
Dodges & Burns for your Digital Camera!

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2003 as GuruGram #17
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Back in the "slopping in the slush" bad old days of conventional darkroom
photography, each phototech had their own secret methods of improving their
final results. Two of the most important of these were the dodging paddle and
the burning card.

A dodging paddle was used to hold back light by waving it over areas of the
paper being exposed in the enlarger. This would lighten certain selected areas.
The burning card had a small hole in it, so only selected photo portions would
receive more light. This would darken selected areas instead. In this manner,
errors of exposure or lighting could sometimes be corrected.

We’ve already seen in GuruGram #15 on Swings & Tilts how it is possible to take
any BMP bitmap image and replace each pixel with interpolated nearby ones,
thus correcting geometrical distortion, creating architectural perspective, or doing
intentional scanner-to-offaxis-photo fitting. A unique high resolution cubic spline
Basis Function technique gets used for maximum image fidelity.

In my new Dodges & Burns utility, we instead modify each and every selected
bitmap pixel in place, following a rule or set of rules. Besides traditional dodging
and burning, you can selectively alter intensity, saturation, gamma, contrast, hue,
chroma, and vignetting, and even handle selective transparent alpha overlays.
Plus doing masking, gray conversions, waterfall backgrounds, color separations,
knockouts, magic low JPEG artifact backgrounds, and gamma plots.

We’ll note in passing that, yes, you can do much of this with Photoshop. And
even some of it with ImgViewer/32. But here, all of the algorithms are out front
where you can directly work with them and customize them to your own needs.
You also have absolute and total control.

In general, the process is as follows: You first load the Dodges & Burns utilities
into a favorite word processor or editor. You then decide what you want to do
and then create a map or set of visual instructions over what portions of the
image will get emphasized, shifted, or altered in what manner.

—1—

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/psutils/swingt01.psl
http://www.tinaja.com/glib/expbmp.pdf
http://www.tinaja.com/glib/basis.pdf
http://www.tinaja.com/psutils/dodbur01.psl
http://www.adobe.com
http://www.arcatapet.net/imgv32.cfm
http://www.tinaja.com/psutils/dodbur01.psl

You then assign suitable filenames, both to locally available resources and target
outputs. You next pick an appropriate mode for what you wish to accomplish.
Followed by saving the routines under a new filename as an ordinary ASCII
textfile. Finally, you send your file to Acrobat Distiller, and your corrected BMP
image should appear in the expected file area.

These routines use my Gonzo Utilities and a copy needs to be made locally
available. While proudly not WYSIWYG, the process is easily learned and the
processing times are amazingly fast. A typical dodge and burn may take you a few
seconds. There are detailed examples at the end of DODBUR01.PSL which we will
expand upon here.

More on Gonzo and additional support appears on our PostScript, Acrobat,
Bitmapped Fonts, and GuruGram library pages. While custom assistance can be
found by way of our InfoPack library.

How it works

The basic dodge and burn concept is to grab a bitmap image one pixel at a time,
perhaps modify that pixel in a mode selectable way, and then rewrite the
changed image to a new file. A companion map array often gets used to
determine which pixels will get affected to what strength. To both simplify and
speed things up, the bitmaps are read and written one horizontal line at a time.
Additional info on the bitmap format appears in GuruGram #14.

At present, there are about a dozen different modes available. An appropriate
mode gets selected for the task at hand by predefining it as /dodgeburn before
activating the main dodge&burn code loop. Some of the modes now include…

dbmap Make an image of the map array.
 Certain maps may require scaling.

dbluminance Lighten or darken each pixel’s
 luminance per the current map.
 Does a classic dodge and/or burn.

dbsaturation Increase or decrease each pixel’s
 color saturation per the current map.

dbgamma Increase or decrease each pixel’s
 gamma value per the current map.
 Raises or lowers contrast or enhances
 extreme whites or blacks.

dbhue Shifts the hue and changes colors
 but preserving saturation.

 more…
—2—

http://www.adobe.com
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/psutils/dodbur01.psl
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/aafont01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/glib/expbmp.pdf
http://www.tinaja.com/gurgrm01.asp

dbvignette Creates Vignette edge effects by
 altering edge luminance.

dbgray Creates a Gray Image by using NTSC
 and human eye weighted luminance.

dbredsep Creates a red color separation by
 blackening blue and green pixels.

dbgreensep Creates a green color separation by
 blackening red and blue pixels.

dbbluesep Creates a blue color separation by
 blackening red and green pixels.

dbmask Creates a black mask of all
 pixels below a certain luminance.

dbtransblend Transparently alpha combines a
 background and overlay image.

The Map
The map is an array of numbers that sets the strength of the desired effect. Its size
can be anything from 2x2 on up and it need not be square. A key rule…

 The array position is the same as the image position.

Maps are automatically expanded and smoothed so they end up pretty much the
same size as the bitmap image. An final interpolation then gives an exact fit.

Let’s look at a map example. A typical "flash problem" is that the bottom left of
your picture is "too hot" while the exposure darkens towards upper right. Here’s a
luminance correcting mask that may fix this shading…

 /burn0.5SW { % 50% luminance reduction
 /dbdata [
 [0.750 0.825 1.000]
 [0.625 0.750 0.820]
 [0.500 0.625 0.750]
] store } store

Note that we’ve told the bottom left to darken by half amplitude, to reduce the
diagonal to three-quarters amplitude, but to leave the upper right at the full
original luminance.

And here is what this map looks like after lowpass filtering and expansion…

—3—

Because the human eye is exceptionally sensitive to slope discontinuities, an
expansion and filtering is normally done to get the map up to size. The present
lowpass filter algorithm is somewhat "Gaussian like". Expansion and filtering is
done by doubling the data points through averaging. Each point is then replaced
by half its value plus half the average of the previous and post point.

Five repeat filterings are typically done, set by a /filtertrips variable. This 1024X
data point multiplication eliminates anything disconcerting to the eye, but may
need reduced when sharper mask edges or larger array sizes (>20x20) are in use.
You can usually use the dbmap mode to view your actual maps.

While maps normally have data points in the 0 to 1 range, they may differ in
certain modes. For instance, a hue map might be in degrees of change from -360
to +360, while a mask map might be an actual white threshold such as 254. Note
that it is usually better to darken than strengthen if you are to avoid running
into any "superwhite" or "supersaturation" problems.

Gamma Curves

By suitably tampering with the transfer function of any image processing system,
you can selectively raise or lower midtone contrast, enhance or reduce highlights
or shadows, and do any of a number of other special effects and improvement
tricks. The gamma curve usually starts at black 0,0 and ends up as white 1,1. For
image fidelity, you should have a straight line between.

But, if your gamma curve is suitably "bent", all sorts of corrections are possible.
Ferinstance, a 0.5,0.5 slope above unity raises your midtone contrast. A less than
unity slope lowers midtone contrast. A "fast start" from 0,0 expands shadow
detail, while a "slow start" minimizes it. Doing so near 1,1 alters highlights.

A histogram analyzer is one way to find out where all your present pixels are and
how they can be improved. But most often, it will be obvious that there is a
contrast, highlight, or shadow problem. The usual correction method is to create
a 256 element table lookup array.

—4—

http://www.tinaja.com/psutils/histog01.psl
http://www.tinaja.com/glib/speedup2.pdf

My approach here was to define a gamma array such as this contrast raiser…

 /gamma [0 .05 .13 .5 .87 .95 1] store

Any number of equally spaced points can be used. This is expanded and 1D
filtered the same way we did the 2D map expansion to yield a 256 entry table.
The actual correction then consists of a fast and simple table lookup adjustment
for red, blue, and green.

If you do a /plotgammaflag true def you can view the actual gamma curve as
.PDF output…

Some Examples

Let’s briefly look at some of the sneaky things you can do with Dodges & Burns,
along with their underlying algorithms. Largely following the end demos…

Show the Mode Map — Uses mode dbmap and simply replaces each image pixel
with a gray pixel equal to the map value using 0 = black and 1 = white. Note that
some special purpose maps will need scaled before using this feature. Handy to
make sure the map is doing what it is supposed to and checking its alignment on
the image to be corrected.

Adjust the Luminance — Uses mode dbluminance and multiplies each red, blue,
and green pixel value by the map factor. Thus doing a classic dodge and burn. A
map value of 1.0 leaves the pixel color the same. A map value of 0 replaces it
with black. Map values above 1.0 will brighten the pixel, but this can lead to
oversaturation or overwhite conditions. These are clipped automatically.

Setting /holdwhite to true will prevent any changes to true white (255) pixels.
This is handy for paint "tow-over" transparency or later use of MAGFILL1.PSL.

gamma curve for
[0 0.05 0.13 0.5 0.87 0.95 1]

black INPUT white
black

O
U

T
P

U
T

white

—5—

http://www.tinaja.com/psutils/dodbur01.psl
http://www.tinaja.com/psutils/magfill1.psl

Similarly, booleans makeredchanges, makegreenchanges, and makebluechanges
let you selectively apply corrections to individual red, blue, or green pixel values.

Change Perceived Saturation — Uses mode dbsaturation to alter the "brilliance"
or "depth" of each color. The perceived saturation of each color follows this NTSC
and eye response formula…

 gray equivalent = 0.59 green + 0.30 red + 0.11 blue

To change perceived saturation, the gray equivalent of the pixel triad is first
calculated using the above formula. The current saturations are found as the
differences of red-gray, green-gray, and blue-gray. These differences then get
scaled by the map value to increase or decrease the color depths.

As before, booleans makeredchanges makegreenchanges and makebluechanges
let you selectively apply corrections to individual red, blue, or green pixel values.
Note that this is a different definition of saturation than in HSB.

Change to Gray Image — Uses mode dbgray to change a color image into an
equivalently perceived black and white one. Calculates the gray equivalent of the
pixel triad as above and then identically substitutes its value for all three color
pixels. Also useful to help determine whether a subtle problem is one needing
luminance or saturation correction.

Localized Blob Burn — Uses mode dbluminance to change only a small portion of
the image. The only difference is in the map where a tight spot is created rather
than a gradual gradient. As before, selective red, blue, or green corrections can be
individually made. Handy to correct a smaller defect in an image.

Luminance Vignette — Uses mode dbluminance to do an edge fadeout or a self
framing of an image such as this example…

—6—

http://www.tinaja.com/images/bargs/dintcj01.jpg

Actually, vignetting started out as defects in plate coating and off-axis lens
aberrations. While quiet useful as special effects, they easily can become way too
garish or cutsey-poo. And thus should be used with caution. A vignette is just a
dbluminance burn using a special map that either emphasizes or fades the
borders. Here is a typical "self-framing" mask example…

 /dbdata [/vv 0.55 store /ww 0.7 store
 [vv vv vv vv vv vv vv vv vv vv vv vv vv vv vv vv]
 [vv ww 1 1 1 1 1 1 1 1 1 1 1 1 ww vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv 1 1 1 1 1 1 1 1 1 1 1 1 1 1 vv]
 [vv ww 1 1 1 1 1 1 1 1 1 1 1 1 ww vv]
 [vv vv vv vv vv vv vv vv vv vv vv vv vv vv vv vv]
] store } store

A "fade to white" vignette is a tad trickier. But can easily be done with use of our
upcoming variable transparency dodge & burn mode.

Adjust the Hue — Uses mode dbhue to rotate all the colors uniformly around the
color wheel. Small adjustments make an image "warmer" or "cooler". Major ones
handle mind-boggling special effects.

HSB is simply a remapping of RGB that gives us direct control of hue, the actual
saturation, and brightness. In the HSB color model, the weakest RGB value gets
replaced by gray and becomes the brightness. The difference between your
strongest and weakest of RGB becomes the saturation. And the hue is
determined by the ratio of the strongest and next strongest RGB elements.

It turns out there are six different hexants in the 0 to 360 degree HSB color
wheel. Covering red through yellow, yellow through green, green through aqua,
aqua through blue, blue through violet, and finally violet back to red. Each one
has to be separately dealt with…

—7—

0 to 60 degrees Saturation is set by (R-B).
 Hue is 0 + 60*(G-B)/(R-B).
 Brightness is set by blue.
 Colors range red through yellow.

60 to 120 degrees Saturation is set by (G-B).
 Hue is 60 + 60*(1-((R-B)/(G-B)))
 Brightness is set by blue.
 Colors range yellow through green.

120 to 180 degrees Saturation is set by (G-R).
 Hue is 120 + 60*(B-R)/(G-R).
 Brightness is set by red.
 Colors range green through aqua.

180 to 240 degrees Saturation is set by (B-R).
 Hue is 180 + 60*(1-((G-R)/(B-R))).
 Brightness is set by red.
 Colors range aqua through blue.

240 to 300 degrees Saturation is set by (B-G).
 Hue is 240 + 60*(R-G)/(B-G).
 Brightness is set by green.
 Color range blue through violet.

300 to 360 degrees Saturation is set by (R-G).
 Hue is 300 + 60*(1-((B-G)/(R-G))).
 Brightness is set by green.
 Color range violet through red.

Hue image pixel correction gets done by converting the present RGB pixel triad
into HSB values, selecting the correct hexant, adding or subtracting your hue
correction from the map, reselecting a correct hexant, converting back to RGB,
and then storing to the new image. While avoiding any divide-by-zeros on hue
calculations. Allowable map values range from -360 to +360 degrees.

Note that the "saturation" definition in the HSB model does not allow for human
color perception differences. If you your shift hue too far, certain colors may
appear much brighter or darker than normal. Moving any of our dbsaturation
perception techniques over into HSB space gets tricky as it could cause both
missed colors and supersaturation problems.

Make a Chroma Waterfall Background — Uses mode dbchroma with significant
hue shifts to create rippling colors. Normally used on a background only that
starts with its central color. Actual subjects are then pasted in later.

—8—

Adjust Gamma or Contrast — Uses mode dbgamma and the gamma array we
looked at above to table lookup correct each pixel color value. The 256 entry
table is created ahead of time for speedup. Once again, steep midrange slopes
increase contrast, steep blacks expand shadows, steep white expand highlights.

Make a Black Mask — Uses mode dbmask to create an opaque knockout of the
subject. A pixel-by-pixel comparison is made with a threshold value (often 254)
and black (0) gets substituted for lower values and white (255) for higher. Also
useful to create litho and other extreme contrast effects.

Do Color Separations — Uses dbredsep, dbgreensep, or dbbluesep modes to
create red-only, green-only, or blue-only images. Each of the two unwanted
colors is simply replaced by black 0. While retaining a 24-bit RGB color image.
Besides traditional separations, these routines can sometimes extract extra detail
for near-white or near-black portions of an image. For one particular color (the
darkest of the lights and vice versa) may often contain more recoverable contrast
and more luminance detail.

Transparent Alpha Overlay — Uses the dbtransblend mode to selectively
combine two images into one. As an upgrade and improvement over our older
BLENDER.PSL found in our Bitmapped Fonts library. Uses a pair of background
and an overlay image files. If the map is 0, the background pixels are used. If the
map is 1, the overlay pixels are used. Intermediate map values create a
progressively transparent overlay. The algorithm used for each R, G, or B pixel
component is…

new pixel value = background + map*(overlay -background)

At present, both input images must be both the same size and have the same
horizontal and vertical resolution. If needed, the usual cropping or scaling can be
used to make this happen ahead of time. The output combined image is in itself
opaque and can be used like any other normal .BMP file.

As written, the dbtransblend code does a classic alpha overlay. It can easily be
converted to any of the two dozen or so alpha mask/replace options offered by
Acrobat 5. Plus dozens more. As can various custom true chroma or luminance
keys. As can combining two different sized images. Such code extensions await
your funding as a Synergetics Partner or Banner Advertiser.

For More Help

There are several support utilities on my website that can enhance your use of the
Doge & Burn and the Swings & Tilts packages. These include NOWHIT01.PSL that
eliminates any true white pixels to prevent "punchthru" on a white knockouts, our
MGFILL1.PSL magic backgrounder to get rid of JPEG edge artifacts, HISTOG01.PSL
histogram generator, and the BMPRPT01.PSL .BMP image analyzer.

—9—

http://www.tinaja.com/psutils/blender.psl
http://www.tinaja.com/aafont01.asp
http://www.adobe.com
http://www.tinaja.com/info01.asp
http://www.tinaja.com/advt01.asp
http://www.tinaja.com/psutils/dodbur01.psl
http://www.tinaja.com/psutils/swingt01.psl
http://www.tinaja.com/psutils/nowhit01.psl
http://www.tinaja.com/psutils/magfill1.psl
http://www.tinaja.com/psutils/histog01.psl
http://www.tinaja.com/psutils/bmprpt01.psl

Additional background along with related utilities and tutorials appears on our
GuruGram, PostScript, Acrobat, and Fonts & Bitmaps library pages.

Consulting assistance on any and all of these and related topics can be found at
http://www.tinaja.com/info01.asp. As can our image improvement services.

Additional GuruGrams await your ongoing support as a Synergetics Partner.

—10—

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/aafont01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

