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After all these years, I still have troubles visualizing exactly what Maxwell’s         
Equations are and how they really work. So, I thought I’d dig back into an 
ancient fields book (Moon’s Field Theory for Engineers ferinstance) and see how 
far we could get by throwing some modern PostScript at the problem. And 
maybe end up with some fundamental field insights and some amazingly 
powerful results from some astonishingly simple math.

What is a field?

A field is some area (2D), volume (3D), epoch (3D+time), or other concept 
structure in which some measurable parameter assumes some values. More often 
than not, these values are physically defined, continuously variable, and capable 
of mathematic analysis. Examples might be the flow of liquid in a pipe; a sponge 
or concrete drying from the outside in; heat conduction; leakage through a dam; 
electric voltage and current; a magnetic field; or radio or light em radiation. 

At any point in the field the parameter of interest has a single measurable value 
called a scalar. Most fields are continuous meaning that adjacent measurable 
values are very close to each other. Although engineers love to draw all sorts of    
lines through fields, it is important to remember that…

       Most fields are in fact continuous.

       There are no such things as "field lines".

For instance, there is no way you can tell if a perfectly uniform magnetic field is 
stationary or rotating. If these lines existed, some of these might "cut" something 
else and be detectable. Try rotating one magnet with another for proof. Per this   
tutorial.

Some means is needed to locate the position of a point of interest in a field. This 
involves choice of a coordinate system. Examples of coordinate systems include
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Cartesian (x,y, z), cylindrical (r,θ, z), spherical (r,θ.φ), or any of a number of 
exotic transformations. The usual rules of a coordinate system are that there 
must be one variable for each dimension and that the variables must be made 
independent of each other, or orthogonal. You usually pick a coordinate system 
that gives you the easiest math solutions.

Another important rule…

      The coordinate system used for calculations
      does not affect the field in any manner.

There are two factors that uniquely determine the value of any point in any field 
at any time…

DIFFERENTIAL EQUATIONS— Rules for field value change.

BOUNDARY CONDITIONS— Unique field edge values.

Thus, the differential equations give you a general solution based upon the 
expected physical behavior, while the boundary conditions give you a specific 
solution. Examples of boundary conditions might include an impermeable pipe 
wall and its zero flow rate in any direction. Or a perfect electrical conductor that 
can have no voltage drop across itself.

A regular differential equation is simply an expression of what the rules for any   
change are. One very important differential equation is x = -d2x/dt2.

Which says "the value of x equals minus the rate of change of the rate of change 
of x, or minus the second derivative (or "slope of the slope") of x. One of its 
solutions is x = sin(t). And, of course, represents a steady state sinewave oscillator
or a lossless pendulum.

Differential equations can usually be solved in a number of ways or otherwise 
approximated. Anything that fits works. The derivative of a sine is a cosine, and 
the derivitive of a cosine is minus the sine, so minus the second derivative 
matches what you started out with, balancing and solving the equation.

Fields are typically changing differently in different directions or with time, so you
have to go to the more exotic partial differential equations. In which you are 
concerned only with how something changes in one particular direction or over 
time. A partial differential equation can be recognized by its "backwards six", as 
we will shortly see.

Any point in a field can only have one scalar value at any given time. This might 
represent the sum of several different activities, such as two or more signals and 
some background noise. 
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With fields, we are also likely to be very interested in how things are going to       
change as we leave any given point. We can thus associate a vector with a 
location in a field that points in the direction of maximum change and whose 
value equals that rate of change.

Such a vector is called a gradient… 

 
GRADIENT — The local maximum rate-of-change vector.

                     ∇ϕ =  
∂ϕ
∂x
     +  

∂ϕ
∂y
     +  

∂ϕ
∂z

The gradient at any field location will always "point" in the direction of the 
highest local rate of change. Its absolute value will be the square root of the sums
of the squares of the x, y, and (if 3D) z rates of change. Being a vector quantity, 
the orthogonal x, y, and z change rates apply only along their respective axes.

The term ∇ϕ  meaning "gradient of the field phi" is simply an equivalence or a       
convenience operator that greatly simplifies notation for us. One of the problems
in reading Maxwell is that convenience operators were not invented yet, so there 
is page upon page of detail tedium to muddle through.

There will always be a direction or a plane or whatever at precisely right angles to
any non-zero gradient that will represent a region of zero change. This might be 
called an equipotential or an isotherm or an isobar or some similar name.

A crucial field rule…

    Gradients and equipotentials are ALWAYS orthogonal.

Thus, in 2D space, if your gradient points north, there will be no local change in 
the east west direction. In 3D space, if your gradient points up, there will be no 
local change in the immediate NESW plane. Which is why you will often see a lot 
of those curvilinear squares in most field sketches. Whose corners always are 
supposed to meet at precisely 90 degrees.

Note in particular that…

Nothing moves or flows or transfers or changes ALONG any
equipotential. Changes only occur ACROSS an equipotential.

Nothing moves or flows or transfers or changes ACROSS any
gradient. Changes only occur ALONG a gradient.
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The Laplacian

Different physical properties will have differing rules for behavior of their fields. 
Very often these rules can be related to how fast the changes are allowed to be  
changing. When applicable, this property is called the Laplacian…

 
LAPLACIAN — The local rate of change of change vector.

                     ∇ 2ϕ =  
∂2ϕ
∂x2     +  

∂2ϕ
∂y2     +  

∂2ϕ
∂z2

As with the gradient, the ∇ 2ϕ is also a convenience operator that greatly simplifies
notation for us.

Again, the rules for the Laplacian determine the behavior and all of the            
physical properties of the field. A Laplacian of zero widely applies to most 
electrostatics and to steady state flow of incompressible fluids, heat, or electricity. 
A Laplacian equal to a constant is called Poisson’s Equation. A Laplacian equal to 
a time rate is called a Diffusion Equation. Finally, and most importantly, a 
Laplacian equal to a rate of rate gives us the pair of Maxwellian wave equations 
of electromagnetic radiation.

Let’s use a Laplacian of zero and see how far we can get resolving a rather 
complex field problem with it. We can start off by…  

Solving a Zero Laplacian Field

If an incompressible fluid is going to speed up in a chosen direction, it will 
simultaneously have to slow down in another. Because it is not allowed to "pile 
up" in any manner. Some intuitive thought or some rather simple differential 
math can lead us to this astonishingly simple rule…

     The value of every point in a zero Laplacian field is
     simply the average of four adjacent nearby points!

To solve a zero Laplacian field problem, make up a modest sized array of data 
points. Enter the boundary values in their appropriate positions, and then guess 
what the other values will be. Then replace each non-boundary value with the 
average of its four adjacent values. Repeat the process a few hundred or a few 
thousand times, and you will end up very near to a correct solution.

It turns out there is a proof that says this repeated averaging process will always
converge, although it will take many more repeats for bad guesses. It also turns 
out that the sequence of averaging does not matter all that much, and a newer 
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guess can be a mix of adjacent older and newer values. Because a zero Laplacian 
eventually must result.

Simply using zero as a bad guess everywhere works just fine and still computes 
acceptably fast. You can tell how many trips you need by monitoring all of the 
successive values of a chosen data point. When that point changes less than one 
in a million every few passes (or meets any other selected criteria), you are done.

If you want to, you can continue for even better accuracy. A differential is not a 
derivative except in the limit. If you have a two dimensional problem, you can 
double your array size horizontally and vertically by interpolating data points. 
Then re-average a few hundred times. Convergence will be a lot faster since you 
are starting with far better guesses. It is much faster to start with a crude array 
and then double up because far fewer total trips and many fewer calculations will 
be needed.

To add frosting to the lily or to gild the cake, a second doubling up can also be 
done. Which should get you very close to a perfect solution for all points in the 
field. As a further accuracy check, you can see how much any particular data 
point field value changes between the first and second doubling. The odds are 
overwhelming there will be no change.

And we’ve got a more than good enough solution without every going near 
hyperbolic trigonometry or anything remotely as fancy.

An Example 
All of which begs to get done using PostScript with its superb graphics and math 
capabilities. Let’s look at a fairly fancy example. We’ll just touch on the highlights 
here; you can find the detailed code in FIELDS01.PSL and its plot in FIELDS01.PDF.

Here is the situation… 

(x=0) (x=π)

φ=1000 sin(x ) volts

zero volts

ze
ro

 v
ol

ts

ze
ro

 v
ol

ts

Assume we have an open trough with perfectly conducting sides and bottom. 
One-half of a thousand volt sinewave is applied across the top by some means.
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Your problem is to accurately show the field and plot some of the gradients and 
equipotentials. We’ll start off with a two-dimensional array that is 30 arrays high 
by 61 array elements wide…

    /field [
  [ 0.0000 52.336 ... 998.63 1000.0 998.63 ... 52.336 0.0000 ]             
  [ 0.0000 0.0000 ... 0.0000 0.0000 0.0000 ... 0.0000 0.0000 ]  
  [ 0.0000 0.0000 ... 0.0000 0.0000 0.0000 ... 0.0000 0.0000 ]
                           ...                                  ...   
  [ 0.0000 0.0000 ... 0.0000 0.0000 0.0000 ... 0.0000 0.0000 ]
  [ 0.0000 0.0000 ... 0.0000 0.0000 0.0000 ... 0.0000 0.0000 ]
  [ 0.0000 0.0000 ... 0.0000 0.0000 0.0000 ... 0.0000 0.0000 ]
              ] store

For this orientation, the position in the array will be the same as the position in 
the field. We’ll ignore the symmetry possibilities since they may cause more grief 
than they cure.

Our boundary values are shown in red and are not allowed to change during 
averaging. We have (obviously incorrectly) guessed all other tinted potentials 
within the field to be zero. You then replace each non-boundary array value with 
an average of its four adjacent neighbors, repeating the process many times.

An intermediate 1500 pass result should look something like this…

    /field [
  [ 0.0000 52.336 ... 998.63 1000.0 998.63 ... 52.336 0.0000 ]             
  [ 0.0000 49.388 ... 942.38 943.67 942.38 ... 48.388 0.0000 ]  
  [ 0.0000 46.575 ... 888.71 889.93 888.71 ... 46.575 0.0000 ]
                           ...                                  ...   
  [ 0.0000 2.5227 ... 48.141 48.207 48.141 ... 2.5227 0.0000 ]
  [ 0.0000 1.2596 ... 24.037 24.076 24.037 ... 1.2596 0.0000 ]
  [ 0.0000 0.0000 ... 0.0000 0.0000 0.0000 ... 0.0000 0.0000 ]
              ] store

This gives us over 1800 fairly accurate data points and may be good enough for 
many uses. Since it is fast and easy to improve our results, let’s do so. Quadruple 
the size of the array by inserting a new average value between each existing 
value. Then insert a new average array between each existing array. This should 
quadruple the number of data points. Run your average a few hundred times. 

If desired, the process can be repeated a second time for a 16X increase in data 
points. Points=pixels is often a good but storage intensive choice.
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Making it Purty

Our array is now a complete and accurate digital map of our field problem. 
Should you need values between the array data points, they are easily and linearly
interpolated. But since PostScript is so good at graphics, lets see if we cannot 
improve our field visualization.

Our highest voltage is 1000. We can divide this by 1667 to get a hue of 0.67. But 
that would make the "hot" parts of the field blue and the "cold" ones red, so let’s 
reverse things by doing a 1000 sub abs first. Your field values now should be 0 for
hottest red at 1000 volts and 0.667 for coldest blue at 0 volts.

Go through the array and plot a filled unit color unit square for each data point. 
Should you have 743.66 volts, subtracting 1000 and taking the absolute value 
should give you 256.33 volts. Dividing by 1667 should yield 0.1537 which, when 
entered as a 0.1537 0.7 1 sethsbcolor should give us an orange with slightly 
eased saturation for less harshness.

Like so…

(x=0) (x=π)

φ=1000 sin(x ) volts

zero volts

ze
ro

 v
ol

ts

ze
ro
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ts

If your plot ends up visually attractive, chances are good you have enough data 
points and have made enough repeat averaging passes.

Plotting Equipotentials

You can reach down into your field array and extract both equipotentials and 
gradients. Let’s do the equipotentials first. Carefully pick a direction where each 
equipotential only happens once, or in this case up and down.

Then go through each vertical column of data to find a pair of values that are just
under and over your current equipotential goal. Interpolate and then do a lineto
to continue your equipotential line.

Like so…
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(x=0) (x=π)

φ=1000 sin(x ) volts

zero volts
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Notice that we are not equally spaced down the middle. The further away from 
the source you go, the further apart the equipotentials. Which is where the nasty 
hyperbolic trig often rears its ugly head.

Plotting Gradients

Gradients are slightly more subtle but just as easy to plot as the equipotentials. 
Pick a starting point at the top of the field. Then look left and down to find how 
the current x and y values change. The arctangent or PostScript atan operator 
will give us the direction of the gradient in degrees at this point.

You can convert this to a unit vector in the array space simply by using the sin 
for a vertical shift and the cos of the angle for a horizontal shift. Continue using 
the lineto operator until you reach the bottom or an edge.

And here is our final plot…

(x=0) (x=π)

φ=1000 sin(x ) volts

zero volts

ze
ro
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Note that we’ve worked somewhat backwards from normal, as we have taken the 
already solved field and derived the gradients and equipotentials from it. Thus 
some of our curvilinear squares may be somewhat rectangular instead. But they 
all clearly have the required 90 degree corners and equal diagonals.
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For  More  Help

Consulting services are available per our Infopack services and on a contract or an
hourly basis. Additional GuruGrams are found here, PostScript topics here, and 
math items here. Really advanced PostScript math problems are found in our      
Magic Sinewave library as well.

Further GuruGrams await your ongoing support as a Synergetics Partner.
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