
Custom Logfile Analysis Utilities &
an eBay Image Theft Detector

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2003 as GuruGram #28
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

My ISP has been balking at paying the outrageous fees for a new Webtrends
upgrade, so I thought I might work up some freebie code that does a faster and
better job of what Webtrends was supposed to be doing in the first place.

Besides all the usual data extraction, my new and easily customizable routines let
you quickly detect eBay site wide image popularity and possible theft. They also
give you a detailed visitor-by-visitor transcript of who did what to you when.

You’ll find this new routine as LOGRPT01.PSL and a typical demo sample printout
can be found as LOGRPT01.LOG. A Sample logfile for testing can be found up as
EX031126.LOG.

My GONZO.PS utilities are strongly recommended but not required for the current
code version, while additional use details appear in our PostScript Library.

A few of the preliminary report features currently included are…

 Total hits for session.
 Total pageviews for session.
 Hits per page viewed.
 Pages viewed by popularity.
 Total pages visited at least once.
 Total pages visited.
 Average visits per page.
 Images downloaded by popularity:
 Total images visited at least once.
 Total images downloaded.
 Average visits per image.
 Total new ad banners delivered.
 Files downloaded by popularity:
 Files downloaded at least once.

— 28.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.zekes.com
http://www.netiq.com/webtrends/default.asp
http://www.netiq.com/webtrends/default.asp
http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100
http://www.tinaja.com/psutils/logrpt01.psl
http://www.tinaja.com/psutils/logrpt01.log
http://www.tinaja.com/psutils/ex031126.log
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp

 Total files downloaded.
 Average visits per file.
 Utilities downloaded by popularity:
 Utilities downloaded at least once.
 Total utilities downloaded.
 Average visits per utility.
 Specific crucial file download stats.
 404 errors by severity:
 Unique 404 file not found errors.
 Total 404 file not found errors.
 404 file errors as a hit percentage.
 eBay image requests by popularity:
 Total eBay images per item requests.
 Total eBay images requested.
 Average eBay per item requests.
 Filtered referrals by popularity:
 Total unique and useful referrals.
 Total useful referrals.
 Average visits per Referral.
 Filtered search queries by popularity.
 Total search queries.
 Total unique search queries .
 Average search query repeats.
 Visitor log array creation.
 Individual visitor activity reports.

This, of course, is just backing up for a good start. Many thousands of other
analysis features are easily added. Generally, anything available with Webtrends
can be done faster and better in a more easily customizable format.

At present, the utilities generate simple text reports containing only what you
want exactly the way you want it. Because of the power of PostScript, arbitrarily
fancy graphics can be wrapped around the core routines for client presentation.
As could auto scripting. Present utilities are for daily reports only for a single url.
Files are easily written to for monthly or other extended analysis

In general, you first make sure your daily log file is locally available. You then take
a short and standard ASCII textfile utility and bring it up in a word processor or
editor. You modify your filenames and any details or particulars of reporting any
way you care to, and then resave the utility as a standard ASCII textfile.

Your modified and saved textfile is then sent to Acrobat Distiller. A log report file
is then generated, typically in well under two minutes for a fancier site. The logfile
may then be viewed, interpreted, or used for further analysis.

— 28.2 —

http://www.netiq.com/webtrends/default.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp

What is in a logfile?

Your ISP Internet Service Provider keeps track of your website activity. By creating
logfiles. These ordinary printable textfiles consist of an info header and one info
line for every website hit. Typically several megs daily. Incredibly useful stats can
be either directly or indirectly extracted from your web logs…

If your ISP does not make your logfiles available, then
DEMAND that they do so! Or change to a new ISP.

Logfiles may be used at the ISP end to extract system wide stats, or may be
downloaded to individual sites for your own personal or commercial website use.
There are several different styles of log files, and different reports may have
varying content…

It is extremely important that logfile reading software
EXACTLY matches the logfile in use!

A typical logfile source might be from Microsoft Internet Information Services
6.0. This consists of four machine readable header lines that start with an #
identifying delimiter. Each site hit then consists of one line of a number of fields,
typically seventeen. Each field is delimited by a space, and no spaces are allowed
within any particular field. Lack of data in a field is designated by a (-) hyphen.

Field sequence is shown, of all places, on the #Fields: comment line. In the case
of my ISP’s present logfile formats, there are seventeen fields presented in this
specific order…

 date Ten byte text string in a 2003:07:12
 year:month:day format.

 time Eight byte text string in a 15:32:42
 hours:minutes:seconds format.

 s-ip The url of your site being served. Such
 as 24.120.195.24 The length may vary,
 delimiting on the decimal points.

 cs-method The requested action as one uppercase
 word. GET and POST are common.

 cs-uri-stem The requested file to be delivered,
 such as /webwb01.asp.

— 28.3 —

http://www.microsoft.com/windows2000/en/server/iis/default.asp?url=/windows2000/en/server/iis/htm/core/iicnvlg.htm

 cs-uri-query Additional delivery info requested, such
 as a search string. Often unused as (-).

 s-port Server port over which info is delivered.
 Returns (80) for my ISP.

 cs-username Name of user making request. Returns (-)
 if anonymous or DNS lookup not provided.

 cs-ip The URL of their site being served. Such
 as 66.234.212.133. The actual website
 name can sometimes be found by a DNS
 lookup by using Whois, but may be an
 ISP doing anonymous dialup or wireless
 sharing. Do note that several individual
 websites could share the same cs-ip if
 they happen to request at the same time.

 cs(User Agent) Webserving software and system hardware
 being used by site making request. Often
 Mozilla running on a Windows platform.

 cs-(Referrer) Name of the previous page visited by the
 user making the request. Shows you which
 page they were on when they asked for
 yours. Can be exceptionally valuable.

 sc-status Reports on the success of the transaction.
 Some typical status results are…

 200 OK
 201 Created
 202 Accepted
 203 Non-Authoritive
 204 No Content
 205 Reset Content
 206 Partial Content

 300 Redirected
 301 Moved Permanently
 302 Found
 303 See Other
 304 Not Modified
 305 Use Proxy
 306 Not Used
 307 Temporary Redirect

— 28.4 —

http://www.networksolutions.com/en_US/whois/index.jhtml
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

 400 Bad Request
 401 Unauthorized
 402 Payment Required
 403 Forbidden
 404 File Not Found
 405 Method Not Allowed
 406 Not Acceptable
 407 Proxy Authentication Required
 408 Request Timeout
 409 Conflict
 410 Gone
 411 Length Required

 412 Precondition Failed
 413 Request Too Large
 414 URI Too Long
 415 Unsupported Media
 416 Range Not Satisfied
 417 Expectation Failed

 500 Internal Server Error
 501 Not Implemented
 502 Bad Gateway
 503 Service Unavailable
 504 Gateway Timeout
 505 Version Not Supported

 sc-substatus Additional status info. Usually (0).

 Win32status Windows32 status info. Usually (0).

 sc-bytes Bytes delivered to visitor.

 cs-bytes Bytes received from visitor.

 time-taken Response time in milliseconds.

The popular Apache logfile format may differ somewhat from this IIS format
shown. Once again, be sure to match the format and fields to your analysis
utilities!

The problem with just looking at a logfile is that they are utterly overwhelming.
And any useful piece of info is scattered over many lines in obscure order. The
trick is to properly isolate, rearrange, and then present logfile info of interest so
it is easily viewed and interpreted.

— 28.5 —

One final caution before continuing …

Any end nulls MUST be removed before you do any further
processing of a log file!

Extracting Logfile Data

You normally start by making a logfile locally available on your system. Typically
by FTP from your ISP. While it is possible to continually read and re-read the disk
based logfile to get specific data, it is usually ridiculously faster and far better to
capture the data first to software arrays or other structures. These arrays are then
quickly and easily analyzed for specific results.

My approach to most any technical problem is to use the superbly wonderful
PostScript as a general purpose computer language. This is normally done by
creating a small ordinary ASCII textfile and sending it to a host based Acrobat
Distiller. Acrobat then generates useful output in the form of a PDF file, reporting
activity log files, and (optionally) new disk based data files. Following the secrets
in DISTLANG.HTML.

For this logfile analyzer, our main interest will be in the generated PDF activity
logfile where all of our useful results will appear. Thus throwing away the baby
and drinking the washwater. You can safely ignore the expected WARNING: No
PDF File Produced! errors. Later on, fancy graphics can get added.

The web logfile data will first get isolated into seventeen PostScript arrays. Those
arrays can then be read, sorted, and otherwise manipulated to generate our useful
results. Normally a PS array has a fixed length. Too short and you get errors, and
too long and you have problems with ending nulls. Thus, all PostScript array
lengths must ~exactly~ match their intended content.

You can also use this sneaky trick to dynamically expand a PostScript array…

 /myarray mark myarray aload pop newitem] store

What happens here is that a new and longer array gets defined by marking a new
array start, unloading the old array onto your stack, adding your new element,
and completing the new array with a closing bracket. The length count goes up
by one.

While this cute stunt will work great for most of our analysis, dynamic expansion
may be way too slow for the half million or more actions needed for any initial
extraction. Instead, we will make two passes through our disk based logfile. Both
passes will ignore comment lines and very short lines.

— 28.6 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/psutils/distlang.html
http://www.tinaja.com/post01.asp

You may want to have LOGRPT01.PSL on hand and up in an editor or word
processor to help you understand what follows here.

The first pass will determine how many lines are needed for capture. And be used
to set the size of seventeen arrays that have been named datearray, timearray,
s-iparray, cs-method, etc… The second disk reading pass will completely fill the
arrays with the actual data needed.

The filling process consists of reading one valid line at a time, and recursively
nesting sixteen searches on the space () delimiter. A PostScript search will return
a pre, found, and post string. Pre is saved to the current array of interest, found
is flushed with a pop, and post is recursively reused to pick up the next data
string of interest. The last string post is "free" and is stuffed into the final array.

One subtle gotcha at this point: If you have a string you are reusing and put it in
an array, PostScript will enter only a pointer to that string into your array. If the
string changes later, so does the array! Leading to wildly wrong and utterly
mystifying results. The solution is to dereference your strings before they go into
your arrays…

 dup length string cvs

This creates a new, unique, and "safe" string for private entry into your array. The
initial string on the stack is free to be reused and redefined any way you like
without hurting the inplace array data.

Our net result at this point is to be finished with any diskfile reading and to have
seventeen arrays of useful logfile data internally available for further processing.

Analyzing the data

At this point, you can decide what website info you want in what format. In
general, you create new arrays of arrays. Each sub array entry will be an array in
itself. Eventually containing a data string, a popularity count, and possibly
additional data elements.

Typically, you will read data of interest from your primary arrays and rewrite them
into your secondaries. Something of interest will either add to the count of an
existing secondary entry or else create a brand new secondary entry.

These secondary arrays will initially be unsorted, since you have no early way of
knowing how many times something gets repeated. A plain old bubble sort can
then be used to rearrange each secondary array into order of popularity.

Yeah, bubble has a laughingly bad rep, but it is simple, nonsubtle, and uses few
resources. It seems more than fast enough to sort a few hundred items. And can
easily be further improved.

— 28.7 —

http://www.tinaja.com/psutils/logrpt01.psl
http://www.tinaja.com/post01.asp

Bubble works by comparing the counts in array entry 1 against array entry 2. If
entry 2 is bigger, they are swapped. 2 is then compared against 3. If 3 is bigger,
they are swapped. The first pass will end up with one of the lowest counts at the
bottom of the pile at the end of the array. You then repeat the process n times for
an array of length n. Or thereabouts. The final result is an ordered sorting by
popularity.

Useful info can then be extracted from your sorted secondary arrays. For instance,
lists of files can be output in popularity order. The number of files can be
extracted and reported by using the length operator. The total number of file hits
can be extracted by viewing each popularity count and adding them up. The ratio
of file visits per file is easily calculated by a simple division.

Some Specifics

Let’s briefly review how some of the useful data gets generated by making up
ordered secondary arrays and then extracting desired info from them.

Depending upon your website arrangement and content, some approximations
and assumptions may be involved, and some results may end up a tad on the
fuzzy side. Nonetheless, incredibly useful results can often be reported and
analyzed.

Let’s see. The length of your primary arrays immediately tells you the number of
website hits. A list of page views can be generated by making some assumptions
about what a page view is. On my website, most .asp files are page views. And
those less than fifteen characters long will be primary page views that include
banner ad delivery. My .html files can largely be ignored since they are usually a
redirect or downloadable data.

So, I’ll go thorough the cs-uri-stem array and search for the .asp files. And then
create a pageviews secondary array. After sorting, they are output by using the
PostScript == command. You also have the (eventual) option of writing this data
to disk for further long term analysis.

The length of your pageviews secondary array tells you the number of unique
page views, while the total of the individual hit counts tells you the total number
of page views. Their ratio gives you the views per page.

Similarly, most of my images are in an /images/bargs/ subdirectory from which
an imagehitlist secondary array can be generated and similar data extracted.
Many of my downloadable files appear in a /glib/ subdirectory. For which your
filehitlist can be generated and exported. The same goes for my utilities which
are often found in a /psutils/ subdirectory and used to create a pshitlist
secondary ordered array and report.

The number of banner ads delivered can be found by once again searching for
/banners/ in the cs-uri-stem.

— 28.8 —

http://www.tinaja.com/advt01.asp

Sometimes, specific file activity might be of special interest. I particularly like to
know how many GONZO.PS downloads I get daily. Custom download reports are
easily gotten by once again reading a previously generated secondary array such
as pshitlist. And then extracting a special count report.

Reporting file not found errors are only slightly more complex. First, you have to
go through sc-status to pick off the position of each 404. Then you use this
position pointer to go into cs-uri-stem to find out what it was that made the bad
request in the first place. These can be gathered into an e404hl array and then
output for viewing.

You’ll find at least three different types of 404 errors. The first type are ones you
caused by website boo-boos. These you should seek out and correct. You’ll want
to spend the most time on the ones that are causing the most grief.

The second type are fumble fingered typos from visitors that are unlikely to ever
happen again. And the third type are malicious attempts at cracking your website
for root access. These can usually be identified by a ../winmt/system32/cmd.exe
fragment or similar obviously bogus requests. We’ll see an example shortly.

Referrals are enormously useful to find which outside sites are sending visitors
your way, which inside paths are the most popular, what your eBay sales are up
to and who is searching for what from where.

To generate a report of useful referrals, you create yet another freflist secondary
array. By going into cs-referrer to pull out all referrals longer than five characters.
An referral exclude list is then completely searched using forall to eliminate any
unwanted referrals. My own exclude list currently consists of variations on my
tinaja website name, the (?) indicating a search, and a few common referral
mistakes. Then, your filtered visitor referrals get sorted and reported as usual.

Search queries work the opposite. You go through cs-referrer and seek out only
those entries with a (?) in them. Optionally excluding any from eBay. Reports can
get further fancified by noting the specific use of (?) by any particular engine.
Such as Google starting its search query string with q=. Or Yahoo with p=.

If you are an eBay seller…

Custom outputs may be of interest to eBay users. You can easily make up a
secondary array that contains only eBay item numbers, and your images they
returned. For an ordered list of your current eBay item popularity. Such as …

 [(eBay #item=2576660841 /adepts01.jpg) 20]
 [(eBay #item=2205626364 /nuke01.jpg) 17]
 [(eBay #item=2576657732 /MT31001.jpg) 13]

 etc…

— 28.9 —

http://www.tinaja.com/post01.asp#gonzo
http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100
http://www.tinaja.com
http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100
http://www.google.com
http://www.yahoo.com
http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100

To generate this list, the position of each eBay hit is found and the item request
gets extracted. The position pointer is used to reach into the cs-uri-stem array to
extract the image gotten. The gathered strings are then shortened, adjusted, and
merged (using mergestr from my Gonzo Utilities) to produce the above report
messages.

The eBay search query string can have several entries and be in any order. You
can view the sourcecode to find my current isolation algorithm in use.

You can instantly find out how well each and every one of your offered items is
doing. All with a few mouse clicks. And not having to mess with individual eBay
counters or repeated eBay site views. By using fairly obvious image names, no
lookup of item numbers is required! You can optionally save your daily data to
get long term totals of each offered item.

Further, if you are not currently offering an item that seems oddly popular, this
may mean someone else has stolen your image. You also have the exact eBay
offering number for the theft. And can file a NODI or replace your image with one
of an appropriately clad individual aggressively pioneering new methods of animal
husbandry.

More on these techniques on our Auction Help library page. Do note that an
occasional nonlisted image hit or two can be expected from a valid eBay user
searching on back items.

Creating Visitor Activity Reports

You can go well beyond webtrends by making individual visitor activity reports.
These let you find out what each and every visitor was up to on your site one on
one. This tells you the exact and total path the visitor took through your site,
which activities they were up to on each page, and where and when they left.

Ferinstance, here is a "good guy" access example…

68.238.160.217 took 18 minutes and 34 seconds to visit...

 (/picup01.asp)
 (/muse01.asp)
 (/glib/muse109.pdf)
 (/glib/muse99.pdf)
 (/tinaja01.asp)
 (/blat01.html)
 (/glib/dontsick.pdf)
 (/glib/emergop4.pdf)
 (/glib/ratholes.pdf)
 (/glib/marcia.pdf)

— 28.10 —

http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100
http://www.tinaja.com/post01.asp#gonzo
http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100
http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100
http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100
http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100
http://www.tinaja.com/glib/moreebay.pdf
http://www.tinaja.com/auct01.asp
http://www.netiq.com/webtrends/default.asp

Here we see that the visitor went to four page views and then downloaded six
reference tutorial files. We also note they are a PIC microprocessor fan, since they
did not enter via the main website home page.

And here is a modified fragment of a "bad guy" site piracy attempt…

62.XX.76.YYY took 0 minutes and 58 seconds to visit...

 (/Default.asp)
 (/MSDDC/root.exe)
 (/f/winmt/system32/cmd.exe)
 (/PCServer/cwinnt/system32/cmd.exe)
 (/Rpg/cwinnt/system32/cmd.exe)
 (/scripts/..Q../winmt/system32/cmd.exe)

 etc…

We see not one attempt at viewing a real page or downloading a legitimate file.
Instead, a mix of blatant grabs at obtaining system control. Sending Bruno to the
ISP of 62.XX.76.YYY for attitude relateralization might not work if the sending site
has also been spoofed.

A modified three element visitorrawdict secondary array gets used for your user
logs. One visitor might look like this…

 [(204.24.574.34) 8 [123 146 157 158 159 332 347 348]]

Here the first subarray entry is the url of the visitor. The third entry is an array of
website hit positions. These will typically be intermixed with other visitors and
rarely will be sequential. The second entry is the number of hit counts equal to
the length of the third array. The length was kept in the same position as the
earlier arrays so the same bubble sort could be reused.

To present the hits in useful form, you may want to ignore bunches of them. I am
mainly interested in the major web page visits and their library downloads. So,
hits involving banners or GIF’s are discarded. As are design elements. A two
column presentation is done with .asp or .html files of 15 characters or less in the
first column and (mostly) downloads in the second. Repeat hits are rejected, since
these are most likely a PDF byte range retrieval or a delivery glitch.

The visit time is approximated by finding the earliest and latest hits on the
time-taken primary array. These are read as ASCII characters, converted to
numeric seconds, and subtracted. Times are approximate since there could have
been two or more sessions. And since the visitor is likely to spend additional time
viewing their last page or download.

— 28.11 —

http://www.tinaja.com/picup01.asp
http://www.tinaja.com

A typical visitor will also use their back arrow to view already downloaded pages.
These are cached on the visitors machine and will not show up in these logs. But
they sometimes can be inferred.

A curious gotcha: On my machine, visitor log creation slowed down dramatically
above 9000 hits or so. This seems somehow related to an apparent PostScript
garbage collection bug. My temporary workaround was to initially turn garbage
collection off and then collect once every 2500 hits. This made the problem
vanish on my machine but may not on yours. Please report any and all difficulties
in this area.

Note that a -2 vmreclaim turns garbage collection off, a 1 vmreclaim does one
immediate garbage collection, and a 0 vmreclaim restores automatic garbage
collection operation.

Individual user log reports do raise issues involving abuse and invasion of privacy.
I’ll leave it up to you to evaluate what is and is not appropriate here for this new
and incredibly powerful new analysis tool.

For More Help

Additional PostScript, Acrobat, eBay, and Webmastering assistance is available
per the previously shown web links. Custom modification and design services are
available at our standard consulting rates. Per our InfoPack Services. Or you can
directly email me.

Additional GuruGrams columns await your ongoing support as a Synergetics
Partner.

— 28.12 —

mailto:don@tinaja.com
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/auct01.asp
http://www.tinaja.com/webwb01.asp
http://www.tinaja.com/info01.asp
mailto:don@tinaja.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp
http://www.tinaja.com/advt01.asp

