
Some Architect’s Perspective
Algorithms and Utilities

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2008 pub 5/08 as GuruGram #90
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Classic studio view cameras had a number of adjustments on them that allowed
image corrections. One of these was a centered vertical tilt on the film plane
back. Used properly, this tilt could make the sides of buildings (and telephone
poles in particular) perfectly vertical. Such an intentional distortion is often called
an Arcihtect’s Perspective.

Today, the same effect can look quite good on eBay product photos…

Note how the vertical edges in the image are in fact vertical. I’ve long had a set of
perspective correction utilities available for your use.

— 90.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100
http://www.tinaja.com/images/bargs/grbpum01.jpg

Such as KEYCOR01.PSL which we reviewed in the Image Keystone Correction of
GuruGram #55. Or our earlier SWINGT01.PSL which we reviewed in the Digital
Camera Swings and Tilts back in GuruGram #15.

Sadly, these utilities had a flaw in that they would introduce curvature distortion
for higher tilt values. This was caused by attempting to work one pixel line at a
time when rewriting the bitmaps.

With our latest AOSUTIL1.PSL utilities first described in our Bitmap to PS Array
Conversions of GuruGram #84 and enhanced upon here, it is now possible to do
true image remapping in both X and Y directions at the same time. While greatly
reducing any distortions for higher amounts of correction.

A new ARCHPER1.PSL utility set is now available that does these improved
Architect’s Perspective corrections for you. It takes an existing .BMP image ,
makes suitable tilt and keystone modifications, and then resaves as a new and
corrected .BMP image. You use this utility by reading it as an ordinary ASCII
textfile, modifying some data values in a textfile or editor, and then sending it to
Acrobat Distiller.

By Using Acrobat Distiller as a PostScript Computer.

While the utility is written in PostScript and optionally uses my Gonzo Utilities,
no knowledge of PostScript programming is required for routine use.

One Gotcha:

 Acrobat Distiller versions newer than 8.1
 default to preventing diskfile access.

 The workaround from Windows is to run
 "Acrodist -F" from the command line

 Solutions for other systems are found here.

If you think of your image as similar to that on a view camera’s ground glass, the
tilt correction geometry you will need turns out to be remarkably similar to…

The Starwars Nonlinear Transform

An intro tutorial on nonlinear graphics transforms appears as NONLINGR.PDF. In
general, a linear transform lets you move, magnify, rotate, or even anamorphically
stretch an image.

Anything fancier (such as converting a trapezoid to a rectangle) will demand
more exotic nonlinear techniques. As will Architect’s Perspective.

One of the more common tutorial examples was this Starwars Transform…

— 90.2 —

http://www.tinaja.com/glib/keycor01.psl
http://www.tinaja.com/glib/keycor01.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/psutils/swingt01.psl
http://www.tinaja.com/glib/swingtlt.pdf
http://www.tinaja.com/glib/swingtlt.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/expbmp.pdf
http://www.tinaja.com/psutils/aosutil1.psl
http://www.tinaja.com/glib/bmp2psa.pdf
http://www.tinaja.com/glib/bmp2psa.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/psutils/archper1.psl
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/glib/distlang.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/gonzotut.pdf
http://www.adobe.com/devnet/acrobat/downloads/Acrobat_SDK_readme.html
http://www.tinaja.com/glib/nonlingr.pdf

Select a tilt angle θ with 0o = flat and 90o = vertical.

Predefine a tilt factor geometric constant k…

 k = fullheight * tanθ

The nonlinear transform is then…

 x' = xk/(k + y)
 y' = yk/(k + y)

The tilt factor k is the distance to the vanishing point Both nonlinear transforms
follow by way of similar triangles.

We’ll need two modifications of the Starwars transform for Architect’s Perspective.
These involve moving into a centered space that the nonlinear transforms will
work around.

First, we will add a ycen that vertically centers our tilting action. In deference to
its view camera heritage and to prevent any "top vs bottom" numeric problems,
we will usually keep ycen at one half the total image height.

A second xcen mod will also be added. xcen will be the axis of zero horizontal
correction. It is used to apportion (or balance) how much fix is to be applied to
the right and left subject edges. In general, xcen will not be in the middle. And
could even be far left or far right if both subject edges lean the same way.

The translations between our image space and centered space are…

 centeredx = imagex - xcen
 centeredy = imagey - ycen

 imagex = centeredx + xcen
 imagey = centeredy + ycen

It is super important to linearly transform between the centered and image
spaces, while nonlinearly transforming only about the 0,0 axis of the centered
image space. The Architect’s Perspective forward nonlinear transforms are…

— 90.3 —

 ycnew = ycold*[zzz/(zzz + ycold)]
 xcnew = xcold*[zzz/(zzz + ycold)]

 xcnew simplifies to…

 xcnew = xcold*(ycnew/ycold)

For high processing speeds, we absolutely must minimize all the individual new
pixel-by-pixel calculations. Fortunately, ycnew needs only done once per line,
not every pixel.

And our xcold requires only a simply scaling at pixel calc time. You can see that
ycnew/ycold equals 1 at y=0. You will definitely want to trap this out to prevent a
possible div0 hassle.

zzz here is now the distance from the center to the vanishing point and will be
ycen times the tangent of the tilt angle. Our vanishing point will be infinite at 90
degrees and zero when "flat" at 0 degrees.

Normal nonlinear transforms are a "goes to" sort of thing. When pixel remapping,
we will instead need reverse or "comes from" nonlinear transforms. As detailed in
INVEGRAF.PDF of GuruGram #85.

Here are the Architect’s Perspective reverse nonlinear transforms…

 ycold = ycnew*[zzz /(zzz - ycnew)]
 xcold = xcnew*(ycold/ycnew)

We thus have two variables that control our Architect’s Perspective nonlinear
transform. The zzz (derived from tiltangle and ycen) decides exactly how much
correction to make, and xcen decides how to balance that correction between the
left and right subject edges. We might use these two values to guess the amount
of perspective correction needed for a given image. And then refine our guess
with a second or third pass.

But it would seem intuitively better to find a way of…

Improving Data Input

If we know two specific points in an image where an exact amount of correction
is required, we can solve the above forward nonlinear transform equations for zzz
and xcen. Letting us get an exact solution on our first attempt.

The geometry might end up looking something like this…

— 90.4 —

http://www.tinaja.com/glib/invegraf.pdf
http://www.tinaja.com/gurgrm01.asp

ycen

ycorrheight

leftxshift

image

subject

rightxshiftxcorrwidth

xcen

oldxleft

Key points on your image are easily selectable using the rectangle tools and
readouts in Paint, Imageview32, or similar graphics programs. You first select a
ycorrheight, which is the point at which your tilt corrections are to be made. And
a xcorrwidth which will be the new subject width after all corrections are made.

Correction values are then measured as oldxleft, leftxshift and rightxshift. Our
"missing" values can be treated as dependent variables, noting that newxleft =
oldxleft + leftxshift. And that newxright = newxleft + xcorrwidth. And that our
oldxright = newxright + rightxshift.

From these values we can now calculate…

 xcen = xcorrwudth * [leftxshift /(leftxshift - rightxshift)]
 + oldxleft + leftxshift

 zzz = [oldxleft + xcorrwidth - xcen] * [ycorrheight - ycen]/
 leftxshift

The xcen calculation uses plain old similar triangles and y = mx + b.

xcen and zzz are precalculated and only their results reused. Thus preventing
unneeded and time wasting repeated math.

We can optionally find our tilt angle…

— 90.5 —

http://www.arcatapet.net/imgv32.cfm

 tiltangle = atan(zzz/ycen)

If xcen and zzz are calculated from actual image data, tiltangle will not normally
be needed for the nonlinear transforms. tiltangle ends up simply an optional
visualization aide.

Staying on the Same Page

Certain reverse nonlinear transforms from xcnew and ycnew may try to reach
out-of-range data that is above, below, left, or right of the original .BMP bitmap.

Error testing each individual new pixel one-on-one would likely be highly time
prohibitive. Instead, limits should be precalculated. These precalculations need
be done only once per project or once per line at a ridiculously lower total time
penalty.

Here is one way to calculate limits to prevent off bitmap access attempts…

 IF yfract = [zzz /(zzz + ycen)] > 1
 THEN ymin = floor { -ycen * yfract } + 1
 ELSE ymin = -ycen + 1

 IF yfract = [zzz /(zzz + ycen)] < 1
 THEN ymax = floor { ycen / yfract } + 1
 ELSE ymax = ycen - 1

 IF xfract = [zzz/(zzz + ycnew)] < 1
 THEN xmin = int [floor {-xcen * xfract}] + 1
 ELSE xmin = -xcen

 IF xfract = [zzz/(zzz + ycnew)] < 1
 THEN xmax = int [floor {(xwidth - xcen) * xfract}] - 1
 ELSE xmax = xwidth - xcen - 1

For stronger tilt corrections, some recentering or y axis scaling may be needed.
These linear transformations are easiest provided in further post processing.

A Working Utility

You can explore Architect’s Perspective corrections using our ARCHPER1.PSL
utility. What follows here is best understood by having ARCHPER1.PSL up in a
separate textfile window.

The utility operates by capturing the original bitmap to three PostScript arrays of
red, green, and blue strings.

— 90.6 —

http://www.tinaja.com/glib/expbmp.pdf
http://www.tinaja.com/psutils/archper1.psl
http://www.tinaja.com/psutils/archper1.psl
http://www.tinaja.com/post01.asp

As detailed in our BMP2PSA.PDF of GuruGram #84. A new three arrays of strings
are separately created as redAOS1, greenAOS1, and blueAOS1. Reverse nonlinear
transformations combined with bilineal interpolation then get done on a pixel
by pixel basis to do the transformation. Finally, the new arrays of strings are
converted into a final new and corrected bitmap.

The utility is in four parts, consisting of the basic array-of-strings manipulation
procs, some globally exportable routines that may also be of use elsewhere, the
actual Architect’s perspective code specifics, and a final example area.

Specifically, our main code loop in ARCHPER1.PSL is fixtilt. This first captures our
input bitmap to red, green, and blue arrays of strings as redAOS , greenAOS, and
blueAOS. Data overflow limits are then calculated for later use. Each new pixel is
then processed by way of a combination of a nonlinear reverse transform and a
bilineal interpolation.

Effectively moving each pixel to its corrected position. Finally, the corrected arrays
of strings are rewritten to a new output .BMP bitmap .

Going into more detail, the high level pixel processing is handled by procpixels.
This mid level code sets up a loop within a loop that grabs the output pixel
positions one line at a time and then one pixel at a time. Each pixel is then
processed by procrgbpers.

procrgbpers in turn does the reverse nonlinear transforms and writes the
repositioned old data to appropriate new pixels.

In general, the old x and y values needed for the current pixel location will be
fractional. One of three bilineal interpolators named doredbilin, dogreenbilin,
and dobluebilin are called. Each writes its interpolated old pixel result to the
appropriate array of strings. Limits are precalculated to prevent out-of-bounds
pixel errors.

Speed Issues

On a faster PC, ARCHPER1.PSL presently takes around five seconds to correct a
512x512 pixel bitmap. The processing time goes up roughly with the square of
the resolution. A guideline…

 Perspective corrections are best done at
 DOUBLE the final image size.

 Otherwise, crop as tightly as possible
 and use the lowest possible resolution.

Speed has been partially optimized on ARCHPER1.PSL. Besides all of the usual
PostScript Speedup Tricks, we might be able to make further improvements.

— 90.7 —

http://www.tinaja.com/glib/bmp2psa.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/pixintpl.pdf
http://www.tinaja.com/psutils/archper1.psl
http://www.tinaja.com/glib/expbmp.pdf
http://www.tinaja.com/glib/pixintpl.pdf
http://www.tinaja.com/psutils/archper1.psl
http://www.tinaja.com/psutils/archper1.psl
http://www.tinaja.com/glib/speedup2.pdf

Further speedups should also be possible by optimizing the nonlinear transforms
and the actual bilineal interpolations. But might make the code more obtuse and
difficult to understand. And finally, being very careful when making correction
measurements can eliminate the need for any second pass adjustments.

For More Help

The basic full two dimensional .BMP bitmap to PS Array of Strings tutorial
appears as BMP2PSA.PDF with its actual PS utility at PIXINTP1.PSL. A recent
addition was AIRBRUSH.PDF whose capabilities coincidentally appear in our first
image above. Additional .BMP manipulation enhancements and expansions are
planned.

News about the latest updates and addons should first appear in WHTNU08.ASP
or later blog entries.

Similar tutorials and additional support materials are found on our PostScript and
our GuruGram library pages. As always, Custom Consulting is available on a cash
and carry or contract basis. As are seminars and workshops. For details, you can
email don@tinaja.com. Or call (928) 428-4073.

— 90.8 —

http://www.tinaja.com/glib/nonlingr.pdf
http://www.tinaja.com/glib/pixintpl.pdf
http://www.tinaja.com/glib/bmp2psa.pdf
http://www.tinaja.com/glib/bmp2psa.pdf
http://www.tinaja.com/psutils/pixintp1.psl
http://www.tinaja.com/glib/airbrush.pdf
http://www.tinaja.com/whtnu08.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/info01.asp
mailto:don@tinaja.com

