

Cutaway view of integrated circuit mounted in 14 -lead flat pack.

Linear Integrated Circuits: What's Available?

Abstract

A surver of what the various manufacturers are now offering, arranged by circuit application. The article discusses where IC's can be used, their specs, what they cost, and how they are designed into circuits.

TTHE big breahthrough has arrived. Linear integrated circuits are fimally distributor stock items, and they are available toclay in a wide variety of sizes, perfomance levels, and circuits from at least a half-dozen major mamfactmers. Many linear IC"s are now quite low in cost, with mane devices in the $\$ 2$ to $\$ 12$ cad: price range.

For instance, a complete TO-5 (an sized i.f. strix for a television set or FM receiver can be purchased for s?. A hearing-aid-sized audio amplifier cam be obtained for

Fig. 1. The circuit of the Westinghouse WC183, a class-B audio amplifier IC which combines high gain and up to 100-mW cutput.

S10.50. One r.f. amplifier consts $\$ 4.40$, a second $S 4.5(0)$ and a third $s t .5()$. Other linear integrated circuits are still very high-priced, hut these frequently offer performance adrantages mavailable in any other form of circuitry.
Let's take a closer look at some of the more notemonthe linear integrateds. Everything to be described is now distributor stock and available for immediate use. Prices in parentheses are approximate single-quantity cost at the time of publication. Sources of data sheets and distributor lists are indicated in Table 1.

Audio Amplifiers

The Texas Instruments SNI22() ($\$ 16.2(0)$ is a linear IC designed specifically for hearing aids but also useful for a wide variety of vers-low-level, high-gain audio applications. The frequency response has heen optimized for voice applications. Maximum ontput power is thre milliwatts at a 5% distortion level, and total voltage gatin is $16,000(0$ ($8+\mathrm{dB}$) when the device is powered be a single $1.5-\mathrm{fol}$, t-milliampere cell. The ten-lead Hat pack used has provision for an external gain control. Either an output transformer or a center-tapped earphone is nomatly required. The single-cell operation is a most important advantage for subminiature hearing aids as woll as orbital satellite applicatioms.

More audio power is offered hy the Westinghouse WC18:3 ($\$ 10.5(0)$, the circuit of which is shown in Fig. 1. Available either in a ten-lead flat pack or a twelve-pin TO-5 style can, this linear IC is able to produce as much as 100 milliwatts of audio output with a voltage gain of over :30,0)(0) (90 (13). Frequency response is flat from 50 Hz to beyond 20 kIIz, and reasonable andio quality may be obtained at low output levels. Although 6 volts is required for maximmo gain and output, the WC183 will also operate with a single 1.5 -volt cell. In this mode, a voltage gain of 100()$(72 \mathrm{~dB})$ is combined with a three-millivatt output.

Fig. 2. Frequency response along with a number of typical circuit app!ications for the WCI 83 integrated circuit.

The WC:183 is particularly suited to experimental uses, some of which are suggested in Fig. 2. Sufficient audio power is arailable for low-level recorder monitors, intercoms for low-moise areas, and similar applications.

Higher Power Audio IC's

The RCA CA:30)7 ($\$ 6.00)$ is an audio driser that may be combined with an output stage and transformer to prodace 30) milliwatts or more of audio power. This twelvepin TO-5 style packiage provides a power gain of 160 (22 (l13) and is supplied with pusti-pull input and output. It serves nicely as a transformerless phase splitter and driver for class-B audio-output stages. Feedlback is easily provided to automatically hold the output stage bias levels at optimum values.

Higher power auclio IC's are still scarce and expensive, owing to the heat problems associated with sul)stantial signal levels. Motorola's MCI.524 is one 10-pin TO-5 style can linear IC that can supply one watt of audio-output power. It is oriented towards a military tramsecier market and, as such, has a military reliability and a military price tag (Si(0). A habrid construction technique is used in which the lower level circuitry is fully integrated, while the output stage consists of discrete transistors. A photo of the unit is shown on page 41.

Incidentally, for those with a military budget, this amplifier is strictly hi-fi. It has a voltage gain of 1000 (60 (1B) and can provide $9(0)$ milliwatts of audio output with less than 0.6\% harmonic clistortion. Frequency response is Hat from 20 Hz to over 300 kHz . Dual 6 -volt supplies are required.

Low-cost, high-power audio integrateds are still well around the comer and will stay there montil a better means of heatsinking IC's becomes practical or else until the switching-mode audio-amplifier schemes become more fully developed. NASA has recently demonstrated a one-watt
switching-mode (class-D) auclio amplifier that may readily be integrated. This is an important step towards solution of the high-power andio-IC: problem.

R.F. and I.F. Amplifiers

R.f. and i.f. amplifiers form the application area where the majority of low-cost linear integrateds have recently been introduced. Fairchild.s "A7(0) ($\$ 4.50)$ is an interesting entry. This 8 -pin TO-5 style package functions as a self-limiting i.f. amplifier with up to 41 clecibels (112:1) of voltage gain and may be operated either single-ended or

Table 1. Sources of linear IC's covered in the text.

```
FAFRCHII.D SEMICONDUCTOR
313 Fairchild Drive
Mountain View. California
GENERAL INSTRUMENT SEMICONDUCTOR
600 West John Street
Hicksville, New York
GENERAL MICROELECTRONICS INC.
2920 San Ysidro Way
Santa Clara, California
MOTOROLA SEMICONDUCTOR
Eox }95
Phoenix, Arizona 85001
RADIO CORPORATION OF AMERICA
Electronic Components and Devices
Harrison, New Jersey
TEXAS INSTRUMENTS
P.O. Box }501
Dallas, Texas
WESTINGH USE MOLECULAR ELECTRONICS
Box }773
Elkridge, Maryland 21227
```


Fig. 3. A Citizens Band receiver using four WC1146 wide-band integrated-circuit amplifiers.
push-pull. The limiting action is symmetric and non-saturating, making the μ A7()3 excellent for high-quality F.M i.f. strips. (Sce the article "An Integrated Circuit for Consumer Products" in our October issuc.-Editors) For non-i.f. applications, this IC also serves as a wide-band amplifier, a voltage-controlled oscillator, or an FM mixer useful above 10) . 1 H Hz .

RCA's i.f. amplifier, the CA3002 ($\$ 4.40$), is similar in purpose but has the added feature of a $10,000: 1$ (80 dB) electronic gain control (a.g.c.) range. A push-pull input is combined with a single-ended output, and an internal coupling capacitor is provided for direct interstage coupling in the $1-$ to $10-\mathrm{MH}$ z range. Additional capacitance or transformer coupling may be used at lower frequencies. Voltage gain is typically $10: 1(20 \mathrm{~dB})$. This same IC is also useful as a product detector, a Schmitt trigger, or a wide-band amplifier.

Westinghouse's candidate is the VVC1146 (\$10.50), a miversal direct-coupled, two-stage negative-feedback amplifier that may be used for virtually any r.f. or i.f. application below 100 MHz . For instance, Fig. 3 shows a highquality Citizens Band receiver which uses nothing but the WCli46's throughout. One serves as an r.f. stage, followed by an oscillator-mixer, an i.f. stage, and finally a detector and audio-output stage. An input antenna transformer, a ceramic filter, a crystal, and several capacitors complete the circuit. Each IC is capable of a high-frequency gain of 6: $1(16 \mathrm{~d} 13)$, and automatic gain control is available.
Excellent high-frefuency performance is obtainable in the Motorola MClllo (\$25), an emitter-coupled amplifier good to 300 MH . The five-lead TO-5 style can IC offers a power gain of 400 ($26 \mathrm{dl3}$) at 100 MHz , with a typical noise figure of only 4 dB . The MC:1110 operates over a -.55 to $+12.5^{\circ} \mathrm{C}$ range and is well suited for front-end, r.f., and i.f. applications in high-quality commmications gear. Typical is the radar $60-\mathrm{AHHz}$ i.f. strip shown in Fig. 4 which
offers a power gain of 80 dB with a $6-\mathrm{MHz}$ bandwidth and a 6 -d13 noise figure. Four IC's are needed.

RCA's CA3004, CA300.5, and CA3006 (\$4.40, \$4.80, and $\$ 6.80$) round out the r.f. and i.f. linear-IC picture. These consist of a differential input stage and an internal con-trolled-current source. The amplifiers may be operated either in a differential or a cascode mamer. No collector resistors are provided, as these IC's are normally used in transformer-coupled applications where interstage transfomers determine the over-all frequency response. The three IC's differ in input offsets, gain, and linearity. All are potentially useful from d.c. to 100 MHz and have a very good a.g.c. capability. Important applications include use as detectors, mixers, limiters, modulators, and as cascode r.f. amplifiers.

Differential Amplifiers

It is sometimes desirable to compare two input signals against each other and produce an output proportional to the difference between the two. This is often done in d.c. amplifying systems, servo loops, error detectors, and regulated power supplies.

A differential amplifier is normally called on in these applications. Formerly, this meant expensive matched transistors, critical heatsinking, and perhaps external stabilization circuits to obtain good d.c. performance. Linear integrateds eliminate all of this. The transistors in an IC are practically identical in size and material. Due to their proximity, they must be at the same temperature, so the transistors track beautifully over wide temperature ranges.
Several companies manufacture linear-IC differential amplifiers. The Westinghouse WS1 15T ($\$ 10.50$) offers some interesting performance features. It consists of four Dar-lington-comnected differential emitter-followers combined with an internal controllable current source. Input impedance is typically half a megolim and the frequency response

Fig. 4. A $60-\mathrm{MHz}_{\mathrm{z}}$ radar i.f. amplifier using four MCI110 IC's.

Close-up of an integrated circuit in well of a flat pack.

is dood from (l.c. to 1.50 kl \%. Drift is typically 10 microvolts per degree C, which means that over a 10()$^{\circ} \mathrm{C}$ operating range, an "extra" millivolt may appear at one input with respect to the other. For wide temperature operation, input signals as small as 10 millivolts may be processed with little error. Limited temperature range circuits will allow the d.e. processing of $10(0)$-microvolt input signals. The $11(: 115 \mathrm{~T}$ offers a voltage gain of 50 and comes in an eight-lead TO-5 style cam.

Motorola has a whole family of integrated differential amplifiers. The most versatile is perhaps the MC1519) ($\$.5(0)$) as $n-p-n$ input transistors are combined with complementary matched $p-n-p$ output transistors. This $n-p-n-1$ $p-n-p$ configuration allows a variety of intercomections, all of which readily track over a wide temperature range. A gain of 4.5()() is combined with a $1-$-Milz bandwidth in the ten-lead TO-s type package.

The Motorola $11(1.525$ through MC. 1.528 devices make up a family of medimm-priced differential amplifiers, available either as all $p-n-p$ or all $n-p-n$, with or without Darlington inputs. An $n-p-n$ and $n-n-p$ IC may be cascaded for extremely high gain and excellent temperature tracking.

One of Texas Instruments' differential amplifier IC's is the SN723 (527.60$)$. Housed in a 14 -lead Hat pack, this particular IC offers a voltage gain of $180(0)(65 \mathrm{~d} 13)$, a 1.50 kIIz bandwidth, and a 2.50 -olom output impedance. The SN72:3 nomally uses dual 12 -volt power smpplies.

Operational Amplifiers

An operational amplifier is any high-gain d.c.-coupled bipolar amplifier with low offset. Its unique performance feature is that the gain may be precisely controlled by extemal resistors and (apaccitors. Operational amplifiers have long been used in amalog computers, but because lowcost linear IC operational amplifiers are now available, this basic amplifier is begimning to find very wide use. Once again, linear IC's climinate many of the temperature and tracking problems that formerly plagued the discrete tube and transistor circuits. Extermal stabilization is now only very rarely required, thanks to the performance calpalbilities of today's linear IC's.

Important operational-amplifier applications are in precision wadeform generation, controllable gain and bandwidth amplifiers, d.c.-coupled amplifiers, and active network synthesis. The latter is a new waly of using resistors, capacitors. and operational amplifiers to simulate inductance and LCC filters without using coils or transformers.

A complex IC shown here along with some grains of rice.

One-watt audio power amplifier using hybrid IC technique.
RC.A's (CA3010 (\$12) is one of the lowest priced operattional amplifiers available today. It offers a voltage gain of $1000(60$ (13), a $30(0)-\mathrm{kHz}$ bandwidth, and a peak-topeak output swing of seven volts. The CA3010 is housed in a 12 -lead TO-5 style case. A second IC, the C.A30)8, is the iclentical circuit in a flat package at a slightly higher cost.

Motorola offers four operational amplifiers, the MC1430, MC.431, M(:1530, and MC1531 ($\$ 18$ to $\$ 30)$), which differ mostly in input impedance and operating tomperature ranges. Darlington inputs are supplied on the MC1431 and MC:1531.
Thexas Insirmments procluces one low-cost operational amplifier, the SNT2. (S16.2()), and several premimen units which are primarily intended for military usage. All are in the ten-lead flat package.
The Westinghouse line consists of half a dozen IC's ranging in price from $S \geq 0$ to $\$ 7(0)$. One dual unit offers two independent operational amplifiers in a single TO-5 style package. Since operational amplifiers are often used in groups, such a confignation results in reduced space requirements and simplified wiring.

Fairchild smpplies four distributor stock operational annplifier IC's, the $\mu \mathrm{A} 7(0)$ and the $\mu \mathrm{A} 7(0)$. Each has a commercial "C" version and a military "A" version as identified by a suffix ($\$ 1+\mathrm{t}$) $\$ 22$).

There are many other operational amplifiers on the market, but most of the ones we have not mentioned are preminm units of limited availability. The choice of which operational-amplifier IC should be employed is highly dependent upon the specific application, and a careful study of the data sheets of likely candidates is in order before a particular device is selected.

Other Amplifiers

The CA30)(($\$ 6.80$) is an RCA ten-pin TO-5 style linear IC: intencled for d.c. amplifier use but also quite applicable to feedback amplifiers, crystal oscillators, modulators, and mixers. It consists of four transistors in a differential Darlington configuration and a controllable transistor and two-diode corrent source. A 200 -ohm input impedince is combined with a voltage gain of 50 and a d.ce to $30-\mathrm{MHz}$ frequency response.

A second RCA linear IC, the CA3001 ($\$ 6.40)$), is intended for video amplifiers and other wide-band amplifier applications. (ircuitry is somewhat similar to the (:A:30)() except that emitter followers are added for low output impedance and internal conpling cappacitors are provided. This IC: has a push-pull input and output, a $9: 1$ voltage gain, and a $16-1 / \mathrm{Hz}$ frequency response. The circuit finds use in video amplifiers and other wide-band amplifiers

A complete $\mathbf{1 2 0} \mathbf{2 0} \mathbf{M H z}$ transceiver built with linear IC's.
where the balanced, push-pull configuration serves to kecp r.f. signals off the power-supply lines, allowing several stages to be cascaded with a minimum of supply decoupling and stability problems.

The intemal coupling capacitors are useful from 1 to 20) MHz , enabling the IC's to be direct-coupled. A threestage amplifier with a gain of more than 1000 from 10 kHz to 10 MHz is shown in Fig. 5. Here additional external capacitors have been used to obtain the better lower frequency response. Still larger capacitors would allow operation into the sub-audio region, making this particular circuit well suited for oscilloscope preamplifiers and other wideband, low-level amplifiers.

Comparators

Comparators are used to answer the question, "Which one is bigger?" when two inputs are applied. One input is often a reference voltage. In this mode, a comparator serves as a limit detector, an alarm, an analog-to-digital converter, or a sense amplifier for a computer's core memory. By using the output of a comparator as its own reference, a Schmitt trigger with controllable threshold voltage and hysteresis, both of which may be made zero, positive, or negative, is obtained. This configuration is of value in level detectors, alarms, tachometers, and anywhere clse a snap-action output is required the instant a slowly changing input voltage crosses a critical value.

Fairchild's $\mu \mathrm{A} 7 \mathrm{l}(\mathrm{OC}(57.75)$ offers a comparator with a 1 -millivolt resolution and a $4($)-nanosecond response time to changing inputs. It then comerts its response into a digital signal compatible with digital integrated circuits. The voltage gain of the eight-pin TO-5 style IC is $120(0)$ (62 (dB). Linear input signals up to 5 volts may be accommodated. Schmitt-trigger operation is obtained by cross-coupling output and input with two resistors.

Another Fairchild unit, the ,uA711, is a dual version of the 710 with an added feature called a "strobe," which allows the output of each comparator to be independently enabled or interrogated. One important application is in magnetic-core sense amplifiers, but this IC will find use anywhere several comparators would normally be emploved in related circuits. As with other Fairchild units, both premium military versions and limited-temperature commercial versions are available.

Complete I.F. Amplifiers \& Discriminators

Certainly, one of the most impressive low-cost linear integrateds available today is the RC:I CA:30) 3 (52.65). This ten-pin TO-5 style IC is a complete i.f. and audio section for a television $4.5-\mathrm{MHz}$ or a high-quality FM $10.7-$ MHz i.f. strip, Inside the can are three self-limiting i.f. stages, a discriminator, a dual audio stage, and a regulated power supply. The twelve transistors and twelve diodes add up to eleven cents per active device, a price totally ummatched by discrete circuitry. (Refer to "TV Set Uses Integrated Circuit" in our June issuc.-Editors)

There are three other similar IC's in the RCA line, two without the discriminator and audio stage (CA3011 and CA3(012) and one with a higher voltage capability, the CA3014. These range in price from $\$ 2.00$ to $\$ 3.65$ each and lend themselves to many non-FM applications as well. Typical would be wide-band limiters and amplifiers often found in industrial instrumentation circuitry.

M(OS Analog Gates

We can conclude our survey with some remarkable IC's using MOS (metal oxide semiconductor) technology. Called commutators, analog gates, or multiplexers, these 1 C 's are both linear and digital at the same time.

The units serve as high-speed selector switches of the single-pole, multiple-throw variety. The MOS technology offers several unique advantages. Analog or varying input signals up to ten volts in amplitude of cither polarity are switched in a cl.ce-coupled manner with zero offset, a feat that no ordinary transistor, IC, or vacuum tube can ever hope to perform. Further, there is only insignificant coupling between the signal voltages and the input switching waveforms. Practically no input switching power is reduired, as the input impedance on the switching inputs is typically several thousind megolims.

Being brand-new devices, they are still expensive, but the analog gates are already finding wide use in industrial telemetry and sampling circuitry as well as in radar-image-processing circuitry.

The Fairchild $\mu \mathrm{M} 3700$ ($\$ 62.50)$ is a representative sample of the dozen or so MOS analog gates now available. It may be used as a single-pole, fiveposition switch or as a single-pole, four-position switch with an all-chamel blanking option. Any position can handle ± 10 volts of analog signal. "On" resistance is around 1.50 ohms with
(Continucel on page 76)

THE WORLD'S MOST DISTINGUISHED PHOTOGRAPHIC ANNUAL

AND THE WORLD'S LaRGEST SELIING PUBLICATION OF ITS KIND

For almost 20 years, in every corner of the world, the name PHOTOGRAPHY ANNUAL has meant just one thing: photographic excellence. The 1967 edition will show you why. It's the best yet. A brilliant collection of the year's most stimulating photographs, taken by the world's most gifted photographers and painstakingly selected by the editors of Popular Photography.

Over 200 exciting pages of superb, provocative pictures - magnificently reproduced in stunning color and dramatic black and white-and described in full technical detail to help you improve your photographic skills.
No wonder the PHOTOGRAPHY ANNUAL becomes a collector's item as soon as it goes on sale... Why it outsells by far any similar publication in the field ... why you'll turn to it again and again, month after month, year after year.

Order your copy now only $\$ 1.50$
Get the Handsome LEATHERFLEXCOVERED EDITION for just \$3 P.P. PHOTOGRAPHY ANNUAL is also available in a splendid deluxe edition. Rugged Leatherflex cover provides lasting prolection yet is softly texlasting protection yet is softly textured and gold-embossed for the
look of elegance. A collector's item -a superb addition to your Library of Photo Classics. And it's yours, for just $\$ 3$ postpaid, when you check the appropriate box on the order form.

Ziff-Davis Service Division, Dept. PA

589 Broadway, New York, N. Y. 10012
Please send my copy of the 1967 PHOTOGRAPHY ANNUAL.
\square I am enclosing $\$ 1.50$ plus 15 c for shipping and handling for the Regular Edition. ($\$ 2.00$ for orders outside U.S.A.)
\square I am enclosing $\$ 3.00$. Please send me, postpaid, the outside U.S.A.) (Please allow 3 additional weeks for delivery of the Deluxe Edition.)

Diode Meter Protectors
(Continued from page 5i)

fusing at B in Fig. 313 sidesteps fuse resistance problenos and also protects the meter shomts. If the highest selectable conrent range is above the fuse rating, place the fuse at A as showne. Fusing at Arequires that the fuse resistance be wo larger than l\% of the meter resistance to awoid excessive (lecalib)ration.

 pere fuse at \backslash, along with a diode halsing at least a six-ampere surge rating. Fuse resistance is wo problem in Fig. 3C due to high meter resistance.

Diorle Clipping

D.c. compents in pulse and multivil)rator circuits, mafiltered battery chaugers, and monftered d.c. SC.R power supplies often have very high peak-to-average values. Typical d.ce meters respond to average values. By voltage-limiting action, the diocle proteceno will clip the peaks, resulting in very large meter error, particularly near full scale.

Fig. 4 shoovs the voltage wareforms observed across the load coment meter of an unfiltered half-wave battery charger in operation. Peak voltage (V_{r}) to average $\left(V_{n, n}\right)$ is $!$) to 1 in this catse. Upon commecting the cliode, it clipped at voltage $V 1$ and introduced a meter error of nearly 5o\%. (Compare $V_{\text {ar, }}$ in Fig. 4ls with $V_{\|, »}$ in Fig. 4A.)

To detcct clipping, switch the voo.m. to a higher corrent range and compare readings. A large clifference inclicates diode clipping, which cant be reduced or eliminated by using a higher current range and restricting readlings to the lower portions of the scale.

An effective remedy is to commect a capacitor across the meter terminals which will act like a filter for the a.c. eomponents. Sizes may vary from . Ol$\mu \mathrm{F}$ disc types to $5(0-\mu \mathrm{F}$ trininsistor electrolytices, depending upon repetition frequencies and meter and circuit resistances. T^{\prime} o be certain of obtaining the desired results, compare meter inclications with the diocle remored, diocle attached, and with diode and capacitor commected. A capacitor permanently connected across the meter terminals has little or no effect on the v.o.m. a.c. ranges but this should be checked for the particular instrument being used.

Tivo diocles in series will clouble the meter's immomity to diode elipping. It will also reduce diode insertion error by more than one-half. However, it will double the overload factor by doubling the limiting voltage. But this is an acceptable compromise for meters having a low factor around $3 \times$ with one diode.

Diode Sclection

The lower corrent rated diodes are
preferred for use with the more sensitive high-resistance meters. This reduces diode insertion errors to a minimum. The higher rated diodes are preferred for the lower resistance meters because they have high corrent-hanclling ab)ility:

Ordinary top-hat and epoxy diodes are often suitable for uise als protectors but may introduce larger diode insertion errors thath the commercial protectors. Solect the most suitable by uoting the meter ermer at full seale on the loueest coment range ('se two diodes back-to-back for vo. o.m.s. as in l'ige 3.A.

When the meter curent range is not very small compared with the diode rating, the diocle is less able to carry the maior part of the slont-circuit current. Higher rated diodes such as stud tepes cain he used to offect an improvement. One exception is the circuit of Fig. BC. in which the diode always sees a fairly large resistance regardless of the rangeswitch setting. Higher coment meters are adequately protected with fastaction fusing alone.

To conclucle, v.o.min's should be safeguarded by a property matched diodefuse combination for maximum protection of the costly meter.

Linear IC's: What's Available
 (Comtinurel from page 42)

zero d.ce offset; the leakage when the gate is in another position is typically. 1 namoampere. The switch can safely. pass $1(0) \mathrm{mA}$ of courchit. Turn-on and turn-off times are 0.5 and 2 microseconds respectively.

Two other compinies presently offer analog gates. These are Comeral Microelectronics and Gencral Instrument Corp. The latter provicles an cutire line of switches in its MEMSOOO series, ranging from six-position single-throw through double-pole, double-throw. Prices are now in the $\$ 40$ to $\$ 90$ range. but the clevices will inevitably become low-cost IC’s once volume asage sets in and development costs have been returned.

