LIGHT DIMMER \& POWER-TOOL CONTROL

Construction of 250-watt dimmer using bilateral switching diode. Can be
 built into light switch.

MOST readers will find the electronic control to be described useful either as a light dimmer capable of handling up to 2.50 watts of lighting power or as a controller for regulating the specd of an clectric motor. It can be used to vary the speed of an electric drill or buffer. It can also be used to vary the heat of a small drying oven or other heat source; the temperature of a soldering iron or gun to allow both fine and heavy work from one iron; or the speed of a kitchenmixer or blender.

Unlike some similar devices, this low-cost, 2.50-watt unit is a full-wave proportional a.c. controller that will give a smooth, continuously variable control of power from zero to full load with a single turn of the control knol). The device is built from standard parts and can be assembled in a few evenings' work.
It is built into a conventional light switch and will fit the same space, providing a direct replacement for the conventional wall sivitch. A double box and a duplex outlet adapt the circuit for the control of power tools.

How It Works

The key to the unit's operation is the relatively new semiconductor device known as a "bilateral switching diode." This device has the unique ability to control large amounts of a.c. power but, unlike silicon controlled rectifiers or thyra-

Photos showing the construction and assembly of the dimmer.

(Left) The completely assembled light dimmer uses a special cover that is screwed into a standard wall-switch housing. (Center) Modified coverplate for the dimmer unit. (Right) Appearance of the completely installed unit.

Fig．1．When applied voltage is less than V rrillial (A) ，the diode draws liftle current；circuit is＂off．＂At higher volt－ ages（ B ）avalanche conduction causes diode to conduct heav－ ily．Current is now limited only by load（ C ）．Diode continues to conduct as long as current is at least $l_{\text {min．At }}$ lower cur－ rents，diode is returned to＂off＂state．The operation of the device at reverse voltage polarities is exactly the same．
trons，does it equally well in either current direction．This new switching diode is similar to two silicon controlled recti－ fiers that have been comected in paralled and in opposite directions．

There are two ways of turning an SCR on－the common one of pulsing the gate and the less familiar method of ex－ ceeding the forward breakover voltage and avalanching the SCR into conduction．Either method achieves the same re－ sults；the SCR turns on and stays on mintil the anode current reverses direction or is turned off．But this only works in one current direction．A second SCR is needed for bilateral ana－ lanche operation．This is what the bilateral switching diode does．Actually，this device is less complicated than the two－ SCR combination and consists of a single five－layer $n-n-p-n-p$ structure．

Fig． 1 shows the volt－ampere（VI）characteristics of a bilateral switching diode and details diode operation．Bas－ ically，we have a device that is in an＂off＂state until a high－ voltage pulse（in excess of the diode＇s $V_{\text {，ition }}$ ）avalanches the diode into conduction，or＂on．＂The diode stays＂on＂until the circuit current becomes nearly zero and then returns to the ＂off＂state．Current reversals every a．c．zero will always return the diocle to the＂off＂state．Since the circuit is＂off＂during the presence of the high－voltage pulse，very little pulse power is required to trigger the diode．This high－voltage pulse c：m be introduced by adding a transformer secondary in series with the diode and the load．This transformer must have a very low 60 －cycle a．c．impedance．A high－turns－ratio trans－ former would allow a low voltage pulse to be stepped up to a high enough voltage value to trigger the bilateral switching diocle．

By controlling the point in cach a．c．half cycle when this pulse occurs，load power may be varied from zero to full power．This is detailed in the waneforms that are illustrated in Fig．\geq ．

A variable timer is needed to determine when in each cycle the high－voltage pulse and diode＂turn－on＂is to be produced． A simple saw－tooth generator consisting of an $R C$ circuit shonted by a low－voltage bilateral switching diode is used． A resistor，R ，charges up a capacitor，C ，until the voltage across C exceeds V ，itw of the diode．The diode turns ＂on，＂discharging C ．If a high－voltage step－up transformer primary is in the discharge path，high－voltage spikes will be generated．Varving R will vary the delav and，ultimately，the amount of power reaching the load．Firther，if the $R C$ cir－
（uit is itself shmoted by the main bilateral switching diode （BSD），the entire operation is locked（synced）to the a．c． line．This insures that each delay time will start exactly as the a．c．input swings through zero and that the clelay will occur after every a．c．zero．Except for a capacitor filter to eliminate any r．f．noise from the high－voltage spike and the fast turn－on of the main diode，this is all there is to the dimmer－controller circuit which is to be described below．

Practical Circuit

With this design plan，the actual circuit of the unit in Fig． 3 is simple．The i．c．power（Continuced on peage Sl）

Fig．2．An RC network and a low－power bilateral switching diode can be used to generate a spike of voltage that can be stepped up by a transformer and used to turn on a main switch－ ing diode．With the network adjusted to produce spikes very early in each alternation（A），maximum load current flows． When spikes occur in the middle of the alternations（B），nor－ mal load voltage exists only half the time，so only half the power reaches the load．With the circuit set to trigger very late in the alternations（ C ），very little power reaches load．

Fig．3．Circuit of dimmer．DI determines the load current． D2 and RC network produce pulses that act to trigger D1．

RI 11,17100 nhm， $1 / 2$ ze．carbon res．
$R 2$－ $68,\left(10717\right.$ ohm． $1 / 2 z^{2}$ ．carbon res．
R3－250．1）ll ohm miniature pot（Cell－ tralab B－16－123 or pquiv．Note＇： Cellter shafs must be insillated from fromt plate alld operafor．） r．＇I－． $02 \mu f_{\text {．，}} 2100$ v．disc capacitor
Q＇？．I μ f．．21） 1 v．capacitor
（．j－． $22 \mu \mathrm{f}$ ．．50 v．flat Mylar capacitor （or two ．I μ f．dises in parallel）
SI－S．p．s．f．II－amp Leviton w＇all sacitch case＇（sep text）

Arnold At－500－187－1／A－P core． tupped at 2 t．
D）1－S amp，2（I）v，p，i，v，＂Ri－swituh＂ Tratisitron TBS－20－B．Sie text for other ratillss．l
D2－3i）v．silicon bilateral trigger di－ ode（Texas IIstruments T／．43 or Trallsifron ER－900．）
Note．D1．D2，and ．Armold core are available as a＂kif＂from Kimball Electronics． $3614 N$ ． 16 Strect．Phou－ uix，triz．，85016（⿺辶 SJ．0日 euch plus postabre．

Light Dimmer

(Continued from page 47)

to the load travels throngh a high-power BSD and the "secondar," of the autotransformer, \boldsymbol{T}, a small $3(3): 1$ toroidal tralusformer.
The timer consists of C3, DI? and the parallel combination of $R 22$ and $R: 3$. The low-voltage pulses generated by $D \underline{2}$ discharging e:3 are compled to the "primary" of T'l. After the 3():1 step-up, they appear as the : $30(0)$ - to $40(0)-\mathrm{ol}$ th highroltage spikes used to trisger $D 1$. A parallel combination of $R 2$ and $R: 3$ gives a much more linear brightuess control action and provides an adjustment for the amomint of "off" time. Resistor RI and capacitor C'2 comprise a dropping and phase-shifting network. This phase shift aids hrightness control linearity near maximum brightuess. Capacitor Cl is the r.l. interference filter and completes the controller circonit.

Parts size is somewhat critical if all the components are to be honsed in the $1 \frac{1}{2}$ cubic inches of space inside a conventional wall-mounted light switch so the smallest arailable part should be used in each instance.
$D 1$, the heart of the circuit, is a Tromsitron TBS-2()-B "Biswitch." It is normally rated at 5 amps at room temperature and has a p.i.v. rating of $2(0)$ volts. Since heat sinking is not provided in this circuit, current must be limited to less than 2 amperes to prevent oserheating of the part. This is the reason for specifying a $25(0)$-watt maximum load. $D 2$ is a stanclard Texas Instruments :3()-volt silicon trigger diode, the TI-4:3, available at jobbers.
$T 1$ consists of 62 tums of \#22 enameled magnet wire womd on a small powdered iron core and tapped at two turns. This core is a very low-cost item and is a factory stock item. Actually, any small torodial core of suitable material will work as well in this application.

Because of the limited space, R:3 is a miniature pot with its element built inside the (oontrol hinol) ancl is thus monnted on the outside of the controller c:ase.

The housing for the controller is the body of a Leciton 10-anp, "house-wiring" switch. The switch selected must be of the type with the terminals out the side of the case and with a simple riveted-on mominting plate that covers the entire front of the Bakelite casc. Any other type switch might not come apart as easily and might require mechanical reclesign.

Two parts have to be modified. $S 1$ and the blank outlet cover plate. Start with $S 1$. Drill out the two eyelets holding the Bakelite bods to the front plate. Remove and discard the eyelets, the front plate, and all moving parts. This leaves the (ase, two screw terminals, and two filber
spacers. File or drill out any bosses, spacers, or protrusions inside the switch body. The material is fairly soft and easily removed. Make a new front plate from $1 / 16^{\prime \prime}$ soft almminum. The lip bent down the one side adds strength to this part and should be flush with the switch bodly: See photos.

The brightness control, R3, is next monnted on the front plate. A secomel kuob) is chacd on top of the original to increase the gripping area and to insulate the operator from the hot center shaft of R:3. A ${ }^{2}$-inch diameter kmurled black knol) fits nicel?

The disasscmbled mit shown in the photo illustrates the comstruction technigur uscd. There are two lavers of parts. Start with the bottom layer and be sure to use spaghetti on all leads. Begin with C ? and $R I$. Noxt tightly hand wind the transformer and wedge it (lightly) in front of (\because. Diode $D I$ is next followed by D ㄹ. Wiring follows the schematic diagram of Fis. 3. The top layer consists of $C 1, R 2$ and $C 3$, added in that order, followed by the final two comections made to R3.

It is a good idea to test operation at this point. If the circuit is properly wired, the first $/$, tum of the pot should leave the lamp load out completely. This is the control "dead space." From this point, the control should provide smooth, linear operation from practically zero light to froll brilliance. The amount of dead space is determined bי $R 2$ 2. To increase it, raise the value of $R 2$: to lower it reduce the value. This compensates for high- or low-line voltage and for the type of load. Generally, less dead space is wanted in a power-tool control tham in a dimmer. Five percent of available load power won't turn over an electric drill but it will canse an obvious orange glow in a light bulb that is supposed to be off. This is a case of too much dead space in one case and too little in the other.

Complete the assembly with 4-40 screw's and muts where the eyclets used to be in S]. The coverplate, as modified, is then mounted with its own harchare.

This controller will only work on 60cycle a.c., 100 to 12.5 volts. The load must be held to less tham 2.5() watts and preferably below 200 watts during any long-term operation. Cencrally, an a.c. appliance motor with hrushes will work while any ace motor without brushes won't-and could he damaged. Any of the motor loads should be less than $\frac{1}{4}$ h.p.. as any higher rating would draw too much current.

The circuit may be nsed to control 600 watts be replacing $D \mid$ be the almost equal-cost TBS-2()-BS if the new $D 1$ is bolted to a heat sink. With this unit, however. the circuit will no longer fit iuto the switch plate. For 10(0) (watt (1 h.p. motor or lesss) control. $D I$ should be the TBS-2()-IS which requires a much larger heat siuk.

HERETS WHY

ELECTRONIC TRANSISTOR ICNITION

OUTPERFORMS all other IGNITION 4. systems

Every AEC-77 system is tested under actual operational load with 4 fouled and 4 operating spark plugs at $-20^{\circ} \mathrm{C}$ and at $105^{\circ} \mathrm{C}$ to insure reliability in usage under the most adverse operating conditions.
Every AEC 77 delivers 18,000 volts to the plugs at engine cranking as against 8,000 volts of
other ignitions \ldots guarantees instant starting other ignitions..gu
in any type weather.
AEC. 77 delivers 30,000 volts at $2,000 \mathrm{rpm}$, as against 18,000 volts of other ignitions.
AEC. 77 delivers 30,000 volts beyond $6,000 \mathrm{rpm}$, as against 2,000 volts of other ignitions.
AEC-77's constant high voltage output guarantees more complete combustion to release full engine power ... Increases gas mileage by 15%. keeps plugs and points clean beyond 50,000 miles engines run smoother, ., fires fouled plugs increases top speeds eliminates 4 out of
tune-ups . . and it's guaranteed for 3 full years.

Completely waterproof and shockproof... AEC-77 will pay for itself in 12,000 miles usage through will pay for itself in $12,000 \mathrm{mi}$
gas and maintenance savings!

World Champion Racing Driver Phil Hill states, "AEC-77 will improve a cars performance and economy."
Detailed easy to follow inDetailed easy to follow in-
structions make installation quick and simple by anyone in 20 minutes - no special tools or knowledge required.
$2,000,000$ miles of testing, 5 years of sales, with quality
 components such as General Motors Delco 15 ampere transistor (type 2N1358A). Motorola 50 watt zener diodes (type 1 N 2836 B), prove without a doubt the reliability of every AEC. 77.

Regardless of price, AEC-77, feature for feature at $\$ 49.95$ postpaid, cannot be duplicated or matched by any other system. Order now and Save $\$ 10.00$ by using the attached coupon, or see your local dealer.

COMPIME FACTORY wIEED SHSTEMS!

dee 7 tor Pastime cropid Gritish Curs 6这河 HED GOILS \& BALLAST RESISTORS OKLY?
 COMFLETE DO IT YOURSELF EIT!
HEC K 4 Hexathre trount mon
AUTOMOTIVE ELECTRONICS CO. | 387 PARK AVE., SO. NEW YORK. N.Y. 10016 | | NAME

ADDRESS

[AEC-77 For Negative ground 6/12v $\$ 39.95$ |
$1 \square$ AEC-77P For Positive ground 6/12 v $\$ 39.95$ I Kit \$32.95 400:1 Coil \$11.95 Batlast \$1.95 CIRCLE NO. 101 GREE BROCHURE ON AEC 77 SYSTEMS. EW. 7

