination is ...

                 eq0 = [ 1, 0, 0, 0, w ]
                 eq1 = [ 0, 1, 0, 0, x ]
                 eq2 = [ 0, 0, 1, 0, y ]
                 eq3 = [ 0, 0, 0, 1, z ]

         ...and for the above example, w=4, x=3, y=2 and x=1.

For Additional Assistance

Similar tutorials and additional support materials are found on our PostScript, our
Math Stuff, our Magic Sinewave, and our GurGram library pages. 

As always, Custom Consulting is available on a cash and carry or contract basis. 
As are seminars. 

For details, you can email don@tinaja.com. Or call (928) 428-4073.
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