
Extracting Text and Content
From Acrobat .PDF files

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2005 as GuruGram #46
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

There are times and places when you might like to programmatically reach into
an Adobe Acrobat .PDF file and extract text, URL links, or other content. Perhaps
to do the word frequency analysis we looked at in our previous GuruGram #45,
for additional spell checking, to verify "grade level" of content, to create indexes,
provide some disability voice access, do limited editing, or handle any of a
number of other custom actions.

In general, there is no single "place" in a .PDF file where you can reach in and
grab fully formatted text. The text can appear in any order and often might end
up as a mix of normal text and internal figure alphanumerics. Several routes to
.PDF text extraction include…

ACROBAT PRODUCTS - Full Acrobat, the Acrobat Reader, and
the Adobe eBook Reader are standard .PDF viewing options.

CUT & PASTE - Text can be copied to a clipboard and put
into a word processor or other ap. Text is in expected order.

ACROBAT PLUGINS - These C-language "attachments" go
in an Acrobat folder and for extended capabilities.

JAVASCRIPT OBJECTS - Modified JavaScript code can easily
be attached to a .PDF file and run on specified actions, such
as a page view or a mouse positioning.

OPEN SOURCE - Programs such as GhostScript or xpdf can
give you alternate and platform independent viewing.

RAW POSTSCRIPT - The PostScript language can read any
disk file in any format and offers extreme flexibility for any
unusual or custom .PDF text extraction tasks.

— 46.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/glib/wordfreq.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/acrob01.asp
http://www.adobe.com/epaper/ebooks/main.html
http://partners.adobe.com/public/developer/acrobat/sdk/index_doc.html
http://www.tinaja.com/glib/startsdk.pdf
http://partners.adobe.com/public/developer/acrobat/sdk/index_doc.html#js
http://www.artifex.com/pressreleases/GS70.htm
http://www.foolabs.com/xpdf/
http://www.tinaja.com/post01.asp

I’ve created some preliminary PostScript-as-language .PDF extraction utilities as
VIEWPDF1.PSL. This is an ordinary and short (about 30K) ASCII textfile that you
modify with any editor or word processor and then send to Acrobat Distiller . By
using Distiller as a General Purpose PostScript Interpreter. The code reads a
.PDF file of your choice, returns specific object info, full text content, individual
words, and sorted word frequency to the .LOG file produced by Distiller.

VIEWPDF1.PSL is easily adapted to your own needs. At present, this early code
requires an uncompressed .PDF file having a single piece un-linearized xref table
and all objects at revision zero.

You can uncompress any .PDF file by installing this Windows Acrobat plug in and
following these details. Note that installing this plug-in adds an Uncompressed
.PDF Files option to your full Acrobat "Save As" menu. Note also that revision zero
can usually be forced by a "Save As" without web linearization or optimization.

The routines are also presently limited to about 1296 or fewer pages as /Pages is
only nested four deep. Certain word frequency specific utilities also will assume a
WinAnsiEncoding font character sequence. There are also a few other "second
tier" details not yet addressed.

Acrobat Structure

Your starting point in exploring the .PDF format is the PDF Reference Manual.

When uncompressed, a .PDF file is pretty much an ordinary textfile having lines of
mostly ordinary printing characters. The bulk of the .PDF file consists of container
like "buckets" that are called objects.

Objects might hold dictionaries, strings, streams, arrays, constants, variables,
extended PostScript commands, and true-false Booleans. Or, most importantly,
contain indirect link references to other objects in the file..

An object always begins with a 27 0 obj or similar starting line. Where the first
digit is the object number and the second is the revision number. An object
always ends with an endobj line. Not all objects are necessarily in use at any given
time. Thus, you should…

 Always work with properly linked objects that are
 arranged in their specified hierarchy!

There are many types or classes of objects. Ferinstance, an /Annot object might
hold a web link to a URL. A /Font object might hold font info, such as the base
font used, individual character widths for substitution, the encoding used, and
other descriptors.

The objects of immediate top-down interest to us include…

— 46.2 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/psutils/viewpdf1.psl
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/psutils/distlang.html
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/psutils/viewpdf1.psl
http://www.tinaja.com/plugins/uncompressPDF.api
http://www.tinaja.com/glib/startsdk.pdf
http://www.tinaja.com/acrob01.asp
http://partners.adobe.com/public/developer/pdf/index_reference.html
http://www.tinaja.com/post01.asp

 /Catalog — The main directory for the entire document.

 /Pages — A nested tier of objects listing pages in order.

 /Page — All info required to image one document page.

 /Contents — Specific marking instructions for one page.

There will be one trailer object at the end of any .PDF file. One of its entries will
be /Root, which will contain the object number of the top /Catalog, in a 59 0 R
format of object number - revision number - reference letter "R".

Immediately before the trailer should be an xref cross reference. This is your basic
tool to access any object. In its simplest form, the cross reference will begin with
an xref on one line followed by a revision section and a count on the next.

To find any object, you count the object’s number of lines down into the xref
table, pick off the first ten digits, lop off any leading zeros, and set this as your
file offset to reach the start of your desired object. In PostScript, you can directly
use this value sent to setfileposition operator to exactly locate yourself.

You can analyze most any .PDF file by reading the /Root object to find your
/Catalog , using /Catalog to find /Pages and then /Pages to find your actual
/Page objects. A /Contents entry in the individual /Page objects will then give
you access to the words used and other markings and images involved.

There can be some complications. Ferinstance, /Pages objects will have /Kids
arrays that can nest to any depth. Any individual entry in the /Kids array might
lead to either a /Page object or yet another nested /Pages object.

Limiting any /Pages object to six or fewer /Kids makes for fast random access
through any very long doc. The xref access can also get rather messy if revisions
are present or if web linearizing is done.

Some Code Details

VIEWPDF1.PSL has fairly extensive internal documentation and comments you can
read while editing. There is also a moderate (but not yet bulletproof) amount of
forced error trapping. While my Gonzo Utilities are highly recommended to work
with this routine, they are not absolutely required at present.

Here is a proc-by-proc tour of the VIEWPDF1.PSL code…

The Gonzo Utilities — These are my collection of superb text justification and
figure drawing utilities found on my PostScript web page. I have excerpted my
/mergestr string merger, the disgustingly elegant /makestring array-to-string
converter, and a grunt /popbubblesort that sorts on numeric popularity.

— 46.3 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/psutils/viewpdf1.psl
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/psutils/viewpdf1.psl
http://www.tinaja.com/post01.asp

File Reading — Your .PDF file to be analyzed is entered at the very top of your
document. If you enter several, only the last uncommented filename will get
used. Several gotchas: Your .PDF file must be uncompressed and have a single rev
0 xobj file. All PostScript filename strings must use a double reverse slash any
time a single reverse slash is needed. The full Windows pathname is required.
The complete pathname gets assembled by merging the folder paths with the
actual short filename.

/getobjlist — This extracts the .PDF xref object list into an /xrefarray array. The
entire .PDF document is searched till xref is found using anchorsearch. When it is
found, the next line is read to find the number of objects. Then, an xrefarray is
started. As many additional lines as objects are read. The PostScript /token proc
is used to extract the offset, revision, and used info. And placing it into an [offset
revision used] array element in xrefarray. The net result is a saved directory of
object info in a PostScript useful format.

/getobj — Finds a .PDF object given its number and a 0 revision. Each line of the
object is returned as a string in an array. The object start offset is found using the
xrefarray and the file is repositioned using setfileposition. An array is started,
and each read line of the object is placed into the array as a string object. The
object is thus returned on the stack as an array of strings. Certain rare stream
elements may be unreadable using this proc, but they do not seem to occur in
the objects currently of interest. One big gotcha: string dereferencing seems
essential to prevent wrong characters from showing up due to reuse or our main
workstring. Details on this process appear in STRCONV.PDF you can find in our
GuruGram library.

/fixbrokenarrays — There is one nasty minor detail when extracting object lines:
Arrays may start on one line and end on another. This utility attempts to find any
array that starts but does not end on a given line. It then merges that string with
the next one. The process continues till an array is complete as a single line entry.
A /tryrepair subroutine does the actual string merging and reassembly.

/getcatobj — Finds Reads /Root to determine the /Catalog object, then retrieves
it. Starting at the beginning of the file, an anchorsearch is done to find the /Root
entry. Returns /Catalog object using getobj to stack and reports success or error
to log file. At present, assumes all are objects are revision 0.

/getpagesobj — Reads the /Catalog object to extract the top /Pages object. An
anchorsearch of the catalog is done looking for the top /Pages array. An R2obj
service routine is used to convert catalog strings such as ([60 0 R 1 0 R 25 0 R])
into PostScript arrays such as [60 1 25]. Again, rev 0 is assumed.

/getcontentarray — Things get tricky from here. Any /Pages object will normally
only have six or fewer links in its /Kids entry. If there are less than six pages in
the document, all /Kids entries will be new /Page objects (without the "s"). But if
there are more than six pages in the document, a /Kids entry might end up either

— 46.4 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/strconv.pdf
http://www.tinaja.com/gurgrm01.asp

a /Page object or a nested object of additional /Pages links. The way you tell a
/Pages object from a /Page object is that /Pages has a /Kids entry, while /Page
has a /Contents entry. Our object here is to create an array of all used /Contents
objects in sequential order. Routines /firstkids, /secondkids, /thirdkids, and
/fourthkids let us search in depth for documents of 1296 or fewer pages.

/addtocontentarray — Any single page can have one or more /Content objects.
Especially if figures or images are involved. For convenience, two different formats
of content lists are provided. /pagearray is a simple list of content objects. Which
is all you would need for word frequency apps. /numberedpagearray is a fancier
array-of-arrays in which each entry represents one page. Each entry is an array
that can hold one or more content objects. This might be more useful for index
generation where you need to remember both the word and the page it is on.
Two types of /Content objects are distinguished. Those with a stream in them are
an actual content object, while those with an array are a pointer to additional
content objects.

/reportPDFstructure — This is the high level code that that finds key objects and
reports on them, ending with /pagearray and /numberedpagearray page
content lists. These content arrays can then be used to develop applications of
your choosing. Such as…

An Example: Word Frequency Analysis

As we’ve seen in WORDFREQ.PDF that we looked at in our previous GuruGrams,
word frequency analysis is useful to improve author presentation, create indexes,
verify grade level, and a number of other tasks. Some analysis routines provided
with VIEWPDF1.PSL include…

/expandline — Extracts string objects from page content.
/forcelowercase — Replaces uppercase characters.
/getwordsfromstring — Isolates single words from string.
/removetrailingpunct — Removes end periods, commas, etc….
/removeleadingpunct — Removes opening quotes.

/procword — High level word counting and entry code.
/gotone — Counts and places words in /worddict.
/reportworddict — High level output sort and report.
/formattedprint — Sets details of output presentation.
/analyzewordfrequency — Reports .PDF file word frequency.

Note that /removetrailingpunct and /removeleadingpunct currently assume a
WINansiEncoding vector. Processing time is quite fast for shorter .PDF files,
ranging up to two minutes for a 200 page document. This can be sped up by
going to a better sorting routine and eliminating intermediate reporting.

— 46.5 —

http://www.tinaja.com/glib/wordfreq.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/psutils/viewpdf1.psl
http://www.tinaja.com/glib/heapsort.pdf

There are all sorts of exciting additional possibilities for PostScript reading and
reporting of .PDF file content. Ferinstance, indexing can be done by using the
/numberedpagearray data to add a third column to your word reporting that
shows which page each word gets used on.

For More Help

Enhancements and improvements on this fast, convenient, and super flexible .PDF
content reader can be made available to you on a Custom Consulting basis.
Additional GuruGrams are found here, PostScript topics here, and Acrobat info
can be found here.

Further GuruGrams await your ongoing support as a Synergetics Partner.

— 46.6 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

