
"Auto-entry" and "Auto-tracking"
Acrobat PDF web Links

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

I t is a fairly simple matter to add a web url link to an Acrobat PDF document.
Simply get into full Acrobat, select your link area, and enter your url. Then resave.

The problems come about when you have hundreds or thousands of links in your
document, when you want to link from a master data base list, when you want
the editable links to look and behave like HTML, or when you want the links to
automatically "follow" or track any edit repositioning or font size changes.

I’ve long had a fast, simple, and convenient PostScript fully automatic smart-font
entry and autotracking PDF linking code as part of my Gonzo Utilities. What I
thought I’d do here is show you exactly what these routines do and how they
work. Chances are the same or similar concepts can be applied to your own raw
PostScript formatting, or to any content editor or layout program in which you
have at least some control over plug-ins, macros, or sourcecode.

Let’s start with an example of how your text gets marked to include a url…

…part of my /surl 3Gonzo Utilities 1 /gonzo01 . What…

In this case, /surl or "start url" and its trailing space tells Gonzo that "a url link is
about to begin. The 3 calls for a font change to the bold font needed for the url.
The 1 returns us to normal text. And the /gonzo01 and its trailing space calls for
a specific url linking.

Your url linkings can come from a data base, from a list, or be generated on the
fly. Each url linking proc must have a unique name. The simplest and most
obvious way is to just do it…

/gonzo1 {(http://www.tinaja.com/post01.asp#gonzo) eurl } def

Which passes the url name string to a linking proc called eurl or "end url" that we
will look at shortly. Known or common url’s can be precombined into an external
or internal file. Should you have lots of urls, using a "dictionary" or some "batch
process" method can be cleaner and uses fewer characters…

—1—

http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp#gonzo

<<
 /acrob01 (http://www.tinaja.com/acrob01.asp)
 /barg01 (http://www.tinaja.com/barg01.asp)
 /gonzo01 (http://www.tinaja.com/post01.asp#gonzo)

 /weblib01 (http://www.tinaja.com/weblib01.asp)

>> {mark exch /eurl cvx] cvx def} forall

OK. We now have a way to mark text where we want a link to appear. And have a
list of places for each individual url to go. We need three routines to complete the
process, surl to start the entry and eurl to complete the url generation. Followed
by a makeurl that does the actual Acrobat stuff. Here’s surl…

/surl {mark
 /blue cvx 0.33 /setgray cvx % change text to blue
 /currentpoint cvx % remember box start
 /urly /exch cvx /store cvx
 /urlx /exch cvx /store cvx
] cvx % complete deferred command

 printlist exch 3 index exch put % stuff into gonzo printlist
 exch 1 add exch % increment gonzo list count
 } def

All surl does is change the link color and font. It then remembers the currentpoint
at which the linked text message starts. But this gets subtle and tricky in a big
hurry. Why? Because you need to known the text start currentpoint at imaging
time. The reason is that Gonzo or most other typical layout programs will analyze
its lines on the first pass and then only put them down after text justification and
repositioning calculations are complete. Thus, the currentpoint calculation must
be deferred till actual imaging takes place.

In the case of Gonzo, we create an executable color change and "find the
currentpoint" proc and stuff it into the printlist where it will execute at the proper
time. Exact details will vary with your choice of layout code.

We have thus saved the position of the start of the url linking message with surl.
Specifically, we have two new start coordinates named urlx and urly that mark
the exact url text start positions. On to eurl…

/eurl {mark % start deferred proc
 exch % position url string
 /aqua cvx /black cvx % reset to main text color
 /makeurl cvx % defer call of url builder
] cvx % complete deferred proc

-2 -

http://www.tinaja.com/post01.asp#gonzo

 printlist exch 3 index exch % stuff into gonzo printlist
 put exch 1 add exch % increment gonzo list count
 } def

This is somewhat similar to our previous code. All it does is change the text color
back and pass a url string on to makerurl. As before, execution get deferred until
imaging time by joining the Gonzo printlist.

At this point, we need an ordinary PostScript proc named makerurl to do the
actual url magic. Such a proc relies heavily on the PDFmark operator described in
depth in ATN 5150 from Adobe. Any layout or editing program capable of
sending PostScript code to Distiller should be able to use (or least adapt) what
follows.

makerurl works with seven pieces of information: The urlx and urly position info
for the start of the url caption; the currentpoint info that holds the position for
the end of the url caption; the font height info extractable from currentfont; a
urlover constant that somewhat magnifies the hot box; and the url name string
found on the stack top. Here’s some code…

/urlover 0.2 def % fraction of hot area over bounds

/makeurl {
 /cururlname exch store % save the url string
 mark % start pdfmark

 currentfont /ScaleMatrix get 3 get
 /fsize exch store % guess font height

 /Rect [urlx fsize urlover mul sub % set box left x
 urly fsize urlover mul sub % set box left y
 currentpoint
 exch fsize urlover mul add exch
 fsize urlover mul add
]
 /Border [0 0 0] % [0 0 0] = none; [0 0 2] = debug
 /Color [.7 0 0]
 /Action <</Subtype /URI /URI cururlname>>
 /Subtype /Link
 /ANN % annotation type
 pdfmark % call pdf operators
} def

The cururlname is first grabbed. A guess is made at the font height by using the
fourth value in the font’s ScaleMartix. This value is then expanded by urlover to
make a hot box somewhat larger than the actual text itself, extending slightly on
all four sides. An invisible hot box is chosen, giving the illusion of an HTML link.

-3 -

http://www.tinaja.com/post01.asp
http://partners.adobe.com/asn/developer/acrosdk/docs/createpdfapi/pdfmarkReference.pdf
http://www.adobe.com

There are one or two minor glitches: If a multi-word url extends over more than
one line, you can either recode the second line or else activate each word as a
separate url. With Gonzo, you also may have to add some padding end-of-line
spaces to make sure /surl ends up on the right line.

Note that the hot boxes automatically move around on the page as text is
lengthened or shortened, and that they automatically scale as font size increases
or decreases. As well as automatically repositioning on fill- or other justification
changes. No post-Distilling treatment is usually needed.

Sourcecode for this document is Found Here.

Additional consulting services available per www.tinaja.com/info01.asp.

-4 -

http://www.tinaja.com/glib/autourl.psl
http://www.tinaja.com/info01.asp

