THE OPERATIONAL AMPLIFIER

Circuits \& Applications

By DONALD E. LANCASTER

Typiral modular parkage and TO-5 style IC operational amplifiers.

Abstract

These highly rersatile comtrollable-gain modular or integratel-circuit packages haw been ased in computer and military circuits. New price and size reductions hare openeal commercial and consumer markets. Itere are complete details on what is arailable and howe the derices are ased.

ONCE exchnsively the mainstay of the amalog-computer field, operational amplifiers are now finding diverse uses thronghout the rest of the electronics inclustry. An operational amplifier is basically a high-gain. (l.c.-coupled bipolar amplifier. usually featuring a high input impedance and a low output impedance. Its inlaerent utility lies in its ability to have its gain and response precisely. (ontrolled by extemal resistors and (alpacitors.

Since resistors and capacitors are passive elements, there is very little prohlem keeping the gain and circuit response stable and independent of temperature, supply variations. or changes in gatin of the op amp itself. Just how these resistors and capacitors are arranged deteminess exactly What the operational amplifier will do. In essence. an op amp provides "instant gain" that maly be used for practically anc circuit from a.c., d.c., and r.f. amplifiers. to precision waveform generators. to high-"()" inductorless filters, to mathematical problem solvers.

Op amps nsed to be quite expensive. but mamy of today's integrated circuit versions now range from sif to $\$ 20$ each and less in quantity: Due to price breaks that hase occurred very recently. the same benefits now arailable to the analog computer, industrial, and military markets are now extonded to commercial and consmer circuits. One obvions application will be in hi-fi preamps where a single integrated circuit can replace the bulk of the low-levol transistor circuitry momally nsed.

Fig. 1A shows the op-imp stmbol. An op amp has two high-impedinnee inputs. the incerting input and the nonincerting input, as indicated by a "-" or a " + " on the input side of the amplifier. The inserting input is ont-ofphase with the output, while the non-inerting input is inphase with the ontput. The amplifier has an open-loop gatin Λ, which may range from several thousand to several million.

On closer inspection, we see three distinct parts to an! operational amplifier's internal circuitre, as shown in Fig. 13. A high-input-impedance differential amplifier forms the first stage. with the inserting input going to one side and the non-inverting input the other. The pmpose of this stage is to allow the inputs to differentially drive the circonit and also to provide a high input impedance.

There are several possibilities for this input stage. If an ordinary matched pair of transistors (or the integrated(ircuit equivalent) is used, an input inpedance from $10,(0)(0)$
to 100.000 ohms will result, combined with low drift. low cost. and wide hanclwidth. By using four transistors in a differential Darlington configuration, the input inpedance may be nearly one megohm. Drift and circuit cost are traded for this benefit.

Field-effect transistors are sometimes used, yielding input impedances of $10(0)$ megohms, but often with limited bandwidths. FET integrated-circuit operational amplifiers are not yet asaikable, limiting this technique to the mochu-lar-strle package at present. One or two novel techniques allow extreme input impedances, hut presently at very high cost. One approach is to use MOS transistors with their 1()13-ohom input impedance; a second is to use a vat ractor diode parametric amplifier arrangement on the input.

The input differential amplifier is followed by ordinary roltage-gain stages, designed to bring the total voltage gain up to a very high value. Terminals are nsually brought out of the voltage-gain stage to allow the frequency and phase response of the op amp to be tailored for spectial applications. This is usually done by adding external resistors and capacitors to these terminals.

Since an operational amplifier is bipolar, the output can swing either positive or negative with respect to ground. A dual power-sipply system, one negative and one positive, is reguired.

The final op-amp stage is a low-impedance power-output stage, which may take the form of a single emitter-follower, a push-pull emitter-follower, or a class-13 power stage. This final circuit serves to make the output loading and the over-all gain and frequency response independent. It also prowides a nseful level of output power.

Fig. 1. (A) Op-amp symbol. (B) Block diagram of typical op amp.

(A)

Fig. 2. Characteristics of the Fairchild $\mu \mathrm{A} 702 \mathrm{C}$. Price: $\mathbf{\$ 9 . 0 0}$.

Fig. 3. Characteristics of Motorola's MC1430. Price: $\$ \mathbf{1 2 . 0 0}$.
Fig. 4. The RCA CA 3030 operational amplifier. Uniabeled terminals are used for frequency-compensafion. Price: $\$ \mathbf{7 . 5 0}$. Note that the prices given here and above are for singleunit quantities and these prices are subject to change.

THE MATH BEHIND THE OP AMP

The gain of on operational-amprifier circuil is always chosen to be much less then the open-loop toten of the ampliliet ilselt. Thes alows the circuit response to be pretisely delermined by lhe external fosdback and input notwork impadancos. Foadtack is almost al-
 for ony change in oqput tries te preduce on opposing shonma in the iapors.
The feedtack and input nelwork impedabces are normally thosen such that they gre mush lorgef thom the op ampro pupul impedoncor tratl smaller than the op amp's input impedenee. And such that the gain they require fer proper operation is much less than the op gmp's 鸟宜

If these ustrmptions ate mer, the ratla of inpult outpua validge Ithe gain of the circuily will be given by:

For instance, the ap-amp circuil of Flg. 58 hes an impli impadnace of 1000 ohme ard \square fredbach torpedance of 10 .ent ahms. lis gain wil be $-10 \mathrm{k} / \mathrm{lh}=-10$. Any of the op ampe of figs. $\boldsymbol{i}_{\mathrm{F}} \mathrm{J}$ or 4 may beased for this circuit,

50 mb circuit analysion wifl show that tha inverdiong input is aimay very rueter greund porenlivl. and this pelrt is then called a wirtual graund insafor os the impul tignols and oulput laedbeck are concerned. Thus the impul impedanco to the circuit will exacily equal the inpul networl impedtanee.

Whon saparitars are used in the melworhs, the phose relationships betwean current and yellagy muit be takn into achount. These differesces in phase allow such opacwions wh differemialion, integration, and orliva networle fynthexis,

But isn't an op amp a d.c. amplifier and don't d.c. amplifiers drift and have to be chopper-stabilized or otherwise compensated? This certainly used to be true of all cl.c. amplifiers, but today such techniques are reserved for extremely critical circuits. The reasons for this lie in the input differential stage. It is now very easy to get an integratedcircuit differential amplifier stage to track within a millivolt or so over a wide temperature range. This is due to the identical geometry, composition, and temperature of the input transistors.

Matched pairs of ordinary transistors can track within a few millivolts with careful selection. FET's offer still better drift performance, as one bias point may be selected that is drift-free with respect to temperature over a very wide range. Thus, chopper-stabilized systems are rarely considered today for most op-amp applications.

There are three basic op-amp packages available today. The first type consists of specialized units used only for precision analog computation and critical instrumentation circuits. These are priced into the hundreds and even thousands of dollars for each category, and are not considered here. The second type is the modular package, and usually consists of a black plug-in epoxy shell an inch or two on a side. Special sockets are available to accommodate the many pins that protrude out the case bottom. The third package style uses the integrated circuit. Here the entire op amp is housed in a flat pack, in-line epoxy, or TO-5 style package. (See lead photograph.)
Generally speaking, the modular units are being replaced in some cases by the integrateds, but at present, each package style offers some clear-cut advantages. Table 1 compares the two packages. The IC versions offer low cost, small size, and very low drift, while the modular versions offer higher input impedances, higher gain, and higher output power capability.

Three low-cost readily available IC op amps appear in Figs. 2, 3, and 4. Here, their schematic's and major performance characteristics are compared. Devices similar to these at even lower cost may soon be available.

A directory of op amp makers is given in Tables 2 and 3.

Industrial \mathbf{O}_{p}-Amp Applications

We can split the op-amp applications into roughly three
categories: the inclustrial circuits, the computer circuits, and the active network synthesis circuits. The industrial circuits are "ordinary" ones, which will carry over into the consumer and commercial fields with little change.

The boxed copy (facing page) sums up the mathematic's. An operational amplifier is often used in conjunction with two passive networks, an inpul network, and a fecelloack network, both of which are normally comected to the inverting input. The gain of the ower-all cirenit at any frequenc: is given by the equation shown. It is simply the ratio of the feedback impedance to the input impedance at that frequency. For the circoits shown, a low impedance path to ground must exist for all input sources to allow a return path for base coment in the wo input transistors.

Fig. 5A shows an iwerting gain-of-10() amplifier useful from d.c. to several hamdred kilz.. The basie equation tells us the gain will be $-10.000(100=-100$. The $10(0)-0$ hom resistor on the " + " input provides base comrent for the " + " tramsistor and does not directly enter into the gain equation. It may be adjusted to obtain a desired drift or offset chatracteristic.

The higher the gatin of the op amp, the closer the circuit performance will be to the calculated performance. In the gatin-of-IO() amplifier, if the op amp gain is $10(0)$, the gain emor will be roughly $l^{\text {co }}$. The exact value of the gain also depends npon the precision to which the input and feedback eomponents are selected.

Choosing different ratios of input and feedback impedances gives us different gains. Fig. JB shows a gain-of-10 amplifier with a d.c. to 2 MHz freduency response and a 100()-ohm input impedance.

We might ask at this point what we gain by using an (1) amp in this circuit instead of an ordinary single tramsistor circuit. There are several important answers. The first is that the input and output are both referenced to gromed. Put in zero volts and you get out zero volts. Put in - fo() aillivolts and you get out +4 volts. Put in $f(0)$ millivolts and you get out -4 volts. Secondly, the output impedance is very low and the gain will not change if you change the boad the op amp is driving, as long as the loading is light compared to the op amp's output impedance. Finally, the sain is precisely 10 , to the acematy you cam select the input and feedback resistors, independent of temperature and power-supply variations. It is this precision and ease of control that makes the operational amplifier configuration far superior to simpler circuitry:

If the output is comnected to the " - " input and an input directly drives the " + " input, the unity-gain voltage follower of Fig. 5C results. This configuration is useful for following precision voltage references or other voltage sources that may not be heavily loaded. The circuit is superior to an ordinary emitter-follower in that the offset is only a millivolt or so instead of the temperature-dependent 0.6volt drop normally encountered, and the gain is truly mity and not dependent upon the alpha of the tramsistor used.

```
AN'AIOG; DEVICES INC.
221 Fifth Avenue
Cambridge. Mass. 02If2
BL RR BROW'N RESEARCH
International Airport
Industrial Pk.. Box 11400
Tucson. Ariz. 85706
COMPUTER DY'NAMICS
\(1^{7}\) り W Water Street
Torrington. Conn. 06790
DdTA DEVICE CORP.
\(2 f^{0}\) Old Country Road
Hicksville: N.Y'. 11810
HAMILTON STANIDARD
    DI'.
linited Aircraft Company
Broad Brook, Conn. OGOIG
```

ANALOG DEVICES INC.
221 Fifth Avenue
BL RR BROW'N RESEARCH
International dirport
Tucson. Ariz. 85706
COMPUTER DYNAMICS
-y W'ater Street
DATA DEVICE CORP
f() Old Country Road
Hicksville. N.Y. 11810 DI'.
inited sircraft Company
ad Brook, Conn. 0601(

Table 2. Listing of modular-type operational-amp manufacturers.

AMELCO SEMICONDUCTOR	PHILBRICK RESEARCHES
Box 1030	17 Allied Drive at Rte. 128
Mountain View, Cal. 940¢2	Dedham, Mass. 02026
FAIRCHILD	RCA ELECTRONIC COMPO.
313 Fairchild	
Mountain View, Cal. 9-fo40	415 South 5th St.
General electric co.	Harrison, N.J. 07029
Semiconductor Products Dept.	RADIATION INC.
Electronics Park	130x 220
Syracuse, N.' ${ }^{\text {c }} 13201$	Melbourne, Fla. 32902
GENERAL INSTRUMENTS	
(i00 W', Johns Street	811 East Arques dve.
Hicksville, N.Y.	Sunnyvale, Cal. 9-fo86
MOTOROLA SEMI. CONDUCTOR PRODUCTS	TEXAS INSTRUMENTS
Box 955	P.O. Box 5012
Phoenix, Ariz. 85001	Dallas, Tex. 75080
NATIONAL SEMI. CONDUCTOR	W'ESTINGHOUSF MOLECU LAR EI.ECTRONICS
Box 443	Box 773
Danbury, Conn. 06813	Elkridge, Md. 21227

AMELCO SEMICONDUCTOR
Box 1030
FAIRCHILD
313 Fairchild Drive
313 Fairchild Drive
Mountain View, Cal. 9 4040
GENERAL ELECTRIC CO.
Semiconductor Products Dept.
Electronics Park
Syracuse, N.I'. 1320I
GENERAL INSTRUMENTS
Gion Wr. Johns Stree
isville, N.Y.
otorola semi.
CONDUCTOR PRODUCTS
Box 955
Phoenix, Ariz. 85001
NATIONAL SEMI.
Box 443
Danbury, Conn. 06813

PHILBRICK RESEARCHES 17 Allied Drive at Rte. 128 Dedham, Mass. 02026
RCA ELECTRONIC COMPO.
NFNTS \& DEVICES
415 South 5th St.
Harrison, N.J. 07029
RADIATION INC
130x 220
Melbourne, Fla. 32902
SIGNETICS CORP
Sil East Arques Ave.
TEXAS INSTRUMENTS
D. Box 5012

Dallas, Tex. 75080
OLECU.
Box 773
Elkridge, Md. 2122 7

Table 3. Listing of integrated-circuit op-amp manufacturers.

By making the gain of the op amp frequence-deperndent, various filter configurations are realized. For instance. Fig. 5 D shows a band-stop amplifier. For very low and very high frequencies, the series RLC: circuit in the feedback network will be a very high impedance and the gain will bee $-10,0(0) / 1000=-10$. At resonance, the series $R L C$ impedance will be 100 ohms and the gain will be -100 (0)0 $=-(0.1$. The gain drops by a factor of $100: 1$ or 40 decibels at the resoname frequency. The selection of the $L C$ ratio will determine biandwidth, while the LC product will determine the resonant frequency.

Fig. $\overline{\mathrm{J}} \mathrm{E}$ does the opposite, proclucing a response peak at resonamce 100 times higher than the response at very high or very low freduencies, owing to the very high impedince at resoname of a parallel LC circonit. More complex filter structures may be used to obtain any reasomable filter func-

Table 1. Comparison between integrated operational amplifiers and modular-type operational amplifiers.

	INTEGRATED OP AMP	MODULAR OP AMP
COST	$(+)$ Con be quite low. Quality units cost \$6 to \$50 each.	(-) Inherently mare expensive. Ranges from $\$ 14$ economy units ta $\$ 1000$ each.
SIZE	$(+)$ Very small. Usually a TO-5 can, in-line epoxy, or flat pack.	(-) Black epoxy modules usually measure a few cubic inches. May be bulky if used in quontity.
GAIN	(-) Low. Typical units have gains from 1000 to 30,000	$(+)$ Goin may go extremely high in premium units.
INPUT IMPEDANCE	(-) Low. 7000 to 100,000 ohms is typical with newer premium units opproaching one megohm.	$(+)$ High. Premium units using FET's or parametric varactor systems offer input impedonces of hundreds of megohms.
INPUT OFFSET \& DRIFT	$(+)$ Very low. Integrated circuitry yields matched input transistors with excellent temperature performance. Drift of a few microvolts per degree C is typical.	(-) Much higher unless specially selected components or external stabilization is used.
AVAILABLE OUTPUT	(-) Limited to 250 milliwatts internol dissipation. 10 volts peak-topeok output typical; 26 volts p-p in one premium unit.	$(+)$ Package is not dissipation limited. Sub. stantiol output power levels and voltage swings readily obtainable in special units.

(A)

(日)

(C)

(D)

(E)

(H)

(1)

tion or response curve. Audio equalization curves are readily realized using similar techniques.

Turning to some different applications, Fig. 5F shows a precision ramp generator. Operation is based upon the current source formed by the reference voltage and 1000 -ohm resistor on the input. In any op-imp circuit, the current that is fed back to the input must equal the input current, for otherwise the "-" input will have a voltage on it, which would immediately be amplified, making the input and feedback currents equal.

A constant current to a capacitor linearly charges that capacitor, producing a linear voltage ramp. The slope of the ramp will be determined by the current and the capacitance, while the linearity will be determined by the gain of the op amp. A sweep of 0.1-percent linearity is easily achieved. The output ramp is reset to zero by the switch and the 10 -ohm current-limiting resistor. For synchronization, S may be replaced by a gating transistor. A negative input current produces a positive voltage ramp at the output. Note that the sweep linearity and amplitude is independent of the output loading as long as the load impedance is higher than the output impedance of the op amp. Ramps like this are often used in CRT sweep waveform generation, amalog-to-digital converters, and similar circuitry.
Silicon diodes normally have a 0.6 -volt offset that makes them unattractive for detecting very low signal levels. If a diode is included in the feedback path of an operational amplifier, this offset may be reduced by the gain of the circuit, allowing low-level detection. Fig. 5G is typical. Here the gain to negative input signals is equal to unity, while the gain to positive input signals is equal to 100 . The diode threshold will be reduced to 0.6 volt $/ 100=6$ millivolts.

Another diode op-imp circuit is that of Fig. 5H. Here the logarithmic voltage-current relation present in a diode makes the feedback impedance decrease with increasing input signals, reducing the circuit gain as the input current increases. The net result is an output voltage that is proportional to the logarithm of the input, and the circuit is a logarithmic amplifier. This configuration only works on

Fig. 5. Industrial op-amp circuits. (A) Gain-of-100 inverting amplifier. (B) Gain-of-10 inverting amplifier. (C) Unity-gain high input Z amplifier. (D) Band-stop amplifier. (E) Band-pass amplifier. (F) Precision ramp or linear saw-tooth generator. (G) Detector with low offset. (H) Logarithmic amplifier. (I) Voltage comparator. (J) Sine-wave oscillator.
negative-going inputs and is useful in compressing signals, measuring decibels, and in electronic multiplier circuits where the logarithms of two input signals are added together to perform multiplication.

An operational amplifier is rarely rum "wide open", but Fig. 5I is one exception. Here the op amp serves as a voltage comparator. If the voltage on the "-" input exceeds the " + " input voltage, the op amp output will swing as negative as the supply will let it, and vice versa. A difference of only a few millivolts between inputs will shift the output from one supply limit to the other. Feedback may be added to increase speed and produce a snap action. One input is often returned to a reference voltage, producing in alarm or a limit detector.

Op amps may also be used in groups. One example is the low-distortion sine-wave oscillator of Fig. 5J, in which three op amps generate a precision sine wave. Both sine and cosine outputs, differing in phase by 90° are produced. An external amplitude stabilization circ:uit is required, but not shown. Output frequency is determined solely by resistor and capacitor values and their stability.

Computer Circuits

The analog computer industry was the birthplace and once the only home of the operational amplifier. In fact the name comes from the use of op amps to perform mathematical operations. Many of these circuits are of industrywide interest and use.

Perhaps the simplest op-amp circuit is the inverter. This is an op amp with identical input and feedback resistors. Whatever signal gets fed in, minus that signal appears at the output, thus performing the sign-changing operation.

Addition is performed by the circuit of Fig. 6A. Here the currents from inputs $E 1, E 2$, and $E 3$ are summed and the negative of their sum appears at the output. Since the negative input is always very near ground because of feedback, there is no interaction among the three sources. Resistor R is adjusted to obtain the desired drift performamce.

By shifting the resistor values around, the basic summing
(ircuit maly also perform saling and weighting operations. For instance, a $30,(0)(0)-(0) 1$ feedback resistor would produce an output equal to minus three times the sum of the inputs; a smaller feedback resistor wonld have the opposite effect. By changing only one input resistor without changing the other, one input may be weighted more heavily than the other. Thus, bey a suitable choice of resistors, the basic summing circuit could perform such operations as $E_{\text {urr }}=$ $-(0.5(E 1+3 E 2+(0.6 E 3)$.
Subtraction is performed by inverting one input signal and then adding.

Two very important mathematical operations are integration and differentiation. Integration is simply finding the area under a curve, while differentiation involves finding the slope of a curve at a given point. The op-amp integration circuit is shown in Fig. 6il3, while the differentiation circuit is shown in Fig. 6C. The integrator also serves as a low-pass filter, while the differentiator also serves as a high-pass filter, both with 6 di3/octave slopes.

The differentiator circuit's gain increases indefinitely with fresuency, which obviously brings albout high-frecquenc: noise problems. The circuit camot be used as shown. Fig. (iD shows a practical form of differentiator in which a gainlimiting resistor and some high-frequency compensation have been added to limit the high-frequency noise, yet still provide a good approximation to the derivative of the lower frequency inputs.

These two circuits are very important in solving adsanced problems, particularly mathematics involsing differential coruations. Since most of the laws of physics. electronics, thermodynamics, aterodynamics, and chemical reactions can be expressed in differential-equation form, the use of operation amplifiers for equation solution can be a very valuable and powerful analysis tool.

Active Network Synthesis

Perhaps the newest area in which operational amplifiers are beginning to find wide use is in active network synthesis. There is increasing pressure in industry to minimize the use of inductors. Indnctors are big, heary, expensive. and never obtained without some extermal field, significant resistance, and distributed capacitance. Worst of all, no one has yet found any practical way to stuff them into an integrated-circuit package. If we can find some circuit that obeys all the electrical laws of inductance without the necessity of a big coil of wire and a core, we have accomplished our purpose. Operational amplifiers are extensively used for this purpose.

One basic scheme is shown in Fig. 7A. If two networks are connected around an op amp as shown, the gain will equal the ratio of the transfer impedances of the two networks. Since we are using three-terminal networks, and since the op amp is capable of adding energy to the circuit, we can do many things with this circuit that are impossible with two-terminal passive resistors and capaciators.

(A)

(8)

Fig. 7. Operational amplifiers in active network synthesis. (A) One form of active filter. (B) A twin-T network is identical to an LC parallel resanant circuit except for the " $Q^{\prime \prime}$. (C) Circuit to realize "Q" of 14 without using an inductor.

Fig. 73 shows an interesting three-terminal network called a twin-T circuit. It exhibits resonance in the same mamer as an ordinary LC: circuit does. It has one limita-tion-its maximum " $\dot{\rho}$ " is only $1 / 4$. If we combine an op amp with a parallel twin-T network, we can multiply the "()" electronically to any reasonable level. A gain of 40 would bring the "()" up to J0. We then have a resonant "RLC"' circuit of controllable center frequency and bandwidth with no large, bulky inductors required even for low-frequency operation.

One example is shown in Fig. TC where an operational amplifier is used to realize a resonant effect and a " (?" of 14 at a frequency of $14(0) \mathrm{Hz}$. As the desired "()" increases, the tolerances on the components and the gain become more and more severe. From a practical standpoint, values of "()" greater tham 25 are very (lifficult to realize at the present time. Note that the entire circuit shown cam be placed in a space much smaller than that occupied by the single inductor it replaces.

Fig. 6. Computer opera-tional-amplifier circuits. (A) Additian. (B) Integratian. (C) Differentiation. (D) Practical operatian-al-amplifier differentiator.

