
Finding the Minimum Distance
Between a Point and a Cubic Spline

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2007 as GuruGram #80
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

As we have seen here, here, here, here and here, cubic splines and their Bezier
Curve variants are a very efficient, very sparse, and very powerful way to draw
smooth continuous curves essential for typography, animation, and graphics.

An essential recurring question is how you quickly find the minimum distance
between a point in a plane and a given cubic spline. This becomes important
when least squares fitting fuzzy data or when modifying a spline to guarantee it
eventually passes through a given point.

There is no known single pass deterministic solution to this problem, so repeated
approximations have to be used. What follows is based on this paper. A typical
minimum distance problem might look something like this.…

— 80.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/glib/nubzlen1.pdf
http://www.tinaja.com/glib/nubz4pts1.pdf
http://www.tinaja.com/glib/gonzotut.pdf
http://www.tinaja.com/glib/cubemath.pdf
http://www.tinaja.com/text/fuzzybez.html
http://delivery.acm.org/10.1145/810000/801153/p229-plass.pdf?key1=801153&key2=0010608811&coll=GUIDE&dl=&CFID=15151515&CFTOKEN=6184618

We see a single cubic spline going from x=0, y=0 to x=20, y=20 as its t value
ranges from t=0 to t=1. The control points appear as black dots.

We also see a red point at 3, 5 whose nearest distance we seek. To keep things
simple, we will assume that the point is very near the curve. And that it has only
one minimum distance which lies somewhere between t=0 and t=1. And that we
are not yet excessively concerned about speed or algorithm efficiency.

We might simply guess t=0.3 as a good minimum, as per the lowest blue dot. You
would then find x(t) and y(t). And then subtract them to find both the current x
distance and the y distance to the point being measured. The vector distance will
be the square root of the sum of the squares of the x and the y errors.

Doing so would give us a distance of 2.214. Which is not half bad, but obviously
not the minimum. We could then continue increasing t till we pass the minimum,
reverse our path with smaller t increments, and keep going till we get near our
correct distance value of 1.28305. At t=0.384982.

Instead, we can work much smarter and greatly reduce the number of trips we
will need. Minimizing the distance squared does the same thing as minimizing the
distance and eliminates any nasty square root radicals. We can find the expression
for the current distance as a function of t and then find its derivative slope.
Setting this slope to zero would give us our needed minimum.

Unfortunately, the slope expression is a directly unsolvable fifth order polynomial.
Fortunately, we have a sneaky trick called Newton’s Method to deal with it.

Newton’s Method works well whenever you are already very near to the solution
of a well behaved function…

NEWTON’S METHOD OF SOLVING UGLY EQUATIONS —

 Better guess = good guess - (function)/(function slope)

Which leads to this easy-to-use minimum distance guess improver…

TO IMPROVE A MINIMUM DISTANCE SPLINE GUESS —

Better t guess = present t guess -

 [(deltax)*x’(t) + (deltay)*y’(t)] /

 [(x’(t))^2 + (y’(t))^2 + (deltax)*x’’(t) + (deltay)*y’’(t)]

Where deltax and deltay are the present error distances. x(t) is At^3 + Bt^2 + Ct
+ D, x’(t) is 3At2 + 2Bt + C, and x’’(t) is 6At + 2B.

— 80.2 —

Similarly, y(t) is Et^3 + Ft^2 +Gt + H, y’(t) is 3Et2 + 2Ft + G, and y’’(t) is 6Et + 2F.

Huh? Let’s try to repeat this in English…

TO IMPROVE A MINIMUM DISTANCE SPLINE GUESS —

To make a better guess of the t value needed for a minimum
distance to a point, REDUCE t by a fraction…

 whose numerator is the present x error times the present
 x’(t) slope PLUS the present y error times the present
 y(’t) slope.

 and whose denominator consists of four summed terms of
 x’(t) slope squared PLUS y’(t) slope squared PLUS the
 x error times the present x’’(t)slope-of-slope PLUS
 the y error times the present y’’(t) slope-of-slope.

BTW, equation (5) in the original paper is not nearly as scary and obtuse as it
looks. This is simply the function divided by its slope. As to the mystery terms in
the denominator, note that the derivative of x*y is x(dy) + y(dx). And that x’(t)
times the derivative of a function which coincidentally also is x’(t) produces an
x’(t)^2 term. And the same goes for y.

When you make this improved guess, you will find convergence to be very fast if
you are already very close. in this case, an initial guess and repeated improved
guesses give us results of…

 t = 0.30000 s = 2.21409
 t = 0.41878 s = 1.51473
 t = 0.38769 s = 1.28461
 t = 0.38498 s = 1.28305
 t = 0.38496 s = 1.28305

Thus, a single pass is "good enough" if you are already really close, but five or
more passes might be needed on a poorer first guess. And a really bad guess
might not even converge at all.

I’ve added a red checking circle of radius 1.28305 to our test point. On extreme
magnification, it seems to verify these equations by exactly hitting our spline
curve precisely and tangentially at the expected t value.

Some Code

What we have seen so far can be calculated manually or in most any computer
language. Naturally, I overwhelmingly prefer use of the exceptionally versatile
PostScript general purpose computing language and my Gonzo Utilities.

— 80.3 —

http://delivery.acm.org/10.1145/810000/801153/p229-plass.pdf?key1=801153&key2=0010608811&coll=GUIDE&dl=&CFID=15151515&CFTOKEN=6184618
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/gonzotut.pdf

Detailed code examples appear in figure1 (for gg80) of the sourcecode to this
GuruGram. We will only excerpt some key code concepts here.

Here is the derivation of how you relate spline power coefficients to control
points. The code to do so might go like this…

 /findAH {
 /A x3 x2 3 mul sub x1 3 mul add x0 sub store
 /E y3 y2 3 mul sub y1 3 mul add y0 sub store
 /B x2 3 mul x1 6 mul sub x0 3 mul add store
 /F y2 3 mul y1 6 mul sub y0 3 mul add store
 /C x1 3 mul x0 3 mul sub store
 /G y1 3 mul y0 3 mul sub store
 /D x0 store /H y0 store
 } store

And here is the "cubeless" method of finding x(t) and y(t) and their derivatives…

/findx {/ttt exch store A ttt mul B add ttt mul C add ttt
 mul D add /curx exch store} store

/findy {/ttt exch store E ttt mul F add ttt mul G add ttt
 mul H add /cury exch store} store

/finds {/curs curx xx sub dup mul cury yy sub dup mul add
 sqrt store} store

/xslope {tt dup mul 3 mul A mul tt 2 mul B mul add C
 add} store

/xslopeslope {tt 6 mul A mul B 2 mul add} store

/yslope {tt dup mul 3 mul E mul tt 2 mul F mul add G
 add} store

/yslopeslope {tt 6 mul E mul F 2 mul add store}

Note that you do not have to recalculate intermediate distances if you know
ahead of time that you are going to make five successive t improvements. You
need only make the finds calculation after your best guess.

The code is reasonably fast and can be further improved. Some alternative
enhancements are available if you need extreme speed for real time animation.

Finally, here is the t guess improver code…

— 80.4 —

http://www.tinaja.com/glib/cmindist.psl
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/cubemath.pdf
http://www.tinaja.com/glib/cubemath.pdf
http://www.cs.uiowa.edu/~kearney/pubs/CurvesAndSufacesClosestPoint.pdf
http://www.cs.uiowa.edu/~kearney/pubs/CurvesAndSufacesClosestPoint.pdf

/makebetterguess {
 xslope xslopeslope
 yslope yslopeslope
 /deltax curx xx sub store
 /deltay cury yy sub store

 deltax xslope mul
 deltay yslope mul add

 xslope dup mul
 yslope dup mul add
 deltax xslopeslope mul add
 deltay yslopeslope mul add div

 /tadj exch store
 /tt tt tadj sub store
 } store

For More Help

Similar tutorials and additional support materials are found on our Cubic Spline,
PostScript and our GurGram library pages. As always, Custom Consulting is
available on a cash and carry or contract basis. As are seminars.

For details, you can email don@tinaja.com. Or call (928) 428-4073.

— 80.5 —

http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/info01.asp
mailto:don@tinaja.com

