
Ultra High Legibility
Precision Bitmapped Fonts

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2004 as GuruGram #37
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Conventional PostScript and other font machinery tends to have legibility
problems when there are not enough display pixels available per character.
Instead, hand crafted but semi-automated variations of conventional fonts can be
used to create the highest possible viewability for very small image sizes.

I have added a new Precision Bitmap Font Repository on my Website that
includes many dozens of very small fonts and placement utilities. These have all
been carefully optimized for very low pixel counts. Such fonts will be in Bitmap
Format and can be directly cut and pasted into Paint or any fancier graphics
program.

Here is An Example that uses this Intermediate Transfer. And Another Example.

Important uses for ultra legible small fonts include…

 • Lettering improvement for eBay photos.
 • Sharpening .GIF banner ads.
 • Experimenting with eBook displays.
 • Tiny signs for model railroads and such.

High legibility is usually a more critical concern on visual displays. Because
displays will typically offer a much lower resolution than printers.

Acrobat and other font display techniques will often offer a classic antialiasing
that attempts to smooth out the "jaggies" of a traditional font. While certainly
good at this sort of thing, the net effect is a low pass filtering that will further
reduce the font visual clues and its legibility.

Instead, we will use a true antialiasing here in which each pixel gets replaced by
an appropriate integrated average of the font character and its background. It is
very important to note that each pixel stands on its own and does not use any
adjacent pixel info. True antialiasing can add as much as thirty times the visual
legibility clues.

— 37.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/post01.asp
http://www.tinaja.com/bmfont01.asp
http://www.tinaja.com
http://www.tinaja/com/psutils/bmtypewr.psl
http://www.tinaja.com/glib/expbmp.pdf
http://www.tinaja.com/glib/expbmp.pdf
http://www.tinaja.com/images/bargs/ki710101.jpg
http://www.tinaja.com/bmfonts/lettex01.bmp
http://www.tinaja.com/images/bargs/hp333601.jpg
http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100
http://www.tinaja.com/advt01.asp
http://www.tinaja.com/acrob01.asp

The key secrets to our ultra legible fonts shown here are …

 • Carefully LOCK the characters to the display pixels.
 • Use pixels that are a font/background blended average.
 • Use fonts ONLY at their intended size and sharpness.

Fonts are sized and stretched as needed by changing…

The Bitbox

A bitbox is simply how many pixels wide by high a character is…

 BITBOX - The height and width of any character in pixels.
 Normally referenced to an upper case "A".

For instance, a f607bg.txt font will be six pixels wide by seven pixels high for an
upper case "A" and most other letters. This is pretty much a "normal" font that is
neither expanded nor compressed.

Numerals will typically be slightly narrower than characters. You have the option
of making the numeral "1" tighter for better text justification or equal to the other
numerals for math column alignment. Other characters (such as "M" or "J") will
have bitboxes that are appropriately wider or narrower as needed.

As examples, a f607bg.txt font is "normal", while a f507bg.txt is "compressed"
and a f707bg.txt is "extended". More extreme bitboxes may sometimes be called
for. You also can do apparent spreading by using two or more pixels of kerning
between characters instead of just one.

Since each bitbox is best used at its intended size and sharpness, many individual
fonts may be needed to cover the expected range of sizes and stretches for a
bitmap photo retouch or whatever.

The techniques here are best suited for bitboxes in the 3x3 to 16x16 range.
Smaller bitboxes will still go "Greek" on you, while larger ones are faster and more
conveniently handled with more traditional font machinery.

A convention…

 When imaged, bitboxes are normally built from TOP to
 BOTTOM. This simplifies Q tails and lower case descenders.

Three files are associated with each bitbox font size found in the precision fonts
repository…

— 37.2 —

http://www.tinaja.com/bmfonts/f607bg.txt
http://www.tinaja.com/bmfonts/f607bg.txt
http://www.tinaja.com/bmfonts/f507bg.txt
http://www.tinaja.com/bmfonts/f707bg.txt
http://www.tinaja.com/bmfont01.asp
http://www.tinaja.com/bmfont01.asp

 The ACUTAL FONT is an array of foreground to background
 blend values for each character. Such as f507bg.txt

 The FONT CREATOR is a PostScript utility sent to Distiller. It
 gives one way to generate fonts. Such as such as f507bg.psl

 The FONT MAP is a PDF file that shows how each character
 fits onto its chosen bitbox. Such as such as f507bg.pdf

We might first look at …

The Font Format

At present, each font for a given bitblock size is an ordinary textfile that holds a
256 entry PostScript array. Each entry in turn corresponds to its respective ASCII
character. Such as this upper case "A" of bitbox size f507bg…

(placed in font array location 65 for an ASCII "A")

 [
 [0.999 0.739 0.000 0.712 0.999]
 [0.999 0.472 0.052 0.447 0.999]
 [0.999 0.207 0.459 0.182 0.999]
 [0.929 0.029 0.904 0.019 0.914]
 [0.672 0.044 0.349 0.042 0.657]
 [0.407 0.237 0.449 0.232 0.392]
 [0.139 0.712 0.999 0.692 0.129]
]

The font array has the following properties…

Each row must match the horizontal bitbox size.
Each column matches the used vertical bitbox size.

The values in the array are in the SAME POSITION
as their screen or page pixel locations.

Each value is the setgray BLACKNESS of a black-on-white
font or the BACKGROUND FRACTION of a colored one.

Fonts build from UPPER LEFT. Unused 0.999 bottom rows
not needed for subbaseline characters can be omitted.

— 37.3 —

If you squint just right at this array, you can actually see the "A". Note particularly
the 0.000 black peak and the 0.129 and the 0.139 dark feet.

Creating the Bitmaps

A pair of related creator and map utilities can be used to generate your precision
font bitmaps for you. The creator utility first draws a bitbox and then will fit a
character to it…

desired
character

best
pixel fitA

Each pixel is then area sampled 400 times to calculate an average of "white" and
"black" data values. Those values are then scaled to a 0.000 ("black" or "all new")
or 0.999 ("white" or "background only") range. The obscure infill command in
PostScript gets used to decide whether the sampled character is present.

Our left image above shows the original character fitting. Normally, you will
overlap a little to get the best possible fit. The right image shows the calculated
character array results.

Now, this may look downright awful here, but it is the best possible pixel
representation of character and background data. Hence the high perceived
legibility at final scale. That slanty "A" and the mid green-to-gray transitions are
pretty much worse case examples. The actual example results clearly speak for
themselves. Especially at the "three point" or 3x3 bitbox level.

Each character is fed an array of data values that aid its bitbox positioning…

 [(upper case) (A) 6 8 0 -1.6 0 1.000 1.000 ()]

The first string is just a comment used to improve the people readability of the
final font data. The second string is the character being worked on. Its numeric
equivalent also equals its ASCII code array position. Thus, an upper case "A" will
end up in font position 65, regardless of when it is generated or how many other
characters precede or follow it.

The integer width of the bitbox is next, followed by the integer height for this
particular character. These may be wider or narrower than the defining "A"
bitbox.

— 37.4 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/images/bargs/hp333601.jpg

All characters will build from the equivalent upper left position of a capital "A".
The next data integer takes care of lower case "g" descenders and similar below
baseline items. It is zero for most characters.

The next two integers are the horizontal scale and vertical scale. These will be
relative to an upper case "A", which is always 1.000 and 1.000. The size of the
"A" itself gets absolutely set by two globalxwide and globabyhigh variables.

Your horizontal scale for the other characters should usually be in the 0.800 to
1.200 range. Larger or smaller values suggest you may need to add or remove a
column in the bitbox. On the other hand, legibility can sometimes be greatly
improved by expanding or compressing from the originally intended font width.

A final comment completes the array. This can be used to note any latter changes
such as a modification to the tail of a "Q".

The map utility is simply the .PDF file generated by the creator. It lets you view
the position of each character so they can be further sized and adjusted if needed.
In general, it is a lot easier to change the height of a bitbox instead of its width.
Thus, you’ll normally generate one bitbox width and then scale it into a height
family of fonts. The higher the font, the more compressed it will appear in the
final image.

Which Font?

The "best" possible font to use would be a san-serif one with a very low
personality. An Adobe Multiple Master font might be a good choice. But I have
used plain old Helvetica-Bold here. Which has a lot more personality than you’d
first suspect.

In general, serif fonts are bad news at very low resolution. And fonts optimized for
low res (such as Stone) will be a better choice than more graceful or more subtle
ones (such as Optima).

A Bitmap Typewriter

Image processing is best done in an uncompressed .BMP bitmap format. Only
after all processing is finished should you go to distribution in .JPG or some other
lossy format. An EXPBMP.PDF tutorial on the bitmap format can be found in our
GuruGram library. And additional photo tips in our Auction Help library.

When retouching an image bitmap, it is usually best to create an Intermediate
Transfer such as This Example. An intermediate transfer is simply a list of words
having the correct properly blended foreground and background colors. You cut
and paste them into Paint or some other bitmap editing program.

An example of a Bitmap Typewriter is found here. This lets you type your desired
words onto the correct background. It does the blending by applying these classic
transparency algorithms to each pixel…

— 37.5 —

http://www.adobe.com
http://www.tinaja.com/glib/expbmp.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/auct01.asp
http://www.tinaja.com/bmfonts/lettex01.bmp
http://www.tinaja/com/psutils/bmtypewr.psl
http://www.tinaja/com/psutils/bmtypewr.psl

 RED = (newred) + ((oldred - newred)* pixblndvalue)
GREEN = (newgreen) + ((oldgreen - newgreen)* pixblndvalue)
 BLUE = (newblue) + ((oldblue - newblue)* pixblndvalue)

In our bitmap typewriter, pixblndvalue is the fraction specified for that pixel by
the precision font. Once again, 0.000 replaces the new character, while 0.999
keeps the entire old background.

You input your colors into this PostScript routine using "Paint format" values.
Ferinstance, a Tektronix oscilloscope red lettering might be defined as /tekred
[242 40 35] store. These values are easily read from your original artwork by
using Paint’s Define Custom Colors feature.

In this bitmap typewriter program, precision fonts are run as needed. Be sure they
are locally available and properly addressed.

To use your bitmap typewriter, you enter your word strings in desired positions
and then send them to Acrobat Distiller, using the techniques you’ll find in our
PostScript Library. Each character is built from the top down, stopping when it
runs out of font data.

The result is a small .BMP bitmap which you cut and paste as needed into
whatever it is you are retouching or improving.

There is a globalkern variable that sets how may space pixels normally go
between each characters. Set this to one for tightest spacing or two or higher for
expanded text. You can also optionally define a pair of kern+char and kern-char
substitutions to do custom character-by-character kerning on the fly.

Additional assistance is available on any and all of the above concepts.

Further Improvements

What more can be done to further improve your small font legibility? Here are
several intriguing possibilities…

Retouch the font data — Sometimes you can modify the font array to further
add to the clarity of a character. The "A" above is slightly asymetric, and some
enhancement can almost always be made to the tail of a capital "Q". A vertical or
horizontal bar that "fits" a pixel row or column will seem much sharper than one
that "splits" two rows or columns to half gray. Punctuation in particular can often
be greatly improved this way.

My policy so far has been to do only the caps and numerals first, and then only
those in the sizes as an actual need arises. Additional fonts and characters are also
available to you on a custom basis.

— 37.6 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/info01.asp

Cheat a little — A slightly larger bitbox can dramatically improve legibility, so
running the lettering a little large may work. Especially when you back off on the
contrast somewhat to lessen its impact. Creative mis-spelling can be most useful.
Especially if only a POWR label will fit on the pushbutton being retouched.

Callouts can sometimes be simplified or components moved around so things fit
better. The key rule is to do nothing that misrepresents the product. As any
cartoonist can tell you, a charicature can present a better impression than its
actual subject. There’s also a stegaganographic benefit here in proving image
ownership.

"Gracefully Greeking" between the new and legible and the old and not so legible
can be a challenge. Sometimes existing lettering can be dramatically improved by
simply brightening its background outline and spacing. And the neighboring
visual context can often enhance what the viewer thinks they are reading.

Create block fonts — Hand crafted fonts that "exactly fit" the available pixels can
give you maximum legibility. Such as This Example. In such a font, each linewidth
is precisely set and locked to exactly one or two pixels. You can further limit your
antialias grays to one or two values, thus reducing the number of colors needed
for .GIF applications.

But such block fonts might end up being a tad too legible, giving you a "Leroy"
or a "Mechanical Drawing" look. Your degrees of boldness are also sorely limited
to lines of one or two pixel widths. Nonetheless, block fonts are a most useful tool
where legibility is paramount.

Consider Acrobat — The hinting machinery in the Adobe Acrobat PDF imaging
system is amazingly good at fitting small fonts to available pixels. And sometimes
can produce results that approach the quality of the true anti-aliasing we’ve used
here. One option is for you to print Acrobat fonts at a magnification that can give
you the needed bitbox sizes and then capture them with a screeen grabber such
as Screenthief 98 or some similar utility.

Note that two bitbox widths of some characters will be produced to get the line
metrics to work out, and that it can be tricky to relate point sizes to bitboxes. The
"Greeking" feature of Acrobat will have to be defeated below a certain point size.

One tremendous advantage of Acrobat in showing small point sizes is that you
can simply magnify them. A luxury unavailable to fixed bitmaps.

Go Subpixel — If you have a known landscape display that can offer individually
addressable RGB pixels, you can in theory triple your horizontal resolution. The
Subpixel Techniques found in This Tutorial can dramatically improve legibility of
eBooks and such. But inherently do not work at all on ordinary CRT monitors.
And may have color fringing issues. Display and code also must be carefully
matched together.

— 37.7 —

http://www.tinaja.com/bmfonts/giffont1.bmp
http://www.tinaja.com/acrob01.asp
http://www.keyscreen.com/KeyScreen(s)5/scrnthf.htm
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/glib/muse141.pdf

For More Help

Much more on these techniques are found in our Precision Bitmap library and
our Fonts & Bitmaps Library pages. Tutorials on photo retouching and image
improvement are in our Auction Help library. And, as always, Custom Help is only
a link or email or a phone call away.

Additional PostScript, Acrobat, eBay, and Webmastering assistance is available
per the previously shown web links. Custom modification and design services are
available at our standard consulting rates. Per our InfoPack Services. Or you can
directly email me.

Further GuruGrams columns await your ongoing support as a Synergetics
Partner.

— 37.8 —

http://www.tinaja.com/bmfont01.asp
http://www.tinaja.com/aafont01.asp
http://www.tinaja.com/auct01.asp
http://www.tinaja.com/info01.asp
mailto:don@tinaja.com
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/auct01.asp
http://www.tinaja.com/webwb01.asp
http://www.tinaja.com/info01.asp
mailto:don@tinaja.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp
http://www.tinaja.com/advt01.asp

