USING NEW LOW-COST INTEGRATED CIRCUITS

By DONALD E. LANCASTER

Some of the new integrateds have come way down in price and have many uses outside of computers. Here are techniques and circuits for these new IC devices.

There are two myths prevailing in regard to today’s integrated circuitry. “Too expensive” and “only good for special computer circuits” are the hue and cry of many who simply do not yet realize the tremendous potential of in-stock integrateds applied to everyday circuits.

The facts are the exact opposite. Today there are few basic circuits that cannot be fully integrated while substantially reducing the total cost, complexity, and assembly time. Improved reliability, temperature performance, and ruggedness are gained in the bargain. For instance, about $1.60 spent at a distributor’s will buy the equivalent of three or four 2N708 transistors and five or six resistors, which separately might cost over live dollars, not counting the extra assembly time. For the same price, you also get an all-silicon circuit fully guaranteed and tested to operate over a specified temperature range into fully specified loads. This eliminates a large measure of the normal environmental testing, “burning in” of components, marginal resistance values, and expensive testing.

Of the twenty or so major integrated-circuit (IC) manufacturers, six have widely distributed, low-cost lines. Of these, the epoxy micronic series of Fairchild Semiconductor lends itself well to our purpose of developing a number of basic integrated circuits that can be used for both commercial and experimental purposes. By obvious changes in supply voltages, impedance levels, and pin connections, these same basic circuits are pretty much applicable to other manufacturers’ IC lines.

The Fairchild series consists of three integrateds packaged in eight-lead epoxy packages, the same size as a TO-5 case transistor. As a family, the units may be directly connected to each other. One supply voltage of +3.6 volts is specified, but any voltage from 3 to 4.5 should suffice for many applications. The latter is easily obtained from two or three penlight cells.

The pin connections are numbered counterclockwise from the top, with a color-coded dot directly beside lead 8. The units are specified over a +15° to +55° C interval, useful for both room temperature and laboratory environments. Identical, wider-temperature units are available at premium cost. Although sockets are readily obtainable, the breadboarding technique shown in the photo is a good means of mounting experimental circuitry. This technique makes all connections readily accessible and well separated. To mount the IC, eight Teflon press-fit terminals are pressed into holes forming a circle ¾" in diameter. The leads of the IC are all bent radially outward and soldered directly to the tips of the terminals. Printed circuits are impractical with integrateds unless two-sided or multi-layer board is used; otherwise too many jumpers are required.

Rather than specify an input requirement as so many ohms or so many mA, and output requirements similarly, a much

Fig. 1. Internal circuit of the three IC’s described in text.
easier method is used on this IC line. Both input requirements and output drive capability are specified as so many "units," as indicated in the circles in the circuit diagrams. Any combination of inputs can be driven by an output whose drive capability exceeds the sum of the input units required. For instance, we will see that a 1L914 requires 3 units of drive at an input and delivers 16 units of drive at an output. Thus one 1L914 output can drive five 1L914's inputs, with "1" to spare. All other requirements are determined in a similar manner, simply adding up the loads and keeping the load units equal to or less than the drive capability.

The three IC's are compared in Fig. 1. The 1L900 (about $1.60 each) is a buffer element designed to provide inversion and a high drive capability. This circuit finds use whenever a large number of inputs (up to a load factor of "80" units) is to be driven from a single circuit or when a low-impedance output is required for external circuitry. This three-transistor, five-resistor circuit operates as a switch. Ground the input and the top transistor saturates, connecting the output load to +3.6 volts which is tied to lead S. Connect the input to a positive voltage between 1 and 3.6 volts and the top transistor goes off and the bottom two saturate, connecting the load to ground (tied to lead 4) through a low impedance.

The 1L914 is called a dual two-input gate, but is far more useful than the name implies. It consists of two pairs of transistors sharing common collector loads. Outside of the supply and emitter connections, both halves of the circuit are completely separate. Considering one side, in the absence of any input, both transistors remain off, and the output voltage is equal to the supply voltage (connected to lead 8). If either (or both) inputs go positive, the driven transistor(s) saturates, and the output is connected to ground (connected to lead 4) via the low impedance of a saturated transistor. This IC is the workhorse of the line, for it readily forms all the logic circuits, all multivibrators, a host of linear amplifiers, level detectors, and some others that we will shortly examine.

Fanciest of the three integrations is the 1L923—at about $4.00—a full-counting flip-flop. The IC is the equivalent of fifteen transistors and seventeen resistors. It single-handedly counts by two, automatically steering its own input to the proper side every count, even at push-button speeds. This IC is also useful as a shift register or memory element and replaces some complicated binary and ring-counter circuitry.

Inverter and Gate Circuits

In all the circuits, we have purposely left out the inner connections of the IC's to emphasize the external system connections and the simplicity of using integrated circuitry. To study the circuits from a discrete equivalent standpoint, refer back to Fig. 1.

The simplest circuit is the inverter of Fig. 2A. Here a binary "1" input produces a "0" output and vice versa. Use this one to invert any digital pulse or generate a complementary digital signal. The circuit functions on the presence or absence of base current in one transistor. A positive input signal saturates the transistor and grounds the output. A grounded input signal turns the transistor off and the output goes positive. If desired, the other half of the 1L914 may be used elsewhere in the circuit.

Using both inputs produces the disabling gate of Fig. 2B. Here the IC inverts the digital signal on lead 1 only if the input to lead 2 is grounded. A positive input at lead 2 grounds the output irrespective of the condition on lead 1, disabling the circuit.

If the opposite effect is desired, an inverter may be added to the gate input. Now, as in Fig. 2C, a grounded-gate input prevents any signal inputs on lead 1 from being inverted and appearing at the output. If the gate input, lead 3, is made positive, the inverter stage makes leads 6 and 2 grounded and thus passes the input signal. This is then an enabling gate.

Logic Circuits

There is always so much confusion over just what constitutes and "and," an "or," a "nand," or a "nor" circuit for, depending on how things are defined, one circuit can perform any two functions. In binary arithmetic, there are only two possible system states, the "one" state and the "zero" state. The rules for logic are simply:

- If any "one" input produces a "one" output, the circuit is an "or" circuit.
- If any "one" input produces a "zero" output, the circuit is a "nor" circuit.
- If all input "one's" have to be present to produce a "one" at the output, the circuit is an "and" circuit.
- If all input "one's" have to be present to produce a "zero" at the output, the circuit is a "nand" circuit.

Note that all the rules are defined in accordance with the presence or absence of "one" inputs. There is nothing in the rules that concerns itself with "zero" inputs.

The trouble comes in when a "one" and a "zero" are defined in a system. Circuit people will usually define a "one" as a

A convenient method of mounting for breadboarding circuits.
These logic circuits are the very basis of all digital computer circuitry and other areas where particular sequences or coincidences must be detected.

Multivibrators

All the conventional multivibrators (flip-flops) are easily built using the connections of Fig. 4. In 4A, the output of one half of a PL914 is connected to one input on the other half and vice versa. The two remaining inputs, one on either side, are brought out for external connections. This produces a bistable multivibrator or a set-reset flip-flop. A momentary set pulse consists of a positive signal briefly applied to lead 1. This momentarily grounds lead 7, the output of the set inverter. The grounding of lead 7 grounds lead 3 which lets lead 6 go positive. The positive output of lead 6 is connected to lead 2 which holds the multivibrator in the set state after the input trigger disappears. A reset pulse applied to the opposite input will transfer the output to the reset side, again holding itself in the new state until the next arrival of a set pulse. This circuit is useful as a latch or memory as well as a gate or interval generator.

If one of the feedback connections is broken and a capacitor and recharging resistor are inserted in its place, the monostable multivibrator of Fig. 4B results. Here a set or trigger input pulse changes the state of the flip-flop, but it changes state back again after a time delay determined by the recharging time of capacitor C. When the input trigger arrives, lead 7 immediately goes to ground. The charge on C cannot instantaneously change, so C drives lead 5 negative, turning off the other side of the flip-flop and providing feedback to hold the output in the set state. R then slowly recharges C, making lead 5 more and more positive until finally lead 5 is positive enough to turn on its transistor and revert the state of the monostable back to normal. The net effect is a constant time interval or delay, in the form of a rectangular pulse, produced every time an input trigger pulse arrives.

Fig. 5 includes a family of curves that lets you choose values of C and R for required time delays. Varying R with a potentiometer gives control over the delay interval. The delay is largely independent of the supply voltage. The circuit will only operate on a 75% maximum duty cycle, and the duty cycle should be held to less than 30-35% if timing accuracy is important. For instance, a 300-microsecond multivibrator must have at least 100 microseconds to recover. If timing accuracy is important, it should have at least 700 microseconds; otherwise the earlier

(Continued on page 80)
For the progressive serviceman who wants to find out how to service better and faster... how to expand his business by handling a wider variety of electronics equipment —

For the "do-it-yourself" hobbyist who wants to save hundreds of dollars by installing and repairing his own equipment —

The 1966 ELECTRONICS INSTALLATION & SERVICING HANDBOOK has arrived! The only comprehensive and authoritative guide to every major phase of consumer electronics servicing. There's nothing like it anywhere!

A handy, on-the-bench reference volume containing 128 pages—over 150 illustrations, charts and tables—on how to spot, analyze and correct trouble ... quickly, efficiently and economically!

GET THE EXQUISITE LEATHERFLEX-BOUND EDITION for just $3 POSTPAID!

The 1966 ELECTRONICS INSTALLATION & SERVICING HANDBOOK is also available in an attractive, gold-embossed, Leatherflex-bound edition — a superb addition to your library of permanent reference books. This deluxe volume will be mailed to your home, postpaid, for just $3.00, when you check the appropriate box on the order form.

Complete, in-depth coverage of: the fundamentals of servicing • servicing b/w & color TV • AM-FM household radios • stereo/hifi • CB equipment • intercoms and PA systems • antennas • transistorized ignition systems.

Hundreds of money-saving techniques and shortcuts. Every up-to-date method and procedure. All in easy-to-understand language for the novice... yet thorough enough to answer the professional’s most complex question!

You'd have to purchase several expensive manuals to equal this kind of incisive, all-inclusive coverage. But now you get it all in the 1966 ELECTRONICS INSTALLATION & SERVICING HANDBOOK. A small investment that will pay for itself many times over with just one practical application. only $1.25

--- FILL IN, CLIP & MAIL THIS FORM TODAY! ---

Ziff-Davis Service Division • Dept. IS
580 Broadway • New York, N.Y. 10012

YES! Send me a copy of the 1966 ELECTRONICS INSTALLATION & SERVICING HANDBOOK, as checked below:

[A] $1.25 enclosed, plus 50c for shipping and handling, send me the paperbound edition. ($1.75 for orders outside the U.S.A.)

[B] $3.00 enclosed. Send me the Deluxe Leatherflex-bound edition. postpaid. ($3.75 for orders outside the U.S.A.) Allow three additional weeks for delivery.

Name

address

city state zip code

--- PAYMENT MUST BE ENCLOSED WITH ORDER. ---

March, 1966

--- KIT ($49.50)

FM broadcast band from coast to coast! Use with any FM tuner. Size 6" x 6". Shipping weight approx. 7 oz.

KIT $49.50
(with pre-tuned coils, no alignment necessary)

WIRED $75.00

COVER $4.95 EXTRA

Write to MUSIC ASSOCIATED
65 Glenwood Road, Upper Montclair, New Jersey
Phone (201) 744-3382

March, 1966

--- CIRCLE NO. S6 ON READER SERVICE CARD ---

www.americanradiohistory.com
arrival of new trigger pulses will affect the timing interval.

One example of a monostable application is the noiseless push-button circuit of Fig. 4C. Ordinary push-buttons are both bouncy and noisy. In the first few milliseconds of contact, the contacts may alternately make and break as many as several hundred times. This is detrimental to any high-speed electronic circuit that faithfully follows every input pulse. With the monostable, the first bounce triggers the

Hi-Performance Space-Saving Twins
from

Electronic Crosswords

By JAMES R. KIMSEY

(A answer on page 102)