
r:JJ

g
0
�

� Son
I Of

Cheap

N
-

-...J
N
Vl

S
Q..,.
ams

�U-LICA.TlllH

Video

By Don Lancaster

21723

Son of

Cheap Video

by

Don Lancaster

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1980 by Don Lancaster

FIRST EDITION FIRST PRINTING-1980

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-21723-6 Library of Congress Catalog Card Number: 80-51714

Printed in the United States of America.

Preface

Son of Cheap Video is the sequel volume to The Cheap Video
Cookbook. Together, these two books show you very low cost ways
of getting alphanumeric and graphics video out of a microcomputer
and onto an ordinary television set.

In this book, you will find some major improvements, simplifica
tions, and new ideas in cheap video. This new material will give
you interesting and useful video projects and will deepen your
understanding of low cost video display techniques.

In Chapter 1, we look at a video display system that you can build
for your micro at a total cost as low as $7! This brand new, cheaper
than-cheap idea is called "scungy video." Among its other tricks,
scungy video eliminates one or both of the custom PROMs used in
cheap video, and it needs far less address space. Scungy video is
also easier to interface to different micros and is much simpler and
more versatile.

A super sneaky (and admittedly crude) way to pick up transpar
ency shows up in Chapter 2. This is called "the snufHer" and lets you
run video dispiays and compute at the same time without apparent
interaction. The snuffier can be built for under one dollar. Its key
part is a long piece of wire. With the snuffier, you can run a 16 X 64
or a 12 X 80 display transparently and still keep over 50% through
put for your regular computer programs.

Custom characters and graphics chunks are the subject of Chapter
3. Here we look at a do-it-yourself EPROM character generator,
along with a plug-in module to let it fit your cheap video system.
A music display that gives a detailed example of what you can do
with custom graphics appears in Chapter 4. This music display sys-

tern is useful for teaching beginning band and individual student in
struments. It's also a good add-on to most any micro involved with
music synthesis.

One of the most often asked questions about cheap video was,
"How do I run on an 8080 or Z80?" A few answers appear in Chap
ters 5 and 6, where we show you how to run cheap video on these
systems. We also show you schematics for an add-on circuit to put
your TVT 6% on a Heathkit H8 memory card. A companion key
board serial adaptor, useful on many micros, is also shown.

Many of today's larger microcomputer systems lack lower case,
and another natural question is how to provide a full alphabet dis
play. Such dual case displays are essential for word processing and
general business uses. We show you one answer in Chapters 7 and 8,
when we plug a TVT Module A into an APPLE II to give you full
case with simple mods and use of the existing keyboard. Total cost
can be under $9.

As with the earlier book, we end up with an appendix containing
details on the integrated circuits needed and some full-size PC
patterns.

One important note before you go on. This is a you-build-it hard
ware book for hardware freaks. If you don't like hardware and
don't want to involve yourself in video displays at the gut level, or
aren't interested in super low cost above all else-then use one of the
more expensive "mainstream" alternatives to cheap video, such as
a crt controller system, a plug-in video card, or a ready-to-go ter
minal.

If you are not one of us, go away.
DoN LANCASTER

Cheap video PC boards, kits, assembled units,
and program tapes are available commercially from:

P AIA Electronics
1020 West Wilshire Blvd.
Box 14359
Oklahoma City, OK 73114
(405) 842-5480

A catalog and price list will be sent on request. Dealer
inquiries are invited.

This book is dedicated to the Encounter
of the Long Count Keeper.

Contents

CHAPTER 1

SCUNGY VIDEO

How Scungy Video Works-A Bottom Line Scungy Video System

CHAPTER 2

THE SNUFFLER - SUPER SIMPLE TRANSPARENCY

The Method-Building the Snuffier-A Snuffier Demonstrator-Alter
nate-Field Snuffiing-The Best of Both Worlds-Some Perspective

CHAPTER 3

CUSTOM CHARACTERS

EPROMs as Character Generators - Graphics Chunks - Using
EPROMs-Designing a Character Set-Building EPROM Adaptor
Modqle."E"-Checkout

CHAPTER 4

A MUSIC DISPLA y

The Display Plan-A Character Set-Music Software-Test and
Debug-Polyphony

CHAPTER 5

8080 CHEAP VmEO-HEATII H8 HARDWARE

Hardware-Speed Doubling Via A9 Switching-Front-Panel Inter
action-A Keyboard Serial Adaptor

7

36

63

87

128

CHAPTER 6

8080 CHEAP VIDEO- HEATH H8 SOFTWARE

Test Software-Self-Modifying Versus Brute-Force Scans-I X 56
Scan Program-TV Retrace Hassles-More Characters-12 Lines of
80 Characters-BOBO Cursor Software

148

CHAPTER 7

LOWER-CASE HARDWARE FOR y OUR APPLE II
Some Details-Hardware Changes-Initial Checkout

. 172

CHAPTER 8

LOWER-CASE SOFTWARE FOR y OUR APPLE II 189

Direct Entry-Four Utility Sequences-A Lower-Case Tester-A
Useful Display Program-A Full-Performance Lower-Case Editor
A Full Dual-Case Editing System-Further Hardware Mods

APPENDIX A

MORE CHARACTER GENERATOR DETAILS

APPENDIX B

PmouTs OF SELECTED ICs

APPENDIX C

PRINTED Cmcu1T PATTERNS

. 210

. 213

. 221

CHAPTER 1

Scungy Video

The video display techniques we showed you in The Cheap Video
Cookbook (Sams catalog number 21524) gave you all sorts of brand
new ways to get words and graphics out of a microcomputer and
onto an ordinary tv set. The cheap video ideas use a minimum of
hardware and need a minimum of modifications to either the micro
computer or tv set. So, cheap video will be a very hard act to follow.

But, the earlier cheap video techniques were just a starting point.
These ideas can be further simplified, made much more attractive
and flexible, and made much easier to use. Since we'll need a name
for these fourth-generation cheaper-than-cheap video developments,
we'll call them scungy video.

What can scungy video do for us? For openers-

* You can now ;(dd a complete video display system to your
KIM-1 or other "minimum" microcomputer for a total cost of
$7 and using only five cheapie integrated circuits.

* You can free up practically all of the address space on your
microcomputer, eliminating most of the address restrictions
that cheap video seemed to put on your micro.

* There is far less interaction between computer and video cir
cuitry. The video stuff now behaves as an add-on, rather than
strongly interacting with your computer architecture.

* One or both of the custom PROM memories used in cheap
video can be eliminated. * The scungy video ideas are much easier to adapt to non-KIM

and non-6502 systems.

7

* Nonmodifying scan coding can be used that is far simpler to
debug and use and can be put permanently in PROM or
EPROM.

* Full transparency with high throughput is now very easy to
pick up.

As always, there are some tradeoffs involved. Scungy video may
use the computer's interrupt structure, so managing other interrupts
might get somewhat harder. And scungy video leans heavily on some
other things inside your micro, particularly four parallel port lines
and possibly an interval timer. But these are minor hassles and easy
to live with.

The bottom line is this: You can now put video on practically any
microcomputer system at essentially negligible cost!

Let's take a closer look at scungy video and see what it can do
for us. First, we will look at the new secrets behind scungy video.
Then, in Chapter 2, we'll look at a sneaky new trick in the way of
transparency. Finally, we'll combine scungy video and the new trans
parency stunt into a transparent, super-simple, and very low cost
video display system for you.

Much of what we will do with scungy video can be done by
removing or ignoring parts already present on your TVT 6%, so very
little will be needed in the way of new hardware.

HOW SCUNGY VIDEO WORKS

Scungy video is an improvement on cheap video. We still use the
basic concept of putting a minimum amount of hardware between
a largely unmodified computer and a tv set. We do this by letting
the microcomputer itself provide almost all of the needed video tim
ing signals. Our two key secrets of cheap video-the software scan
microinstruction and the hardware upstream tap remain to give us
an extremely simple video system architecture.

Scungy video removes parts from this in order to add two new
secrets:

1. Scungy video may use interrupt or break mapping for the scan
microinstruction, instead of the subroutine address space map
ping used in cheap video.

2. Scungy video uses already available computer parallel 1/0
ports to simplify further the amount of special hardware
needed. An interval timer may also be borrowed.

The typical cheap video architecture, as used on the TVT 6%, is
shown in Fig. 1-1. Cheap video circuitry usually consists of seven or
eight !Cs on a small interface hardware card. The interface hard-

s

MICROCOMPUTER

CPU

"'
:::, ""

"II �- SYSTEM
RAM. ROM UPSTREAM TAP

� ,, n·
!!!.

Dl�Y
�� MEMORY RAM

CD •,·.•,•.•.•.•·.••.·.·,•: ... ·-.·····-·-·····,•,·,·,·,·,•,•.•.•,•'•'•'•"•"""

DI ,,
< a:
CD DATA
0
"'

"'

S'
;:I

I
I DECODE PROM

ENABLE 1
L SCAN

MICROINSTRUCTION
PROM

"'
:::,
a:,
<C
I-
<C
C,

&
CHARACTER ' GENERATOR

r

MODULE

ROW f

Decode PROM aclivales scan microinslruclion
PROM lo output a line ol video.
Row inlormalion is address mapped.
Upstream tap data is converted to characters
or graphics chunks .

H
VIDEO OUTPUT

CIRCUITRY

SYNC l

-

VI OED OR
V OUT T

ware card goes between the microcomputer and the tv set or video
monitor. A small Decode PROM on the card decides when the com
puter wants to output a line of video dots. The Decode PROM in
turn activates the Scan Microinstruction PROM, which takes over
control of the computer long enough to output one line of video.

The Scan Microinstruction PROM causes the computer program
counter to advance once per microsecond for the number of micro
seconds needed for a row of characters. During this time, the pro
gram counter is connected to the address bus, so all memory in the
computer is also having its addresses advanced at the once-per
microsecond rate. This includes the display memory. Now, only the
Scan Microinstruction PROM has access to the computer data bus,
since this PROM is temporarily in command. But, the display mem
ory is enabled as far as its upstream tap. This means that characters
or chunks can go out the upstream tap while the scan microinstruc
tion is taking place. As the characters or chunks go out the upstream
tap, they are converted to alphanumeric or graphics symbols. For
a more detailed explanation see The Cheap Video Cookbook.

Cheap video eliminates any need for a separate display memory
or for complex stand-alone system timing. It does this by letting your
microcomputer do all the work, time-shared with your existing pro
grams. Cheap video also makes the display memory available to the
computer at any time for any reason. This gives you a very fast inter
action with on-screen information.

The two simplifications we need to pick up scungy video are
shown as a block diagram in Fig. 1-2. Instead of the Instruction
Decoder PROM, we use software and an existing parallel port on
the computer. The parallel port directly outputs row and sync in
formation for us, eliminating the need for a separate Decode PROM.

A small area in the computer address space is set aside as a dis
play map. This display map is filled with scan microinstructions.
These scan microinstructions are called by a suitable jump to the
display map address space. As the computer is controlled by the
scan microinstructions on the display map, the separate display
memory is busy outputting characters or chunks through its up
stream tap. Far less address space is needed by scungy video.

The display map can be a small PROM, identical or similar to the
Scan PROM in cheap video. But, your display map can now be any
old way to get the scan microinstruction code into your address
space. You can use system RAM, ROM, PROM, EPROM, or direct
hardware generation with a few LSTTL gates.

Scungy video's elimination of one or both PROMs dramatically
simplifies our video circuitry, as we'll see in the upcoming examples.
Besides making video displays even cheaper-than-cheap-video,
scungy video is much easier to interface to non-KIM and non-6502

10

"Tl
ip' ... - CPU

I

�
0
g

V, :I :::,
la a,
'C V,

V, < "-'

SYSTEM 1,-..
RAM. ROM

ii: a:
Cl

g Cl cc
Ill

'C
Ill
iD

1,-.. DISPLAY MAP
:I
!.
a·
;·
Ill L

(

iD
Ill PARALLEL PORT
0 -
:I .,
0 ..
er ; DISPLAY -

MEMORY RAM
"1:1
:a
0
iii:
!'I

... ...

MICROCOMPUTER

V,

:::,
a,
cc cc
Cl

.

I II
•

UP�

�,.
;.:.:.:-:-:-:-:.:-:-:-:-:-:-:-:-;-:-:-:-:-:,:,:,:,:,:-:,·-·:-:··-:,.-:,:,:-

Scan microinslruclion is break or interrupt
mapped. Row informalion is provided by
existing compuler outpul porl.

ROW SYNC

,,,
CHARACTER VIDEO OUTPUT GENERATOR CIRCUITRY MODULE

VID EO OR
V OUT T

r--

p

systems. It's also much easier to make fully transparent, as we will
see shortly.

Break Mapping

Cheap video calls its scan microinstruction by a JSR or jump-to
subroutine command. While you can also do this in scungy video,
let's look instead at a new approach and see what it can do for us.
This other approach is called break mapping. Fig. 1-3 shows the
differences between subroutine mapping and break mapping.

In Fig. l-3A, we have the subroutine mapping we used on cheap
video. On a 6502, the scan microinstruction is entered from the scan
program by a subroutine jump. The microinstruction code consists
of a bunch of LDY AO or "load the Y register with the value AO"
commands, ending up with a return-from-subroutine, or RTS, com
mand.

ENTER
VIA JSR

RTS TO SCAN
PROGRAM

L AO - AO - AO - AO - • • • · · · · · • · · • · · · · • • • • - AO - 60 _j
(LDY) (RTS)

(6502 CODING SHOWN)

(A) Cheap video uses subroutine.

ENTER RTI TO SCAN
VIA BRK PROGRAM

L AO - AO - AO - AO - • · · • · • · · • · · · • • • • • • • • • - AO - 40 _j
(LOY) (RTI)

(6502 CODING SHOWN)

(B) Scungy video can use interrupt.

Fig. 1-3. The scan microinstruction can be a break-mapped interrupt in scungy
video. Scan microinstruction sets number of characters or chunks per line.

The LDY AO command causes the microcomputer program
counter and address bus to advance sequentially one count per mi
cro�econd for the number of microseconds needed to put down a
row of character dots or graphics chunks. Remember that while the
scan microinstruction is advancing the address bus, the display mem
ory is putting characters out the upstream tap and into the interface
hardware.

On other microcomputer systems, comparable instructions are
used to trick the microcomputer program counter into advancing

12

sequentially once per microsecond as needed. Any command that
doesn't mess up the status of the computer too badly will do if it is
fast enough.

There is at least one other way to do a scan microinstruction. We
can enter our display map by using a BRK or do-an-interrupt-now
command. A BRK command in your computer calls for an immedi
ate jump to the place that an interrupt would normally go to. In the
KIM-1, the jump is to the address stored by the IRQ vector at 17FE
and 17FF.

With break mapping, most of the scan microinstruction is the
same as before, consisting of a bunch of LDY AO commands. But,
since we went into our scan microinstruction as an interrupt, we
have to get back from it as an RTI command, as shown in Fig. l-3B.

You can use either subroutine or interrupt to get onto your dis
play map. Once on the display map, you output microinstruction
code the same way. But, your exit from the display map has to match
your entry. Use RTS to return from subroutine and RTI to return
from break.

We'll look at scungy video examples using both break- and subrou
tine-mapped scan microinstructions. Which you use will depend on
your particular preference in coding, and specific features you want
on your own video system.

Fig. 1-4 shows more details on scungy video operation.
In cheap video, our subroutine-called scan microinstruction

jumped to a different part of memory for every row of characters
we wanted. Around 28K of memory was tied up and reserved for
operation of the cheap video decoder. The location of this memory
was also fixed in your system. The decoder would decide where in
this 28K address block operation was to take place, and then it
would output suitable row and sync commands to the character
generator or graphics module.)

With scungy video, we use either a subroutine or an interrupt
jump to a much smaller space reserved for the display map. The
display map is simply a single picture of the display format, ex
pressed as one or more scan microinstructions. If you have only a
single-line 1 X 32 display, your display map need only consist of
32 words. On a 12 X 80 or a 16 X 64 display, your display map can
take around lK of address space.

So, scungy video frees up bunches and bunches of computer ad
dress space for any use you want. The display map can go just about
anywhere in your computer address space you want it to, eliminating
many restrictions on what else in the computer goes where.

While graphics displays will take a somewhat larger display map
(up to BK for 256 X 256), the display map is still much smaller than
the 28K tied up by cheap video. Taller alphanumerics, particularly

13

64K

56K

14K

4K

MICROCOMPUTER
ADDRESS SPACE

V SYNC

ROW 7

ROW 6

ROW 5

ROW 4

ROW 3

ROW 1

ROW 1

DISPLAY MEMORY

THESE ADDRESSES
RESERVED FOR CHEAP

VIDEO DISPLAY

SCAN µINSTRUCTION
SUBROUTINE CALLED.
ADDRESS SPACE SETS
ROW INFORMATION

(A) Cheap video.

64K

4K
DISPLAY MEMORY

l ADDRESSES RESERVED
FOR SCUNGY

VIDEO DISPLAY MAP

SCAN µINSTRUCTION
SUBROUTINE OR
INTERRUPT CALLED.
OUTPUT PORT SETS
ROW INFORMATION

(B) Scungy video.

Fig. 1-4. Scungy video scan microinstruction frees most of the computer
address space for normal use.

12-line lower-case-with-descender characters, can now be done with
out any penalty in address space limits.

So, our first difference between cheap video and scungy video is
often how we produce the scan microinstruction. We used a sub
routine jump to a large 28K address space in cheap video, while we
use a choice of interrupt or subroutine jumps to a much smaller dis
play map in scungy video. Scungy video takes up much less address
space, is far more flexible, and saves us at least one PROM.

The Display Map
The display map is an area set aside in your computer's address

space to contain a replica of the screen display. When the computer
gets on the display map, it will output scan microinstructions as
needed to get the separate display memory to output characters or
chunks in the right order.

A typical display map is shown in Fig. 1-5. Part of the computer
address space is reserved for the display map. The display map is
stuffed with scan microinstructions. The number of instructions re
ceived before the exiting RTI or RTS command sets the number of

14

EACH WORD ADVANCES . . EXCEPT FOR THE
THE COMPUTER LAST WORD WHOSE
ADDRESS BUS BY RTI ENDS THE SCAN
ONE µ.s AND ONE MICROINSTRUCTION
CHARACTER . . .

r \ \
AO AO AO AO • • AO 40

AO AO AO AO • • AO 40

. AO AO AO AO • • AO 40

AO AO AO AO

I
DISPLAY MAP

• • AO 40

The number of commands per row sets
the number of characters or chunks
horizontally on the screen.

The number of rows in the map sets
the number of characters or chunks
vertically on the screen.

The display map MUST be outside the
memory space with the upstream tap.

I
I "

MICROCOMPUTER

/

ADDRESS SPACE

Fig. 1-5. Scungy video needs a display map in the computer address space.

characters per line. The number ofJ different scan microinstructions
decides the number of rows of characters or chunks on the screen.

To use your display map, you write a scan program. Every time
the scan program wants to output a line of video, the scan program
calls for a BRK or a JSR that jumps somewhere on the display map.
A scan microinstruction is then generated that outputs one line of
characters or graphics chunks.

The lower bits of the starting address on the display map are the
same as the lower bits on the starting address of the display mem
ory. So, to output a different line of characters, you pick a different
scan-microinstruction starting place on your display map.

Now, while the computer is busy following the instructions on the
display map, the display memory is going ahead and outputting
characters or chunks by way of the upstream tap. Two things are
happening at once in your computer! These two things must remain
separate, since the instructions to advance the program counter are

15

obviously different from the video characters or chunks being out
put.

Because the computer has to do two different things at once, and
if scungy video is to work, there is a most important rule about
where the display map has to go:

The display map MUST he in a part of the microcomputer
address space that is OUTSIDE the upstream tap on the
display memory.

We need this rule to make sure that the scan microinstruction
being fed the computer is different from the characters being output.
In most systems, this is a trivial rule to follow. On the bare-bones
KIM-1, this means that if your upstream tap is on pages 00 through
03, the display map must go outside this space. Two reasonable
places to put it are in the RAM at 1780 or using a new small PROM
on decoding K4.

All that is on your display map is a bunch of scan microinstruc
tions. There are lots of possible ways to get your display map to
appear in the computer address space. Four possibilities are shown
in Fig. 1-6.

For instance (Fig. l-6A), you can put your display map into exist�
ing system RAM. This is simplest, cheapest, and easiest. You just
load the AO-AO-AO-AO A0-40 scan microinstruction into system
RAM somewhere. No new hardware or firmware is needed. The
obvious disadvantage is that the display map disappears when the
power does. But, this is a simple way to test a display and its format
without any hardware involvement or commitment.

Or, in Fig. l-6B, you can put your display map into existing sys
tem ROM, PROM, or EPROM space. A single large EPROM could
hold your system monitor, display map, your scan programs, a key
board encoding scanner, I /0 routines, and so on. This option takes
no new hardware, but it is best reserved till you are exactly sure
what your system is to do.

Both of these approaches need one memory slot in the display
map for each character or chunk on the display. But, since the dis
play map consists of bunches of identical scan microinstructions, is
there. some easier way that we can use "mirrors" to make much more
compact coding look like a whole display map? The "mirrors" are
done by redundant decoding. In Fig. l-6C, we use a small 32 X 8
PROM on a TVT 6%, either the existing subroutine-mapped PROM
or a new interrupt-mapped one. The PROM is enabled anywhere on
the display map as needed. The advantages of this route are that
you are compatible with your existing TVT 6%, and only a single
$1.50 PROM is needed for the entire memory map. A disadvantage

16

is the need to custom program a bipolar PROM for each system you
are going to use.

Finally, in Fig. 1-6D we use a plain old hardware decoder. This
LSTTL circuit is activated when addresses are inside the display
map range.

®

@

©

PUT IT IN EXISTING SYSTEM
RAM FOR DEBUG AND ECONOMY.

OR

PUT IT IN SYSTEM ROM, PROM,
OR EPROM ALONGSIDE YOUR
MONITOR AND SCAN PROGRAMS.

OR

USE A SMALL REDUNDANTLY
DECODED PROM SIMILAR
TO CHEAP VIDEO SCAN PROM.

OR

HARDWARE DECODE
AND ACTIVATE THE
DISPLAY MAP.

AO-A4

�

I ROM!

AO-A4

K4
1f

cs

32 X 8
SCAN PROM

5610
K4

cs
1f

>
::::,

74LS54 1
OCTAL DRIVER

Fig. 1-6. Four of many possible ways to build a display map.

}
DATA
BUS

l DATA
BUS

If the address bus is outside the display map range, the data bus
output of the hardware decoder is floated. If the address is on the
display map but not the final microsecond on the line, an AO is out
put. If the address is on the final microsecond of the line, a 40 (for
RTI) or a 60 (for RTS) is output.

We'll look at examples of how to do a display map in system RAM
and small PROM shortly.

17

..
0

0 �
0
I
2

� 3
z: 4 ::;
ffi 5

6
7 �

N 8 ""
f:;" 9
8 10

.... I I

1 2 z:

13
14
15
16
1 7
18
19

"' 20
21

� 22
23 ::; � 24

"" 25
f:;" 26
�
::, 27

28
29
30
31

18

INPUTS

WHAT DOES THIS
WORD DO?

LDY
"
"

"
" .
"

"

.

"

"

"

"

"

"

RTI

OUTPUTS
QB Q7 Q6 Q5 Q4 Q3 Q2 QI

....
0
0

0

i:;5 "" � � "" N iii C
0:, 0:, 0:, 0:, 0:, 0:, 0:, :c 0 0 0 0 0 0 0 0

AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
AO • CJ - 0 0 0 0 0

Ao • o • o o o o CJ
AO • CJ - CJ CJ O O CJ
A0 • .0 • 0 0 0 0 0
Ao • o • o o o o o
Ao • o • o o o o o
A0 • 0 • 0 0 0 0 0
AO • o • o o o o o
AO • CJ • CJ CJ CJ CJ CJ
AO - CJ - CJ CJ CJ CJ CJ
AO • 0 • 0 0 0 0 0

AO - CJ - CJ CJ CJ CJ CJ
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • CJ - O CJ CJ CI CJ
AO • CJ - CJ CI D D CJ
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO - CI - O O O O CI
AO • ci • CJ CJ CI CI CI
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0

AO • 0 • 0 0 0 0 0

AO • CJ - CI CI CI D CI
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
40 0 • 0 0 0 0 0 0

! 659-KS64 !
PROM NUMBER

CJ = "0"
- = "I "

(POSITIVE LOGIC)

6502 coding
Use for Scungy Video
alphanumeric scans of
32. 64. and other
unpacked lengths and
most graphics scans

Fig. 1-7. Truth table for optional scan PROM 659-KS64.

Cl �

�
0
I
2
3
4
5
6

<C 7
8
9

10
II
12
13
14
15 "' 16

z 1 7 <C

18
19
20
21
22
23
24
25 ..., 26

<C 27
28
29
30
31

INPUTS

WHAT DOES THIS
WORD DO?

LDY

.

.

.

. .

RTI
LDV

"

"

"

RTI
LDY

"
"

"

"

"
"

RTI

OUTPUTS
Q8 Q7 Q6 Q5 Q4 Q3 Q2 QI

u,

Cl

� <O = � ..., "' ;;; 0
a, a, a, a, a, a, a,

:,:: Cl Cl Cl Cl Cl Cl Cl Cl

AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
Ao • o • o o o o o
AO • o • o o o o o
AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • 0 0 CJ CJ 0
AO • CJ • CJ CJ CJ CJ CJ
AO • 0 • 0 0 0 0 CJ
Ao • o • o o o o o
Ao • o • o o o o o
40 CJ • CJ CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
AO • 0 • 0 0 0 0 0
AO • CJ • CJ CJ CJ CJ CJ
AO • 0 • 0 0 0 0 0
AO - CJ - CJ CJ CJ CJ CJ
AO • 0 • 0 0 0 0 0
AO - CJ - CJ CJ CJ CJ CJ
AO - CJ - CJ CJ CJ CJ CJ
AO - CJ - CJ CJ CJ CJ CJ
40 0 • 0 0 0 0 0 0
AO - CJ - CJ CJ CJ CJ CJ
AO - CJ - CJ D D CJ D
AO - CJ - CJ D D CJ D
AO • 0 • 0 0 0 0 0
AO - CJ - CJ CJ CJ CJ CJ
AO • o • O D CJ CJ O
AO - CJ - CJ D CJ D D
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
40 0 • 0 0 0 0 0 0

! 659-KSBO !
PROM NUMBER

o = ·o·
- = "! "

(POSITIVE LOGIC)

6502 coding
Use only for Scungy
Video alphanumeric
scans of 80 repacked
characlers per line.

Fig. 1 -8. Truth table tor optional scan PROM 659-KSBO.

19

0
;;=

0
'/ I

2
3

z 4
� 5

6
7

N 8
z 9 <C � 10

1 1
1 2

.., 13
z
<C

14
1 5 "'
16
1 7
18

z 19
<C � 20

21
22

"' 23
z 24
� 25

26
27

<D 28
z 29
<C � 30

31

20

INPUTS

WHAT DOES THIS
WORD D0'

LOY
"

"

RTI
LOY

.

RTI
LOY

"

RTI
LOY

"

RTI
LOY

"

RTI
LOY

"

RTI

OUTPUTS
Q8 Q7 Q6 Q5 Q4 Q3 Q2 QI

0

0

i'.:S ,_ <D "' = ..., N CQ 0
00 00 00 00 00 00 00

:,:: 0 0 0 0 0 0 0 0

AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
AO • CJ - D CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
40 D • D CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
4 0 CJ • CJ CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
Ao • CJ • CJ D D CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ D
4 0 D • D CJ CJ CJ CJ D
AO • CJ • CJ CJ D CJ CJ
AO • CJ • CJ CJ CJ CJ D
AO • CJ • CJ CJ CJ CJ CJ
AO • CJ • CJ CJ CJ CJ CJ
40 o • o CJ CJ CJ CJ D
AO • CJ • CJ CJ CJ CJ CJ
AO - CJ - CJ CJ CJ CJ CJ
AO - CJ - CJ CJ CJ CJ CJ
AO • CJ • CJ o CJ D CJ
40 D • CJ CJ CJ CJ CJ CJ
AO - CJ - CJ CJ CJ CJ CJ
AO - CJ - CJ CJ CJ CJ CJ
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0

40 0 • 0 0 0 0 0 0

! 659-KS40 l
PROM NUMBER

CJ = "O"
- = "! "

(POSITIVE LOGIC)

6502 coding
Use only for Scungy
Video alphanumeric
scans of 40 repacked
characters per line.

Fig. 1 -9. Truth table tor optional scan PROM 659-KS40.

If you go the small PROM route to keep compatibility with your
existing TVT 6%, you can use the scan PROM codings of The Cheap
Video Cookbook for your scan microinstructions if your scan micro
instructions are subroutine mapped. If you choose to interrupt map
your scan microinstructions, suitable new PROM codings are shown
in Figs. 1-7 through 1-9. Again, these are options. Most likely, you
will want to eliminate all special PROMS from your system.

The Output Port

Scungy video nicely eliminated cheap video's PROM instruction
decoder. Unfortunately, we also eliminated any way to tell what dot
row on a character we were working on, the sync signals, and the
color graphics chunk select commands. Clearly, we need some new
way to get these vital signals to the video interface hardware.
Scungy video borrows part of an existing computer 1/0 port to do
this. Two to four lines may be needed. Fig. 1-10 shows details of
four options.

In Fig. 1-lOA, we output port BO as a composite V and H sync out
put. The alphanumeric row commands show up on Bl, B2, and B3
in ascending order. Now, if you increment this port and then immedi
ately decrement it, you will output only an H sync pulse. The pulse
will be 6 microseconds wide instead of the usual 5 microseconds,
but it still works well.

If, instead, you increment the port, delay for a while, and then
decrement the port, so that the increment and decrement are around
180 microseconds apart, you output a V sync pulse. Both the V sync
and H sync appear on the same port line as composite sync. Your
positioning is done with software, and external hardware positioning
is neither available nor needed.

Now, if you increment the port twi� in a row, you still output an
H sync pulse. But, at the same time, you advance the row counter
by one count. You do this at the start of every live line to automati
cally step the row counter through the dot rows needed for a line
of characters.

Here's a summary of the operating rules for your parallel port:

-To clear the port to no sync and the top (blank) character row,
load all zeros.

-To output only an H sync pulse, increment and then immedi
ately decrement the port.

-To output only a V sync pulse, increment, delay 174 microsec
onds or so, and then decrement the port.

-To output an H sync pulse and advance the row counter, in
crement the port and then immediately increment it a second
time.

21

The port assignment in Fig. 1-lOA is simple and works nicely for
most graphics and short character lines. But it may be a bit slow for
longer alphanumerics, or you may want to keep your H and V sync
separate for hardware positioning. Fig. 1-lOB shows another option.
The row commands are immediately incremented with a single in
crement command, and a V sync pulse is output separately on a
higher line. H sync is picked up in a separate blanking and TVT
CS circuit that senses when a jump to the display map takes place.
This option seems preferable for 64 and 80 character lines.

PARALLEL
PORT

PB3
PB2
PB!
PBO

(SPLIT SYNC WITH
ADDITIONAL
OUTPUT LINE)

ROW 4
ROW 2
ROW 1
COMPOSITE SYNC

(A) For short alphanumeric l ines;
software positioning.

PARALLEL
PORT

PB!
PBO

(SPUT SYNC WITH
ADDITIONAL
OUTPUT LINE)

CHUNK SELECT
COMPOSITE SYNC

(C) For color graphics.

PARALLEL
PORT

(H SYNC DERIVED
FROM TVT CS)

PB3 V SYNC
PB2 ROW 4
PB! ROW 2
PBO ROW 1

(B) Faster for long alphanumeric
l ines; hardware and
software positioning.

PARALLEL
PORT

PB!
PBO

(AN EXTERNAL ROW
COUNTER COULD
ALSO BE USED)

ROW RESET
SYNC + ROW CLOCK

(D) For alphanumeric character
generators that have internal

row counter.

Fig. 1 -10. Use of parallel port for row and sync information.

If you are limited in your number of available ports, Figs. 1-lOC
and 1-10D show you how only two ports are needed for color
graphics, or for alphanumeric character generators that have their
own internal row counter. The National DM-8678 is one example.
You can also add your own CMOS or LSTTL binary counter to save
on port pins if you want to. In operation, one port is used to output
composite sync and a row clock. The second port is used to reset
the row counter when needed.

22

A BOTTOM LINE SCUNGY VIDEO SYSTEM

Let's see just how we can go about using scungy video. As an
exercise in crudeness, let's pretend that we have only a KIM-1 and,
say $7, and that we want to see what the absolute minimum is that
we can do to get any video at all out of a microcomputer. We'll first
set our sights rather low-a single nontransparent line of 32 char
acters.

Once we see what the bare minimum we need in the way of video
really is, it is a simple matter to pick up all of the features of just
about any fancier display we want.

Our bottom line KIM-1 scungy video circuit appears in Fig. 1-11,
and a complete parts list is shown in Chart 1-1. As the parts list
shows, very little is needed, and practically all that is needed is al
ready available on your TVT 6%. A total of five integrated circuits
is involved!

You can build up this circuit by taking your TVT 6¾ and remov
ing ICl, IC2, IC3, and IC5, and then tieing into the sockets as

Chart 1 -1 . Parts List for Bottom Line Scungy Video System

Integrated Circuits
251 3 Character Generator
74165 TTL Shift Register
74LS04 TTL Hex Inverter

*74LS08 TTL AND Gate
*74LS02 TTL NOR Gate

Resistors
47
100
220
330
470 (2)
1 K
4.7K

Capacitors
33 pF Poly
62 pF Poly
1200 pF Poly
0.001 µF (Optional)
0.1 µF Bypass
1 .0 µF (Optional)
33 µF Tantalum

Diodes
1 N4148 (2)

·Parts not already available on TVT 6'/a

23

shown by the bracketed numbers. If you start from scratch instead,
your total cost, using surplus parts, should be around $7 or so.

The scungy video interface hardware has to receive characters
from an upstream tap on your computer, and then convert these
ASCII characters into parallel video with a 2513 character genera
tor. The parallel video dots are then converted into serial video with
a 74165 shift register and output to a tv set or video monitor. Load
and clock commands are generated for the shift register by a 7 4LS04
that takes the computer's 1-MHz clock, and then derives a load pulse
and seven clock pulses from each clock cycle.

Some additional gates are needed to get this bottom line system
to work. A 74LS02 is used to activate the computer display memory
(KIM pages 00 through 03) whenever the computer wants memory
access, and whenever the video circuitry wants the characters to go
out the upstream tap.

Our first programming example will have the display map sitting
in RAM starting at 1780. A NOR decoding of AB6 and K5 will go
high when the computer goes onto the display map. This new TVT
chip-select signal gets combined with the existing KO decoding to
drive the display memory chip selects low either when the computer
needs access or when the video circuitry wants characters to go out
the upstream tap.

A final gate in the package is used to invert. the composite sync
that the scan software is going to output on port\ PAO. This inverted
composite sync is then used in the resistor-diode video combiner
circuit as shown.

These four integrated circuits are all we need to get video out of
a KIM-1, but, if we do nothing further, a few extra characters will
be displayed on the screen, outside the live message area. A little
black tape is one cheap but crude way around this, but even on a
bottom line system, something better is needed.

Why the extra characters? The extra characters come about since
the parallel port row commands change to a nonblank line before
the computer moves onto the display map and scan microinstruction.
These row commands also remain nonblank after exiting the scan
microinstruction. This is different from cheap video, where the row
commands started and stopped exactly with the scan microinstruc
tion.

So, scungy video needs a new blanking circuit, done with a
74LS08 AND gate as shown. The apparently "extra" line AB7 going
to the blanking circuit takes care of a quirk of the KIM-1. The IRQ
vector is stashed close enough to the display map that some extra
decoding is needed to separate the two.

There are two capacitors shown in the video combiner. The 0.001
is a very crude bandwidth enhancer and is adjusted for the best

24

" "' ., � "
i i i i n
� � :! i' H

il �i "
g

�
;I� � t

Fig. 1-11. Bottom line scungy video system.

25

looking characters on a tv display. Chances are that you will want
to omit this capacitor entirely if a quality video monitor is used.
The output coupling capacitor should be included for video monitor
use and excluded for tv-set use. If you direct couple for tv use, the
output voltage will be pretranslated to the bias level needed for the
first video stage of a typical tv set. This output level is around +4
volts for white, +3.25 volts for black, and +3 volts for sync. See The
Cheap Video Cookbook for more interface details.

FROM VIDEO
SHIFT REGISTER

7ilC4
9/IC4

COMPOSITE SYNC

PAO (APP 14)

+

(6/IC3]

+5 V

fl:!!!!!
!OK

4

R l l
Cll

l

150 pf

=

12

+5 V

Rl3 150 p "TV "

J2
�

OUTPUT

D4-7 cs IN4149 0.1

Rl2 JI p "VIDEO"
22 OUTPUT

100

05 = 7405

Fig. 1-12. A better video output circuit using parts from the TVT 6%.

Actually, we've done this particular output circuit just to see how
cheap we can get and still have the circuit work. A much better out
put circuit is shown in Fig. 1-12. This better output circuit uses more
of the parts already on your TVT 6% and gives a full CLARITY con
trol and an adjustable WIDTH control. You can get the adjustable
width simply by using the TVT 6% WIDTH pot instead of the 47-ohm
resistor shown in Fig. 1-11 .
. If you want a winking cursor, return IC3 to its socket, but bend

pin 6 up and out so that it doesn't interfere with the new sync lead.

Scan Software
Now, if you build this bottom line scungy video circuit and plug

it into your KIM-1, nothing will happen. This shouldn't be surpris
ing, because we haven't gotten anything going in the way of scan

26

software yet. Your scungy video hardware will only work when you
use suitable scan software to make it go. This is just the same as in
cheap video, where it took both hardware and software working
together to get us results.

For our first demonstration program, we'll temporarily ignore
transparency and assume that you are going to alternate your com
puter and display modes. We will need only a single scan microin
struction for our display map. For sta1ters, we'll put our display map
in RAM, since this is simplest. Remember that our display map has
to go outside the upstream tap, and that the upstream tap on a bare
KIM will cover RAM pages 00 through 03. So, the only remaining
RAM is the scratchpad starting at 1780. This is where the scan mi
croinstruction will be stashed.

If our scan microinstruction goes from 1780 to l 79F, the characters
displayed will be on page 03 and range from 0380 to 039F. We can
show this easily enough, since the lowest address bits on both the
display map and display memory must be identical for scungy video
to work:

Display Map (1780) 0001 0111 1000 0000
Display Memory (0380) 0000 0011 1000 0000

Since our upstream tap is across 4 pages, or lK of memory, lK of
address space, or ten bits, must "match" between display map and
display memory.

Your Turn:

Where are all of the 63 permissible loca
tions in 65K address space for a display
map if your d isplay memory i s to go from
0380 to 039F?

Generally, when you are designing a scungy video system from
the ground up, you have lots of flexibility in where you put your
display map and your display memory. The basic rules are as
follows:

* The display map must go outside the upstream tap area.
* All the lower address bits must match between the display map

and the display memory. The number of bits that have to
match is set by the upstream tap. If the upstream tap is across
lK of RAM, then ten bits must match.

27

* There must be no conflict between display map, display mem
ory, and other use of computer address space.

Since we have a choice of break or subroutine mapping for our
scan microinstructions, let's look at the break-mapped route to see
what it can do for us. Break mapping uses a ERK-forced interrupt
to put us on the display map. When we go on the display map, we
do the scan microinstruction. While the scan microinstruction is
being done, characters from the display memory are output by way
of the upstream tap and converted to video.

We will use parallel port A per Fig. 1-lOA to get our composite
sync and row commands. Later, you will most likely want to change
this to port B to make room for an ASCII keyboard input.

A scungy video break-mapped subroutine lets you put down an entire l ine of
characters with only fourteen software words. Si nce the code does not modify
itself, it can be stored in RAM, ROM, PROM, or EPROM.

Your scan program fi rst in it ial izes the IRQ vector and then sets an output port
to work on the upper or blank dot row of characters. It then jumps to this
subroutine:

Enter via JSR�� INC EE 00 1 7 This starts a n H sync pulse
INC EE 00 1 7 Sync ends; new dot row picked
BRK 00 EA This causes a break-mapped

�
scan m icroinstruction

IAO AO AO AO AO AO AO AO AO AO AO AO AO AO AO A�J I AO AO AO AO AO AO AO AO AO AO AO AO AO AO -40 -40
I

CMP Cd 00 1 7 This tests for the last dot row
----BNE d0 F3 And repeats if it isn't the last one

Exit to scan-- RTS 60 This finishes the subroutine
program

For a new row of characters, the IRQ vector is changed to a new starting
address. Graphics work simi larly.

Fig. 1-13. Break-mapped subroutine for putting down an entire row
of characters.

Before we look at the whole scan program, let's see how the criti
cal part involving break-mapping can work. Fig. 1-13 shows a sub
routine that will put down an entire row of characters. Each char
acter row consists of seven dot rows of serial video. You call this
subroutine as often as you need it, once for each row of characters
on the screen.

28

To use this scan sequence, you have to set things up ahead of
time. You do this first by initializing your port to be an output and
forcing all port lines low. This means you are between sync pulses
and the row commands are pointing to the blank top dot row of
your character generator. This makes everything a blank before you
begin.

Secondly, you load a value into the accumulator that matches the
last line of dots you want to put down. For a 5 X 7 character gen
erator, and the Fig. 1-lOA port callouts, this value will be OE. The
zero part we don't care about, since these lines aren't in use. The
E part of the number gives us between-sync and row seven with its
1110 code.

Finally, since you are break-mapping, you have to load your IRQ
vector so that an interrupt will jump you to the display map. On
the KIM-1, you do this by 17FE 80 and 17FF 17.

Once everything is set up, we can use our break-mapped sequence.
As Fig. 1-13 shows, we immediately increment the port twice. This
outputs an H sync pulse and moves us to the first live dot row on
the character generator.

Then we do a BRK (00) command. The BRK command immedi
ately calls for an interrupt, and the computer jumps to the scan
microinstruction at 1780 and starts doing its LDY AO routine. This
makes the program counter advance one count per microsecond.
Since the program counter is connected to the address bus and since
the address bus is connected to all memory in the computer, and
since the lower address bits match on the display map and the dis
play memory, characters from the display memory will be output
via the upstream tap.

As is usual during a scan microinstruction, the scan microinstruc
tion has control of the computer data bus, but the display memory
is simultaneously enabled as far as the upstream tap. This lets your
computer do two things at once and is the key hardware secret to
both cheap video and scungy video.

The scan microinstruction continues its A0s until we are two mi
croseconds shy of where we want to end the line. Then we give a
command to exit the scan microinstruction. This is an RTI (40) if
you are break mapping or an RTS (60) if you are subroutine map
ping. The last two characters ·on the line get output as part of the
initial process of exiting either from interrupt or subroutine.

After we exit the scan microinstruction, we compare the port to
see if we are on the bottom row of dots. If we are not yet to the
bottom dot row, we repeat the whole process, putting down a new
H sync pulse and then changing to the next dot row, and finally put
ting this row out as serial video. When the characters are finally
complete, the sequence exits to the main scan program.

29

One detail. What is that EA following the BRK command? The
6502 rulebook says that a return from a ERK-forced interrupt goes
two steps away from the point where you called it. Thus, the in
struction word immediately following a BRK gets ignored. If this
happens to be a two-byte or three-byte instruction, only the first
byte will be ignored, and you find yourself in deep, deep trouble.
A rule:

On a 6502, the slot immediately following a BRK com
mand will be ignored. Always put an EA in this location.

This break-mapped sequence lets us put down an entire row of
characters in only fourteen words of code. The code is not self-modi
fying, meaning it can go in ROM or PROM. To change to a differ
ent row of characters, the IRQ pointer is moved to a different posi
tion on the display map. That causes a different match on the lower
address bits, which in turn outputs a different part of the display
memory.

A Timing Detail
How long does it take us to put down a single row of characters?

Well, let's run the usual timing check. There's 32 microseconds of
live scan time, 11 microseconds of BRK and RTI time (remember
two of the RTI's 6 microseconds are charged against live character
time) , 6 microseconds for each of two increment times, 4 microsec
onds for the compare, and 3 for the branch. A total of 62 microsec
onds, just about what we would like.

But, hook this up and try it, and guess what? Your line is 67 micro
seconds long. This is still useful with a slight hold adjustment. But
-where on earth did those extra five microseconds get burned up?

The answer is that the system monitor has to get its finger in the
pie. BRK doesn't really branch to where the IRQ vector tells it to.
It branches to the monitor firmware ROM. The firmware ROM then
branches with a jump indirect to the address stashed in the IRQ
location. This is typical of most monitors. The nmaround is needed
to keep the reset and IRQ vectors in firmware so that the system can
be turned on and brought up.

The specific details of where the five microseconds goes in a
KIM-1 are this. The BRK command, or any other IRQ, sends you
�o lFFE and lFFF in the monitor ROM. These locations immedi
ately send you to lClF, also in ROM. lClF and the two following
code words tell you to do a jump indirect to the location stashed in
1780, or 6C 80 17. Finally, the actual jump takes place, and the in
terrupt is ready to go. The monitor's piece of the action takes a jump
indirect command and costs us five microseconds.

Another rule :

30

A break-mapped interrupt may take longer than you ex
pect it to because of a monitor's operation. Allow 5 extra
microseconds on the KIM-I.

To BRK and then to RTI will take a total of 18 microseconds.
Two of these microseconds take place during the live scan, and 16
happen during the blanking and retrace time.

1 x 32 Scungy Display
A 1 X 32 scungy video alphanumeric scan program is shown in

Fig. 1-14. This program works with the scungy video hardware of
Fig. 1-11.

We have put this program on page 02, but it can go most any
where you like, either inside or outside the upstream tap. There are
only two limits to where your scan program can go :

* The scan program must not be on the display map.
* The scan program has to be separate from the actual

memory slots displayed.

Thus, your scan program can even be on the display memory page.
Unless you really want it to display itself, though, you'll have to
have separate space for what is being displayed and the commands
that cause the display to appear as video. Seems fair enough.

We start at 020E, do some equalization, set up the parallel port,
and then do a V sync pulse. Then we do a bunch of H sync pulses,
corresponding to the blank scans. We do not call any scan microin
structions to do this. We simply increment and then decrement the
port to produce an H sync pulse and then use the delay loop starting
at 0230 to space out between sync pulses.

When the blank lines are finished, we call our live scan sequence
to put down the row of characters. The live scan is stashed at 0200-
020d. Remember that the IRQ vector must point to the display map
at 1780.

With scungy video, there is no longer any need to disable the
Decode Enable or DEN line on your KIM. Be sure to keep this line
grounded. One way to do this is to jumper 6/ICl to 8/ICl on the
empty !Cl socket of the TVT 6%. Keeping DEN grounded elimi
nates many of the sources of bombed and astray programs you might
have run across getting your older cheap video up. If you have a
firm ground on DEN, you should be able to use a changeover switch
without any program problems.

There is one new small quirk that comes up if you are using RAM
for your display map. This RAM must, of course, be loaded with
scan microinstructions every time you repower your system. But-

31

µP-----6502 Start-JMP 020E Displayed-0380-039F
System-KIM-1 + Stop-RST Program Space-0200-023F

Scungy Video (64 words)
Scan Space-1 780-1 79F

(32 words)
IRQ-1 780 (1 7FE 80; 1 7FF 1 7)

Live Scan Subroutine:

0200 EE 00 1 7 INC 1 700 Output H sync pulse
0203 EE 00 1 7 INC 1 700 Advance row count
0206 00 BRK 1 780 ///DO SCAN MICROINSTRUCTION///
0207 EA NOP Equalize 2 µs

0208 Cd 00 1 7 CMP 1 700 Is this the last dot raw?
020b d0 F3 BNE 0200 No, do another row af dais
020d 60 RTS Return ta main scan

Main Scan Program:

START-+ 020E EA EA EA Equalize 6 µs
021 1 A9 FF LDA #FF Make A part an output
021 3 8d 0 1 1 7 STA 1 701 continued
021 6 A9 01 LDA #01 Start V sync pulse

021 8 8d 00 1 7 STA 1700 continued
021 b A9 OE LDA # 1 0 Load last row compare
021 d AO l F LDY # l F Delay for rest of V Sync
021 F 88 DEY continued

0220 d0 Fd BNE 021 F continued
0222 CE 00 1 7 DEC 1 700 End V sync pulse
0225 A2 AF LDX #AF Set # of blank scans
0227 48 PHA Equalize 9 µs

0228 68 PLA continued
0229 EA NOP continued
022A EE 00 1 7 INC 1 700 Output H sync pulse
022d CE 00 1 7 DEC 1 700 continued

0230 AO 08 LDY #08 Delay to complete blank scan
0232 88 DEY continued
0233 d0 Fd BNE 0232 continued
0235 CA DEX One less blank scan

0236 d0 EF BNE 0227 Done with blank scans?
0238 EA NOP Equalize 6 µs
0239 EA NOP continued

023A 20 00 02 JSR 0200 /I/DO LIVE SCAN SUBROUTINE///
023d 4C OE 02 JMP 020E Start new field

Fig. 1-14. Scungy video demonstration softwar�

32

Scan Microinstruction:

Notes:

1 780 AO AO AO AO AO AO AO AO
1 788 AO AO AO AO AO AO AO AO
1 790 AO AO AO AO AO AO AO AO
1 798 AO AO AO AO AO AO 9E 9F

(Fifteen LDY AO's followed
by one RTI)

Scungy video circuit of Fig. 1 - 1 1 must be connected to KIM-1 .
IRQ vector must be loaded as 1 7FE 80 and 1 7FF 1 7.

Flowchart:

NO

START

DO V SYNC
PULSE

INITIALIZE PORT
&

ROW COUNTER

DO BLANK SCANS

YES

020E

021 1

022A

0236

DO LIVE SCANS 023b

NO YES
'------< >-------'

0208

1 x 32 alphanumeric display.

33

since your display map does in fact map itself onto the display mem
ory, any writing on the display map will also appear in the display
memory. So, always load your display map first. After your display
map is loaded, then go ahead and put your characters into display
memory. Another rule:

If your display map ever has to be rewritten, the display
memory will also have to be reloaded afterward.

This creepy crawler only shows up if your display map is RAM.
There is no problem with a firmware display map, so long as you or
the computer never try to write into this space.

Your Turn:

Do a 3 x 32 scungy video display.

For more lines of characters, you have to make a bigger display
map and have to change the IRQ vector for each line you want to
display.

We will look at a 16 X 64 display ·after we pick up our new trans
parency trick in the next chapter. Any size or shape display you did
with cheap video can also be done with scungy video, so don't let
our short and simple examples deter you from ··using scungy video
on sophisticated displays.

Your Turn:

Rewrite the 1 x 32 scan program to be
subroutine mapped, rather than interrupt
mapped.

Your choice of subroutine or break mapping depends on your
programming style and the limits you have set on your particular
computer system. Break mapping seems to be easier for generating
short programs in nonmodifying code. But it also ties up the inter
rupt lines, is slower, and can be a hassle on graphics and other scans
where lots of different memory blocks have to be called. Which way
you go is up to you. Interrupt mapping is interesting, but right now,
I like the subroutine route better.

34

Actually, any way you can dream up to get onto a display map
and off again has potential for simple video displays. An addressing
mode of JSR indexed indirect sure would be simple and handy.
While it's not immediately available on the 6502, we'll find a way
of faking it in the next chapter.

How about plain old jumps or relative branches? What about
jump indirect? Can you use these?

What options are available to you? Is there really life beyond
KIM?

35

CHA P TE R 2

The Snuffler -

Super Simple Transparency

Now that we have slashed the cost of adding video to any micro
processor to under $7 and have freed up almost all of the micra's
address space for any old use, and have gotten rid of some custom
PROMs, what can we do for an encore?

It sure would be nice if we could have full and easy transparency
with high throughput. This lets you compute and display at the
same time. Full transparency without any critical program restric
tions or lots of extra parts would be very handy.•·

It turns out there is a new and mind-blowing way to get full trans
parency on either cheap video or scungy video. All it takes is a long
length of wire and a single extra CMOS gate! What you do is add
a sensor coil to the outside of your tv set or monitor. The sensor coil
tells the computer what the tv set wants to hear.

This new route to transparent cheap video is called the snu-ffier
method.

One advantage of this snuffier method is that your cheap or scungy
video interrupts your main computer programs, instead of vice versa.
This is just like the front-panel interrupt common to some micro
computer systems. By changing the amount of time you service the
display, you adjust the time left over for computer use. Your typical
throughput time remaining can go as high as 95%, and of ten over
half the time will remain for your other programs, even with a fancy
display format.

There are some limits to the snuffler method, but these are easy
to get around. To get the snuffier working the first time, some simple
testing on your tv set will be needed, and you'll probably want to

36

use an oscilloscope. You'll have to solidly understand how the snuf
fler works before you can use it. You will also have to do some inter
rupt management games on your system. And, you'll have to find
some way to rapidly synchronize your microcomputer to an outside
world signal with a minimum of jitter.

On the 6502, you can get this rapid sync free with an obscure and
often ignored input pin. On other computer systems, it may take
some rethinking to get the same results. Let's try out the snuffler
and see what it can do for us.

THE METHOD

If you have played with cheap video at all, you have almost cer
tainly found out how unhappy the tv set gets with missing sync
pulses, fast starts and stops of displays, misplaced timing, and so on.
It looks like we have to always and exactly provide continuous sync
signals to the tv set.

Or do we?
Let's take a closer look. Just when do we have to exactly provide

continuous sync signals? Certainly during the live portion of a scan.
No argument there.

We also want to continuously provide vertical sync signals at a
60-hertz rate without too much jitter. But this is a field or a frame
rate and shouldn't be too much of a hassle.

Suppose we just stop delivering horizontal sync pulses during the
blank portions of the scan. This is easy enough and lets the computer
go back to working on its main program. And, the blank portion of
the display will look-blank. The internal horizontal oscillator in the
tv takes over, and the tv generates its own free-running horizontal
sync pulses. So, there's no problem so long as the display stays blank.

The trouble starts when you fire up your external horizontal sync
pulses from the computer at the beginning of a live scan. The result
is usually a terrible looking lock transient that tears up the display,
often in a wavy "S" shape or worse. If the lock transient is the same
from field to field, you usually will get an ugly but stable display.
If the lock point varies from field to field, you get a jumbled mess of
lock transients superimposed on top of each other. But, you already
know this if you've done anything at all with cheap video.

Now, suppose we eliminate the lock transient by picking just the
right instant with respect to the tv horizontal timing to start a live
scan. In other words, suppose we lock the computer to the tv set
instead of the other way around. Now, if we do this and pick the
wrong lock point, we will still get an ugly S-shaped display. But, by
picking just the right lock point, we can get a nice, clean, stable dis-

37

play. We still have a lock transient, but we've made its amplitude
zero so that it won't hurt anything.

In the real world, if we try this, the first few lines may still be bent
a little or have some jitter. But, we can blank these bent lines and
then start our actual display with the straight ones that follow.

Fig. 2-1 shows how the snuffier works. We add a pickup coil to
the outside of the tv set to find out what the horizontal sweep is up
to. The pickup coil will sense the horizontal flyback pulse. The
best place for this coil is often the rear bottom of the tv's left side.
After the flyback pulse is sensed, a CMOS Schmitt inverter or gate
converts the pulse into something a computer can live with.

HERE'S HOW IT WORKS:

LI

6502

CMOS
SCHMITT

(D A PICKUP COIL IS ADDED TO THE OUTSIDE
OF THE TV SET TO SENSE THE FLYBACK
PULSE.

(V THE FL YBACK PULSE IS CLEANED AND
CONDITIONED . . • . .

@ AND USED TO SET THE COMPUTER'S
OVERFLOW FLAG • . . • •

© WHICH LOCKS THE SCAN PROGRAM TO
THE TV. ELIMINATING ANY TEARING AT THE
START OF A SCAN. SYNC SOFTWARE LOOKS
LIKE THIS: •

� CLV
L svc •

Fig. 2-1. Snuffler feedback from Iv to computer simplifies transparency.

38

Every time your scan software starts a new field, you hold up the
start of the live scan on your computer until the next flyback pulse.
This locks the start of your display timing to the tv' s horizontal scan
timing. You then put down a few blank lines to eliminate anything
that remains in the way of jitter, and then go on to a stable live dis
play of your choice.

There are lots of ways you can use this new "the tv set is ready"
command. Shoving it into a parallel port or using it as an interrupt
may be the only routes you have on some computer systems. Either
of these two ways probably will work, but they might introduce too
much jitter. For instance, an interrupt usually delays till the next
instruction is finished, resulting in a 1- to IO-microsecond random
delay. And, it's hard to read a port faster than once every seven to
nine microseconds. While either of these obvious methods will work,
the leftover jitter still may need bunches of blank lines before your
live scan.

If your micro has a halt or a DMA command, maybe you can use
this for fast, jitter-free locking.

The 6502 has a unique feature buried on normally unused pin 38.
Haven't thought much about good old pin 38 have you? There it is,
just sitting there halfway between 37 and 39, and unused in just
about every 6502-based system.

Pin 38 of the 6502 sets the overflow flag immediately when fed a
positive-to-ground TTL or CMOS transition. You can test for an
overflow set in a single instruction, giving you a maximum lock jitter
of around 2 microseconds. This is something the snuffier can easily
live with and gives you a simple way to lock your micro to your tv
set. Very nicely, the KIM-1 people even brought the SO pin 38 out
to Expansion Connector No. 5, so you can gain access to your snuffier
without any mods.

To use the snuffler, you interrupt your main program at the be
ginning of a field. Then you clear the overflow flag with a CLV com
mand. Then you tell the computer to do a BVC 00 branch. This puts
you in a one-instruction loop that continues until the flyback signal
gets there from the snuffier. When overflow finally sets, you are
locked to the tv set's timing, and are all set to put down a stable
display.

The snuffier method works if

* Your tv set has reasonably stable horizontal circuits with decent
lock recovery. * You are able to reliably sense the flyback pulse from the hori
zontal-sweep section of the tv set. * You can lock your computer to the outside world with only a
few microseconds of jitter.

39

So, to use your snuffler, build yourself a sensor to pick off the Hy
back pulse, and then clean up the pulse so that it looks like some
thing your computer can understand. Then, use this signal to delay
the start of a field. After locking, use some software equalization to
minimize the lock transient, and then put down a few blank lines.
Then go on to your live display.

Looking at the big picture, 60 times a second something interrupts
your main program and says to start a display. After this command,
your computer spins its wheels until the next flyback pulse from the
snuffler arrives. Then the computer outputs video to the tv set. Then
the computer goes back to your main program. How much time is
spent on the display determines both the display size and the time
left over to run your programs. Shortly, we'll see a 16 X 64 display
that is fully transparent, uses scungy video, and leaves well over half
the computer time available for your main program.

BUILDING THE SNUFFLER

The new snuffier circuit is shown in Fig. 2-2, and the construction
details of the snuffler coil are shown in Fig. 2-3.

The snuffler coil is made from a length of hookup wire. Use
around 40 feet of wire, and hank wind it into a 3-inch diameter loop.
Then secure the coils with tape. Finally, the two leads are tightly
twisted together and made long enough to get conveniently from tv
set to computer. Around 10 feet or so is reasona,ble.

You put the coil at the lower left rear of your tv set, where it can
couple to the Hyback transformer in the tv. The coil is then con
nected to the circuit of Fig. 2-2A. The CMOS Schmitt inverter or
gate acts as a high impedance level detector with lots of noise im
munity. An input signal above 2.5 volts drives the output low. An
input signal below this value drives the output high. The Schmitt
input circuitry provides noise immunity through its hysteresis or
snap-action. This is just what we need to condition the more-or-less
messy flyback pulse.

Debug will be simplest if you use a scope for your initial check
out. View Point A. The flyback peaks should be around five volts
high. You adjust the strength with the sensitivity pot and the posi
tioning of the coil on the outside of your tv set. Once you find a
good location, hold the coil in place with masking tape. Try to find
a position that gives you five volts out with a centered sensitivity
pot, when viewed with the usual IO-megohm 10 : l scope probe.

Once the position is nailed down, operation should be noncritical
and reliable. If you don't have a scope, use your KIM-1 and a custom
program to measure the times between overflow sets. No overflows

40

SNUFFLER
COIL

A
CMOS SCHMITT

TRIGGER
4093 OR 4584

SYNC TO COMPUTER

EXPANSION-5 ON KIM-I
IOOK SENSITIVITY
MUST BE ON
GROUND SIDE'

(A) Circuit.

POINT A WAVEFORM
APPROX 5 V P-P

---------------- +5 V INCORRECT POINT B
WAVEFORM - SENSITIVITY
TOO LOW OR POSITION - - - -

-
- -- - ---- - - --- - - - 0 TOO "COLD "

+ 5 V CORRECT POINT B
WAVEFORM - ONE
CLEAN PULSE PER
CYCLE

+5 V

0

(B) Waveforms.

Fig. 2-2. Snuffler circuitry.

INCORRECT POINT B
WAVEFORM - SENSITIVITY
TOO HIGH OR POSITION
TOO "HOT"

mean too low a sensitivity, and erratic overflows mean too hot a coil
position or too high a sensitivity setting.

Note that the sensitivity pot MUST go on the ground side of the
snuffler coil. Otherwise, the snuffler coil self-shields and gives you
far too low an output signal.

Your point B waveform should give you one clean output pulse
per input :flyback pulse.

41

START WITH 40 FEET OF SOLID HOOKUP
WIRE. HANK WIND 20 FEET AS 20 TURNS
ON 3 INCH DIAMETER.

SECURE LOOP WITH TAPE. TWIST LEADS
TOGHHEff STRIP ENDS.

TAPE TO TV SET AT LOWER LEFT REAR.
USE OSCILLOSCOPE TO FIND
"LOUDEST" POSITION.

Fig. 2-3. Details of snuffler coil.

A SNUFFLER DEMONSTRATOR

Fig. 2-4 shows a demonstration program that puts a stable raster
on the screen for you. It's a handy place to start. It demonstrates the
full transparency of the snufller method. The demo assumes you have
the old TVT 6% cheap video system and both PROMs in use.

The snufller works by interrupting an existing program. Start out
with the default "main" program shown starting at 0100.

This particular display will give you a blank raster or else one
with a bunch of stripes. Later on, you'll replace the blank raster with
the live scan format of your choice.

We use the interval timer on the KIM-I. This gives us an inter
rupt 60 times a second. This interrupt stops the main program and
starts the video display sequence.

The interrupt from the timer branches us to 1780. When we get
to 1780, we wait for the next flyback pulse from the snufll.er. After
the snufll.er sync arrives, we put down 20 or so blank scans. Most
often, we can get by with far fewer prescan blanks than this, but
20 is a good choice for very stable displays. These blanks are put
down in step 178C.

The live scans follow and are set down by 1796. The stripes you'll
get correspond to the first dot row of whatever happens to be in
display memory locations 0014 to 003F. Since this is a demonstration,
all we are interested in is showing a stable live scan area separate
from the rest of your program and the blank scans. Later, of course,
you'll replace the live scan with something useful.

After the live scans, we output a vertical sync pulse and set the
timer to get us a new interrupt as needed next time around. Be
sure to jumper your timer to the IRQ line (APP15 to EXP4) . Once

42

your timer is set, the interrupt is released, and the computer returns
to the main program.

The sum of the prescan blanks, the live scan lines, and the timer
value must add up to a stationary hum bar at 60 hertz when the tv
horizontal hold is at its best setting. Be sure to follow the detailed
notes in Fig. 2-4. Your program is working when you have a station
ary display and 50% throughput.

Your Turn:

Add interlace and l ine lock to the snuffler.

Interlace is fairly easy to add. Just change the timer value and the
vertical sync position for each field of your frame. Combine N scan
lines and a late V sync pulse on one field with N + 1 scan lines and
an early V sync pulse on the second field. See details on this in
Chapter 2 of The Cheap Video Cookbook. Shortly, we will look at
an alternative to full interlace that gives you much higher through
put on fancy displays.

Line lock will be tricky. The advantages of line lock are that it
eliminates the timer and gives you a stationary hum bar. But some-

µP-----6502
System-KIM-I +

TVT 65/e +
Snuffler

Start-JMP 0 100 Program Space-1 780-1 7A6
Stop-Reset (39 words)

IRQ-1 780
(1 7FE-80; 1 7FF- 17)

This P.rogram puts a raster on the screen with about 50% throughput. It uses the
TVT 65 /a with PROMs 658-KD8 and 658-KS64, along with a snuffler circuit applying
flyback t iming routed to the overflow set pin. The display is fully transparent.

Use the following as a default main program to be interrupted:

0 100 A9 1 0 LDA # 1 0 Start IRQ Timer first cycle
0 102 8d OF 1 7 STA 1 70F continued
0 105 58 CLI Clear Interrupt flag
0 1 06 4 C 05 01 JMP 0105 Loop ti l l scan interrupts

Scan Program:

1 780
1 781

68 CLV Wait for flyback pulse
50 FE BVC 1781 continued

(Continued on next page)

Fig. 2-4. Snuffler demonstration program for TVT 6%.

43

1 783 50 00 BVC 1 705 Equalize 2 or 3 /JS as needed
1 785 20 1 0 60 JSR 6010 Equal ize even µs as needed

1 788 A2 1 4 LDX # 1 4 Set # o f init ial blank scans
1 78A 70 00 BVS 1 78C Equa l ize 3 µs
1 78C 20 10 60 JSR 6010 /////INITIAL BLANK SCANS/////
1 78F CA DEX One less blank scan

1 790 d0 FA BNE 1 78C Done with blank scans?
1 792 A2 80 LDX #80 Set # of l ive scans
1 794 70 00 BVS 1 796 Equalize 3 µs
1 796 20 1 4 70 JSR 701 0 //// /LIVE SCANS//////////////

1 799 EA NOP Equalize 4 µs
1 79A EA NOP continued
1 796 CA DEX One less l ive scan
1 79C d0 F8 BNE 1 796 Done with l ive scans?

1 79E A9 71 LDA #71 Set IRQ timer for rest of field
1 7A0 8d OE 1 7 STA 1 70E continued
1 7A3 AD 00 E0 LDA EOOO Output vertical sync pu lse
1 7A6 40 RTI Return to main program

Notes:

TVT 65/e must be connected and both the Scan (658-KS64) and Decode (658-KD8)
PROMs must be in c ircuit to run. Snuffler must i nput clean flyback pulses to SEO
pin (#38-6502; EXP5-KIM-l)

IRQ vector mus1 be set to 1 780 (1 7FE 80; 1 7FF 1 7)

Normal setti ngs: Module A or D; OFF; + ; 64; FAST

Step 1 783 provides even or odd equal ization as needed. Use 50 for 2 µs and 70 for
3 µs. Step 1 786 provides multiples of 2 m icroseconds for equalization. These two
steps together set the 1v horizontal lock transient.

Step 1 789 picks the number of prescan blanks. Step 1 793 picks the number of l ive
scan l ines. Step 1 79F picks the remain ing field time after scan, in roughly one
scan increments. These three values interact. Their sum must be adjusted for a
stationary hum bar at the tv's best hold setting.

Tv set hold control must be adjusted for a near vertical presentation. Display con
sists of f irst dot row of characters stored in 001 4 to 003F. In a real application, any
desired scan format can replace this demonstration scan.

Fig. 2-4. Cont'd. Snuffler demonstration

44

Tv horizontal frequency opproximately 1 5625 Hz; vertical approximately 60 Hz.
live scan time 64 µs. Live scan l i nes 1 28. Hold control may need to be retouched
every 30 minutes or so.

KIM interval timer must be jumpered to IRQ l ine.
(APP-1 5 to EXP-4).

Flowchart:

MAIN PROGRAM
INTERRUPTED 60
TIMES A SECOND. \

1 ___
oNCE PER FIELD __ _ __ ,

I I

11780)

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L.o.--- SNUFFLER INPUT

t
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

OUTPUT V SYNC
SET IRQ TIMER

RTI

I
I

l I
_ _ _ _ _ _ _ _ _ _______ J

program for TVT 6%.

11781)

(1788)

11792)

(179E)

45

how you have to lock the horizontal frequency to the line as well.
Otherwise you will get vertical jitter of your characters.

The obvious source of line lock is a sine wave from the power
supply that is filtered and routed through a CMOS Schmitt gate
something like we did with the snuffler. But this may jitter too much
unless it is further cleaned up with a phase-locked loop or something
else workable.

Here are a few unexplored possibilities for line lock :

* Use a clean 60-hertz line signal to speed up or slow down the
microprocessor clock slightly.

-or-

* After your live scan time, put down some blank scans that
can pull the tv set's sync, speeding up or slowing things
down as needed for lock.

-or-

* Make the characters so big that one line of jitter isn't an
noying.

Line lock really isn't needed, but it would be very elegant to pro
vide, particularly if you can do it for 20 cents or less.

ALTERNATE-FIELD SNUFFLING

Here is an even more dastardly trick you ca'n play on your tv set.
Suppose we use the snuffler and scungy video for one field and then
keep the whole next field blank. We would have 30 frames per sec
ond. Each frame would have one live field and one blank field at the
usual 60-hertz rate. A stunt like this will dramatically raise the
throughput, since the computer is free to do what it pleases well
over half the time, even with a super-fancy display.

Alternate-field snuffling is an interesting way to up the throughput
and is essentially free. All it takes is a change of a few software
words in the scan program. Disadvantages we can expect are less
brightness, more flicker, and potentially less stability. But on the
tv I tested, the results are more than good enough, and you can get
a 16 X 64 display with over 50% throughput and full transparency.

To try this on the demonstration program of Fig. 2-4, make the
following patches:

46

1 789 19 (This throws in a few extra prescan blank l ines to hit exactly
30 hertz)

1 79F 1 7 (This picks a longer timer delay)
1 7Al OF (This puts timer in 1024 µs mode)

The best way to find out if alternate-field snuffiing works is to try
it and see. The tv set has to lock with every second vertical sync
pulse, but this doesn't seem to be any problem at all. The flicker
seems comparable to what you get using double stuffing, maybe a
little worse. As usual, watch your contrast and brightness settings.
While there are obviously "better" ways to get a video display than
alternate-field snuflling, its ridiculously low cost for high throughput
and full transparency makes it a useful option for your cheap-video
bag of tricks.

THE BEST OF BOTH WORLDS

What happens when we combine scungy video and the snufller?
Well, we get extremely flexible, low-cost video displays with full
transparency and high computer throughput. Let's look at two ex
amples. First, we will take the 1 X 32 scungy video "bottom line"
display and put it in the snuffier demonstrator. Then we'll look at a
16 X 64 video display using your TVT 6% to get high throughput
and full transparency.

Transparent 1 x 32

Our 1 X 32 example will use the snuffier and break mapping. This
takes only a bare KIM-1 and a TVT 6% without any Scan or Decode
PROMs. We'll use the existing RAM in your KIM-1 for the display
map. The display you get is fully transparent and leaves over 75%
throughput remaining for your main programs.

While a single-line short display might not seem like much in the
way of performance, note that we are adding around $7 worth of
parts to a bare-bones KIM-1, getting video out of it, and transpar
ently running other programs at the same time. This is a dramatic
example of what scungy video can do for you.

Our scan program and its flowchart are shown in Fig. 2-5. Except
for one or two details, the program combines our existing scungy,
nontransparent display of Fig. 1-14 with the snuffier demonstrator
of Fig. 2-4. Rather than use the Scan PROM 658-KS64 as we did on
the snuffier demonstrator, we'll use existing RAM inside the KIM-1
to save needing a custom part.

Another detail that is involved in combining scungy video with
the snuffler concerns the IRQ line. It looks like we have to ask our
interrupt to do two different things. First, it has to get us to the scan
program sixty times a second when our main program is interrupted
by a timer. Secondly, since we are using break mapping in this ex
ample, we also will need the IRQ vector to point at the display map
for us every time we want to put down a dot row.

47

To get the IRQ line to do two different things, just change the
IRQ vector locations (17FE low and 17FF high) twice during the
scan program. When we begin the scan program, we anticipate that
this IRQ vector will be needed later for the break mapping and
change it. Then, when we are done with our live scans, we change

µP-6502
System-KIM-1 +

Scungy Video

Start-JMP 0100
Stop-RST

Displayed-0380-039F
Program Space-0200-0250
Display Map Space-l 780-l 79F
IRQ-0200 for scan program

1 780 for display map

This program uses the bare-bones KIM and a TVT 65/e without any PROMs to g ive
a video d isplay with a total system cost as low as $7. The circuits of Figs. 1 -1 0A,
1 - 1 1 , 1 - 1 2, and 2-2A are used. Throughput is above 75% with total transpar
ency.

Use the following as a default main program to be interrupted:

0 100 A9 00 LOA #00 Set IRQ to Scan Program
0102 8d FE 1 7 STA 1 7FE continued
0105 A9 02 LDA #02 continued
0107 8d FF 1 7 STA 1 7FF continued

0 l0A A9 1 0 LDA #10 Start IRQ timer l s t scan
0 lOC 8d OF 1 7 STA 1 70F continued
0 l0F 58 CLI Clear IRQ flag
01 10 4C 1 0 0 1 JMP 01 1 0 Loop ti l l scan interrupts

Scan Program:

IRQ
entry-+ 0200 68 CLV Wait for flyback pulse

0201 50 FE BVC 0201 continued
0203 EE 00 1 7 INC 1 700 Start V Sync pulse
0206 A0 70 LDY #70 Equalize lock transient

0208 88 DEY continued
0209 d0 Fd BNE 0208 continued
0206 A9 80 LOA #80 Change IRQ to Display Map
020d 8d FE 1 7 STA 1 7FE cont inued

021 0 A9 1 7 LOA # 1 7 continued
021 2 8d FF 1 7 STA 1 7FF continued
021 5 A9 FF LOA #FF Make sure A port is output

. 021 7 8d 01 1 7 STA 1 701 continued

021 A A2 30 LOX #30 Set # of prescan blanks
021 C A9 00 LOA #00 End V Sync pu lse
021 E 8d 00 1 7 STA 1 700 continued
0221 EA NOP Equalize 2 microseconds

Fig. 2-5. 1 X 32 transparent

48

0222 EE 00 1 7 INC 1 700 Output H sync pu lse only
0225 CE 00 1 7 DEC 1 700 continued
0228 A9 1 0 LDA #10 Set # of dots per character
022A AO 09 LDY #05 Deloy for blank scan

022C 88 DEY continued
022d d0 Fd BNE 022C continued
022F CA DEX One less prescon blank l i ne
0230 d0 EF BNE 0221 Do another prescon blank l ine?

0232 FO 00 BEQ 0234 Equalize 3 microseconds
0234 EE 00 1 7 INC 1 700 H sync pulse; advance row coun ter
0237 EE 00 17 INC 1 700 continued
023A 00 EA BRK I I I I /SCAN MICROINSTRUCTION////

023C Cd 00 17 CMP 1 700 Is this the lost dot row?
023F d0 F3 BNE 0234 No, do another dot row
0241 A9 OC LDA #OC Set timer for next field
0243 8d OF 1 7 STA 1 70F continued

0246 A9 00 LDA #00 Change IRQ to Scan Program
0248 8d FE 1 7 STA 17FE continued
0246 A9 02 LDA #02 continued
024d 8d FF 1 7 STA 1 7FF continued

0250 40 RTI Return to main program

Stan Microinstruction:

Notes:

1 780 AO AO AO AO AO AO AO AO
1 788 AO AO AO AO AO AO AO AO
1 790 AO AO AO AO AO AO AO AO
1 798 AO AO AO AO AO AO 40 40

(Fifteen LDY A0's followed
by one RTI)

Main user program must in i tialize IRQ to 0200 and start t imer.

Timer must be jumpered to IRQ l ine (APP-1 5 to EXP-4)<-TVT 65/e must hove ICl , 2,
and 3 removed per Fig. 1 - 1 1 . Fig. 1 - 1 2 output stage recommended. Snuffler circuit
of Fig. 2-2A also must be used.

Remain i ng transparent throughput is approximately 75% .

The sum of locations 0206 (transient and V sync width), 021 b (# of prescon
blanks), and 0242 (timer field delay) must odd to 16.7 m i l l iseconds for a stationary
hum bar.

Horizontal frequency 1 4,925 Hz. Vertical frequency with properly set horizontal
hold control 60.0 hertz; stationary hum bar.

(Continued on next page)

TVT 6% scan program.

49

the IRQ vector back again to point to the start of the scan program
we will need on the next field.

The IRQ vector must point to 0200 for the scan program and to
1780 to get us on the display map. We'll assume your main program
does not need or use the IRQ vector; if it does, some more straight
ening-out should solve things for you.

For your first test, use a "default" main program starting as shown
at 0100. Set your IRQ vector to make sure it points to 0200, and then
whap the timer once to generate the interrupt for the first display
field. End up with a continuous loop as shown in the jump-to-your
self trap in OJ J 0.

Flowchart:

MAIN PROGRAM
INTERRUPTED 60
TIMES A SECOND.

r---------------,

SNUFFLER
INPUT

ONCE PER FIE
�

I ,
I
I
I
I
I
I
I
I
I

l
I
I
I
I
I
I
I
I
I
I
I

RTI

- - - - - - - -------- l

(0200)

(0202)

J020b)

(0221)

NO

10241)

(0246)

J0232 + SCAN
µINST AT 1780)

J023Ci

Fig. 2-5. Cont'd. 1 x 32 transparent TVT 65/e scan program.

50

When the first timer interrupt arrives, we vector to 0200 and start
our Scan Program. The first thing we do is spin our wheels until the
fl.yback pulse from the snuffier arrives by way of the SO input. Then,
we start a vertical sync pulse and use the width of this pulse to
adjust our lock transient to something acceptable. The width of the
vertical sync pulse is not at all critical to the tv set; anything over
150 microseconds should do, with the upper limit set by what you
want in the way of throughput.

From this point in our scan program, we go on to move our IRQ
vector to point at the display map (1780) . We next make sure the
parallel A port is an output, pick the number of prescan blank lines,
and then end the vertical sync pulse. Remember that our vertical
and horizontal sync pulses both appear on the same A port line
the difference in time duration is the only difference between the
two pulses.

Our prescan blanks follow. This lets things even out before we
attempt to put down any character dots. The prescan blanks also
give us some space between the V sync pulse and the message, let
ting the message end up near the top of the screen and down far
enough to be legible.

To do a blank scan, we increment and then decrement parallel
port A. This gives us a horizontal sync pulse without advancing the
row counter lines. After the sync pulse is complete, we use the Y
register as a timer to stall for the rest of the line, ending up with a
total line time of 67 microseconds.

These operations repeat over and over until enough prescan blank
lines are put down. Our program uses 48 prescan blanks, enough to
make the display stable and move it well onto the screen, but not
enough to really cut into the throughput.

Once our prescan blanks are finished, we go on to put down our
live character rows. We do this by incrementing the A port twice.
This gives us a horizontal sync pulse and advances the row dot
counter. After the sync pulse is finished, we .do a break-mapped in
terrupt to the display map. The display map is located at 1780. It
gives us a scan microinstruction that advances our program counter
one count per microsecond for 32 consecutive microseconds. This is
the action we need to let a line of 32 character dots go out the up
stream tap and appear as video.

After a scan microinstruction is complete, we test the A port to
see if we have finished the bottom dot row. This is done in step
023C. If we have not done all seven dot rows needed for a line of
characters, we repeat the process and pick up a new row of dots.
When we are finished, we go on to complete the scan program.

When the complete characters are put down, the scan program
sets the timer for the next field and moves the IRQ vector back to

51

point at 0200, where we will start the next field. When all is done,
we exit to our main program.

The entire process of locking to the snuffler, putting down the
prescan blanks, doing the live scans, and exiting takes a few milli
seconds. For the rest of the. time, your main program is free to run,
and the tv set goes on putting down blank lines without any horizon
tal sync input. The process repeats 60 times a second to give you a
stationary display. Around 75% of the time is available for your
main program to run.

Your Turn:

Show a software vertical position control
for your disp lay. Can you move the d isplay
down without decreasing the throughput?
What is the maximum transparent through
put you can get and sti l l have a stable dis
play?

Some program slots may need adjustment to suit your particular
tv. The lock transient and vertical sync width is set by 0207. The
number of prescan blanks is controlled by 021b. The time to the next
field is set by 0242.

Your time to the next field is a coarse adjustment. No way will
you exactly hit a stationary hum bar unless you really luck out. So,
use the number of prescan blanks and the vertical sync width to fine
tune to a stationary hum bar. There will be some interaction be
tween the horizontal hold control and the hum-bar timing. Aim for
a stationary hum bar with the most stable display. Your horizontal
hold may occasionally need retouching.

16 x 64 or 16 x 40

Let's do either a 16 X 64 or a 16 x 40 transparent display as a final
example of something fancy you can do with scungy video. Let's
assume you have an old TVT 6% along with its Scan PROM 658-
KS64, and a KIM-1 with extra RAM added on. Let's assume you
have at least lK of RAM immediately above the usual, and that de
coding K4 on the KIM is still free. If your K4 happens to be in use
as part of RAM or PROM space, just work out another decoding
scheme. Be sure to remember that your display map is picked by
your decoding, and that your display map must be outside the dis
play memory upstream tap address space.

52

'P.

...
"Cl ...
ID

n

ID

n
:;·

... ...
a,
X
"'
...
a,
X
a, "'
iii"
"Cl

NOTE: NO JUMPER
FROM HIN
TO DEN

lOOK

TO DEN

4093

FROM D ISPLAY MEMORY
UPSTREAM TAP

SO(E5)

_
OR

� 8/ICl
TO DEN �"", <>--:::L_

6/ICl ""S'"

TVT 6 518
(FOIL SIDE)

IC!
SOCKET

OMIT IC! . Cl. C3 SEE DETAIL
FIG. 2-7

FROM ADDRESS BUS

FROM DISPLAY CSI
MEMORY

CS SOURCE

+ 5 V

22K cso
TO DISPLAY

MEMORY
CS PINS

NORM

TVT

K4(AF)

_ Z: LJ... r- c.o i.n -
LLJ LU CC: Ll") - C.-, N - CC C0 CCI CCI
cn O > C:C C:C C:C C:C C:C O O O O

F�OM DATA BUS

FROM ADDRESS BUS

74LS02
PAO _......:....-,.,��

(Al4)
PAl ____ -'I
(A4)

PA2
(A3) ...,.....:........,.,��

H SYNC &
BLANKING

FROM ¢2
CLOCK

1 1

ROW l

ROW 2

ROW 4

V SYNC

1/ICl

2/ICl

3/ICl

5/ICl

SCAN ENABLE 7/ICI

2.2K
+5V

The circuit is shown in Fig. 2-6. The display memory will usually
be across the new RAM in your system, since a full lK will be
needed for either display format. This, of course, means that your
upstream tap also has to go across the new memory, just like we
used a tap on the KIM-2 add-on memory in The Cheap Video Cook
book.

Your TVT 6¾ is modified by removing !Cl, Cl, and C3, and any
existing connector jumper between HIN and DEN.

Three new ICs are added. One is a CMOS Schmitt trigger for the
snuffler, just like we did back in Fig. 2-2A. Two NOR gates are used
to combine the display memory chip select from the computer with
the chip select from the TVT and then route this result to the display
memory. Another NOR gate is used to invert the K4 Scan Enable
decoding to give us a signal useful for blanking and the H sync sig
nal. This blanking signal is also routed to three AND gates that move
us to "row zero" except during the live portions of the scan.

You can use the empty decode PROM socket ICl on the TVT 6%
to access three row inputs, the vertical sync input, and the Scan
Enable. Details on this are shown in Fig. 2-7. If you already have
your TVT 6% socket prewired, you can also pick off DEN, SEO and
SEI at socket ICl. But, for new work, it is best to keep SEI, SEO,
and DEN totally off the TVT 6% board.

Note that DEN is now hard-wired to ground. A simple changeover
switch between CSO and CSI can be used to pick TVT or normal
operation. This switch can be changed at any time without any pro
gram bombing problems.

54

FROM V
SYNC PORT

K4 SCAN
MICROINSTRUCTION
ENABLE

ICl DECODE
(SHOWN COMPONENT SIDE)

1 2 1 :
1 1 1

CHIP SELECT
FROM COMPUTER

Note: CSI. CSO. & DEN
available at ICl
only if connector
pins prewired.

.,__(c_s_Ol_ CHIP SELECT IQ
UPSTREAM TAP.

Fig. 2-7. How to access the TVT 6% using the decode PROM socket.

The parallel port assignments appear in Fig. 2-8. Note that rows
1, 2, and 4 occupy the lowest lines, while port PA3 serves as a verti
cal sync pulse source. Horizontal sync and blanking are separately
picked off with the NOR gate that inverts the scan decoding K4.

You'll find the scan software in Fig. 2-9. The scan program works
by interrupting a main program of your choice. For initial tests, use
the default main program shown starting at 0100.

The display memory is on RAM pages 04 through 07. The display
map is the K4 decoding space. The scan program resides in 1780 to
17dF. Since this scan program is nonmodifying, it can go elsewhere
in RAM, ROM, or PROM.

PA3 V SYNC

Fig. 2-8. Port assignments for 16 X PA2 ROW 4
64 or 16 X 40 transparent

scungy display.
PAI ROW 2

PAO ROW I

Three locations are reserved on page zero. The display starting
address is stored at 0080 (low) and 0081 (high) . Location 0082
holds the number of character rows for us. By changing 0082, you
can change the number of character rows. This gives one good way
to trade off throughput versus the number of characters displayed.

A timer-generated interrupt breaks your main program sixty times
a second. The IRQ jumps us to 1780 where we begin our scan pro
gram. We first wait for the snuffier pulse to lock us to the tv scan
ning. Next, we put down a bunch of prescan blanks in steps 178A
to 1794, and Ulen set our timer to tell us when the next field is to
begin.

To initialize our character scanning, we poke the display memory
starting address in 0080 and 0081 and pick the number of rowsto
be displayed by poking 0082. We then make port A an output and
verify that it is on the top blank dot row with no vertical sync. This
is done by step l 7C6 by clearing the port. The number of vertical
dots per character is set by step l 7b5 and held in the X register
for us.

After initialization, we jump to the character putting-down sub
routine starting at 17d6. And here you'll find something new.

Remember that on our early TVT 6% circuits, we had to have
code that self-modifies to get by with short code sequences? We
could beat this if only we had a jump-to-subroutine-indirect com
mand. This command doesn't seem to exist on the 6502, but we can
fake it as shown in Fig. 2-10. You first jump to a "local" subroutine,

55

and then do a "jump indirect" to the scan microinstruction subrou
tine. The values in 0080 and 0081 tell us where to begin our scan
microinstruction.

So, to do a scan microinstruction, we go to a local subroutine that
starts at 17d3. We then jump indirect to the display map, using the
values in 0080 and 0081 as an address. At the end of the scan micro-

µP-6502 Stort-JMP 0100
System-KIM- I + Stop-Reset

Extra Memory+
TVT 65/a +
Snuffler
(See Fig. 2-6)

Program Spoce-1 780-1 7dF
Disployed-0400-0700
IRQ-1780 (1 7FE 80; 1 7FF 1 7)
Reserved Locations:
0080-Disploy Lo Star!
0081-Disploy Hi Siar!
0082-# of Character Rows

This program gives a transparent 1 6 x 40 orl 6 x 64 video display with high 1hrough
put. It uses the circuil of Fig. 2-6. Throughput and l ine length options ore shown
in Chari 2-1 .

Use the following as a default main program to be interrupted:

0100 A9 1 0 LDA # 1 0 Start IRQ timer first cycle
0102 8d OF 1 7 STA 1 70F continued
0105 58 CLI Clear i nterrupt flog
0106 4C 05 01 JMP 0105 Loop ti l l scan interrupts

Scan Program:

IRQ -+ 1 780 68 CLV Wait for flybock pulse
Entry 1 781 50 FE BVC 1 781 continued

1 783 A2 01 LDX #01 Equalize lock transient
1 785 CA DEX continued

1 786 d0 Fd BNE 1 785 cont inued
1 787 EA NOP Continue equal ization
1 788 EA NOP continued
1 789 EA NOP continued

1 78A A2 1 4 LDX # 1 4 Set # of prescon blanks
1 78C 20 1 8 1 0 JSR 10 18 // // /Prescon Blanks/////
1 78F 48 PHA Equalize 1 1 µs
1 790 68 PLA continued

1 791 EA NOP continued
1 792 EA NOP continued
1 793 CA DEX One less prescon blank
1 794 d0 F6 BNE 1 78C Done?

1 796 A9 EF LDA #DF Set timer for next field
1 798 8d OE 1 7 STA 1 70E continued
1 796 EA NOP Equalize 6 µs
1 79C EA NOP continued

Fig. 2-9. 16 x 40 or 16 x 64 transparent TVT 6%

56

instruction, the RTS command undoes the original JSR, and we go
back to the scan program.

1 79d F0 00 BNE 1 79F continued
1 79F A9 1 8 LDA # 1 8 Set Display Memory Start Low
1 7A1 85 80 STA 0080 continued
1 7A3 A9 1 0 LDA #10 Set Display Memory Start High

1 7A5 85 81 STA 0081 continued
1 7A7 A9 1 0 LDA # 1 0 Set # of choracter rows
1 7A9 85 82 STA 0082 continued
1 7Ab A9 FF LDA #FF Make A ports a l l outputs

1 7Ad 8d 01 17 STA 1 701 continued
1 760 20 38 1 0 JSR 1 038 I I /Blank Equalizing Scan////
1 763 do oo BNE 1 765 Equalize 3 µs
1 765 A2 08 LDX #08 Set # of dots per characler

1 767 20 d6 1 7 JSR 1 7d6 GO TO LIVE CHARACTER SCANS
1 76A 1 8 CLC Find next row slart address
1 766 AS 80 LDA 0080 continued
1 7bd 69 40 ADC #40 continued

1 7bF 85 80 STA 0080 continued
1 7Cl 90 0d BCC 1 7d0 Page Overflow?
1 7C3 EE 81 00 INC 0081 Yes, fix
1 7C6 A9 00 LDA #00 Clear A port (row 0, no sync)

1 7C8 8d 00 1 7 STA 1 700 continued
1 7Cb C6 82 DEC 82 One less character row
1 7Cd d0 E l BNE 1 760 Done with last character row?

Exit +- 1 7CF 40 RTI Yes, exit to main program
to main
program 1 7d0 EA NOP No Page Overflow Bypass

1 7d1 90 F3 BCC 1 7C6 continued
1 7d3 6C 80 00 JMP (0080) ((Jump lo scan instruction))
1 7d6 20 d3 1 7 JSR 1 7d3 I I I /Live Character Scans////

1 7d9 EE 00 1 7 INC 1 700 Advance character dot row
1 7dC CA DEX Done with last dot row?
1 7dd d0 F7 BNE 1 7d6 No, do another dot row
1 7dF 60 RTS Yes, exit character subroul ine

Notes:

IRQ Vector must be set to 1 780 (1 7FE 80; 1 7FF 1 7)

Normal Sellings: Module A or D; OFF; + ; 64; FAST; No ICl

KIM I nterval T imer must be jumpered to the IRQ l ine (APP- 15 to EXP-4)

(continued on next page)
scungy video scan program using snuffler.

57

Flowchart: r---------------,

MAIN PROGRAM
INTERRUPTED

60 TIMES A SECOND.
ONCE PER FIELD \i

I
I
I
I
I
I
I
I
I
I •

RTI

- - - - ----------- I

(1780)

--,-17-81-)
- S�����ER

(178C)

(17b7)

NO

(17bA)

NO >---� (17dC)

(l7df)

Fig. 2-9. Cont'd. 16 x 40 or 16 x 64 transparent TVT 6% scungy video scan
program using snuffler.

The advantage of this route is that all your code can be in ROM
or PROM, except for two page zero locations. The disadvantages are
a few extra code words and the extra 5 microseconds it takes to do
a scan microinstruction due to the JSR indirect command. But,
there's enough room in the 16 X 40 display to still let you run on a
normal horizontal frequency, and the 16 X 64 will need a much
lower horizontal frequency anyway, so the extra 5 microseconds is
something you can live with either way.

To put down a row of dots, we do a jump to a local subroutine
that does a jump indirect to the display map. The display map gives
us our scan microinstruction to put down a dot row and then returns
us to the scan program.

58

Start with a "local" JSR . . .

1 7d6 20 00 30 JSR 1 7d3

) then do a jump indirect . . .

1 7d3 6C 80 00 JMP (0080)

) to the display map . . .

00 AO AO LDY AO
02 AO AO LDY #AO

I I I
I I I
I I I

XX 60 RTS

which does the usual scan microinstruction. In this example, a "00" in 0080 and
an "07" in 0081 point us to 0700.

Step 0300 does a jump i ndirect to the display map and scan microinstruction
starting address held in 0080 (low) and 0081 (high). This " JSR indirect" approach
takes 5 code words and 5 microseconds extra.

Fig. 2-10. How to "fake" a "JSR indirect" op code on a 6502.

After a dot row is complete, step 17 d9 advances us to the next dot
row, and 17dC checks to see if this is the final dot row. If our char
acter row is not finished, we keep repeating scan microinstructions
until we are done. Then we exit our character putting-down subrou
tine to get back to our main scan program.

To get a new row of characters, we take the old starting address
in 0080 and 0081 and add hex 40 to it in step l 7bd. We restore the
new value in 0080 and then check for a page overflow. If the page
overflows, the carry bit sets, and we increment 0081 high address in
step 17C3. If no page overflow happens, we use 17d0 and 17dl to
take up exactly as much time as if an overflow happened, and then
go on.

When we have the starting address for a new line, we make sure
the A port is on the top row, and then we go on to our dot row sub
routine again at 17d6.

At the end of the last dot row of the last character row, we do an
RTI and exit to the main program at 17CF.

That's quite a bit of nesting for one program. Fig. 2-11 should
clarify the action. Your main program is interrupted 60 times a sec
ond by the scan program. When the scan program wants a character
row, it subroutine calls the live character scans sequence. When the
live character scans coding wants to put down a single row of dots,

59

60

SIXTY TIMES A SECOND A
TIMER INTERRUPTS THE

!MAIN PROGRAMl
AND STARTS SERVICING . . .

•
. . . SCUNGY VIDEO'S ,

jSCAN PROGRAM I
WHEN THE SCAN PROGRAM

WANTS TO PUT DOWN A ROW
OF CHARACTERS, IT CALLS . . .

•
. . . A SUBROUTINE CALLED
I LIVE CHARACTER SCANS I

TO PUT DOWN A SINGLE DOT ROW.
A "JSR IND IRECT" COMMAND IS FAKED

BY STARTING A SUBROUTINE AND THEN . . .

•
. DOING A jJUMP IND IRECTj

WHICH USES CODING THAT DOES
NOT SELF-MODIFY TO GET US . . .

•
. . . TO THE USUAL CHEAP VIDEO

jSCAN MICROINSTRUCTIONj
WHICH PUTS DOWN A DOT ROW FOR
US AND THEri RETURNS DIRECTLY TO

THE LIVE CHARACTER SCAN SUBROUTINE.

Fig. 2-1 1. Software nesting for 16 x 40 or 16 x 64 transparent
scungy video.

it calls a local subroutine which does a jump indirect to the scan
microinstruction on the display map.

Things unwind just the way they built up. A finished scan micro
instruction subroutine returns to the live character scans subroutine.
When live character scans is finished, it exits to the scan program.
When the scan program is finished, it releases the interrupt, and the
main program picks up where it left off. For the rest of the frame,
the main program does its thing, and the tv goes ahead putting
down blank lines without any external sync.

Your Turn:

Show how the vertical sync pulse gets out
put in the right place. Hint: What happens
if you set the V POS control far too low?

If you understand where our vertical sync pulse comes from, you
have a good start at understanding this circuit and program. Note
that our vertical sync pulse takes zero lines of code. This is a pretty
fair example of efficient coding.

Chart 2-1 shows some options for this circuit and scan program.
You can go 16 X 64 or 16 X 40 and either do so at the usual 60 times
a second or use alternate-field snuffiing with 30 frames a second, just
by changing seven words of code.

The 16 X 40 programs run at nearly normal horizontal hold set
tings, while the 16 X 64s take the much lower hold settings and are

Chart 2-1 . Options for 16 x 40 or 16 x 64 Transparent
Scungy Video Display

16 x 40 16 x &4
16 x 40 High 1& x 64 High

Step Function Normal Throughput Normal Throughput

1 78b Prescan Blanks 1 4 1 7 14 1 7
1 797 Timer Fine EF 1 F E4 1 E
1 799 Timer Coarse OE OF OE OF
178d Blank Scan Length 18 18 00 00
1 761 Equalizing Scan Length 38 38 20 20
1 7AO Live Scan Length 18 18 00 00
1 784 Lock Transient Adj 01? 01? 24? 24?

Throughput 37% 67% 10% 52%
H Line Time 66 1-1s 66 /,IS 90 ,..s 90 ,..s
Hold Setting Normal Normal Low Low
Field Rate 60/s 30/s 60/s 30/s

61

limited to small-screen black-and-white sets, as we detailed in The
Cheap Video Cookbook.

Throughput will be much higher for the alternate-field snuffling
options, but the display may not be as bright and may flicker some
what. Question marks are .shown for the lock transient adjust values,
since these may vary for your particular set. Pick whatever gives
you a straight and stable display.

Note that one of the options gives you a 16 x 64 display with
50% throughput.

SOME PERSPECTIVE

What good is scungy video and where can we use it? Scungy video
is useful to put video onto bottom-line systems where cost is very
important and you want to hold both dollars and circuit complexity
to the absolute minimum. There is no reason why scungy video can
not be added to most popular microprocessors for $10 or less for your
total hardware costs of video display.

For fancier systems, we are better off replacing the snuffler with
fixed field and line timing. This timing can be generated totally by
the CPU, it can be done with a fancy controller chip, or a counter
or sync fill-in method can be used instead. Details on some of these
methods were shown in the last chapter of The Cheap Video Cook
book.

Note that many of the features of scungy video are easy to apply
to older cheap video systems. The elimination of bipolar PROMs,
the freeing up of large bunches of address space, the elimination of
self-modifying code, and so on-all of these ideas are easy to use on
fancy video displays at very low cost. Which of these concepts can
you put to use?

62

C HAPTER 3

Custom Characters

How would you like to display any character or graphics chunk
of your choosing on a cheap video system? If you add a pick-your
own feature to your cheap video system, you could:

* Deliver a message in Swahili with Icelandic subtitles.
* Do printed circuit layouts and logic diagrams right on the

screen.
* Directly display music scores or game pieces with minimum

software.
* Provide lower-case character shapes and descenders your way

rather than someone else's.
* Add one or two special symbols to a stock symbol or character

set.
* Eliminate completely any delivery hassles over "stock" charac

ter generators.

Now, there is one sure-fire way to do all this. And it takes nothing
in the way of special hardware. You can simply use a high-resolution
graphics display with an enormous RAM, along with bunches of
software. With this brute-force attack, you get the symbols out of
a file somewhere and remap them onto a screen memory.

The advantages of brute-force, hi-res graphics are ext�eme flexi
bility and the elimination of special hardware. The disadvantages
are needing lots of RAM, very long software sequences, and vola
tility that destroys the characters or symbols on power-down or if
a program goes astray.

Do we have any other alternatives to brute-force, hi-res graphics
or stock character generators?

63

Suppose you could build your own character generator and put
up to 256 characters of your choice into it. You then simply replace
the stock character generator with your new custom one. The new
one has the characters or symbols you designed into it. As these
characters are called, they appear on the screen.

The characters are nonvolatile and available when you need them.
You can call any character with a single software word from a single
memory slot, rather than needing the eight or more words called for
by brute-force methods.

Even better, a character can be anything. It can be a graphics
symbol or a chunk of a graphics symbol. You can put these symbols
side-by-side or top-to-bottom to build up complete displays. For in
stance, a pair of symbols could be used to do a music staff with an
8 X 16 bit resolution. Or a symbol quad could give you a 16 x 16
chess piece.

It turns out there is an integrated circuit beast called a 2716
EPROM, short for Erasable and Programmable Read Only Memory.
You get an EPROM empty, and then you fill it with your choice of
ones and zeros in any pattern you like. If you make a mistake or
change your mind, you simply erase the EPROM by shining strong
ultraviolet light through a window in the top of the EPROM. This
erases everything, and you can refill the EPROM with your choice
of new material.

You can reprogram as often as you care to. Once you get some
thing you like, you replace the existing character generator with your
new EPROM, and your special symbols or whatever are on the air.
A new adaptor module, somewhat similar to module "A" of the TVT
6%, is needed to change the pinouts around.

There are lots of advantages of using an EPROM as a character
generator on a cheap video system:

* You have total control over the character and chunk set. * Characters, chunks, or groups of chunks can be called with a
single software word, dramatically minimizing display memory
RAM. * The characters and chunks are nonvolatile, always there and
ready to use. * The entire personality of your video system can be changed by
changing a single integrated circuit.

The disadvantages of EPROMs are that they may cost more than
character generators and that a hardware change is needed for a
different type of display.

Let's explore using an EPROM as a character generator replace
ment. We'll first look at EPROMs and then build a simple Module

64

"E" adaptor for your TVT 6%. We'll find out that the EPROM route
is so attractive that you may never want to ever again use a stock
character generator. From there, we'll go on to next chapter's design
example that lets you do a sophisticated music display directly on
your minimum KIM-1.

What we show you should easily work out on other systems and
other graphics displays.

EPROMs AS CHARACTER GENERATORS

A character generator is a read only memory. An EPROM is a
read only memory. The 2716 EPROM is bigger and faster than most
character generators. So, simply by rethinking and relabeling things,
you ought to be able to use either one to generate characters or
graphics symbols. Fig. 3-1 compares the two methods.

In Fig. 3-IA, we use a commercial character generator. There are
six or seven input lines that accept ASCII coding. These are our
"what-character-do-you-want" input lines. There are also three or
four input lines that accept row timing information. These serve as
our "what-row-of-dots-are-we-working-on" inputs.

The number of input lines changes with the features offered in
any character generator. If you have only 64 characters, then you
need only six ASCII input lines. If you are generating characters only
7 or 8 dots high, then you need only the three row commands called
RI, R2, and R4. But, if you want 12 or 16 dot rows per character,
you have to have a fourth row command called RS. These taller
formats give you better lower-case descenders but take fancier tim
ing. They also put fewer characters vertically on the screen, or else
take more throughput to put the same number of characters down.

For each and every possible combination of inputs, a row of dots
is output. These output dots are routed to a video shift register for
conversion to serial video. Output dots may be five, seven, or eight
in number. This depends on whether you are working with 5 X 7
characters, 7 X 9 characters, or fancy graphics chunks. The 5 X 7
character has the lowest bandwidth and the simplest timing.

At any rate, if you take away all the fancy input names and call
outs, a character generator is nothing but a read only memory with
9 to 11 inputs and 5 to 8 outputs. Since the 2716 EPROM has 11 in
puts and 8 outputs (2K X 8) , it can replace most any character
generator you may want to use.

You can get many different formats out of a 2716. At the extremes,
you could get a single character out that was 8 bits wide and 2048
bits high. Or, you could get out 2048 different characters, all one bit
high by eight bits wide.

65

ROW TIMING l
INPUTS

ASCII
CHARACTER

SELECT INPUTS

ROW TIMING l
INPUTS

ASCII
CHARACTER

SELECT INPUTS

+ 5 V

i
------- RB

R4
R2
R I

------- AG
A5
A4
A3
A2
Al
AO

l

CURSOR
OR CS

I
cs

Q7
QG
Q5
Q4
Q3
Q2
QI
QO

�------

{A) Stock character generator.
CU RSOR
OR CS +5 V

i I

------- AIO
A9
AB
A7 Q7 -------

------- AG QG
A5 Q5
A4 Q4
A3 Q3
A2 Q2
Al QI -------
AO QO -------

l
(8) EPROM used as character generator.

DOT OUTPUTS
TO VIDEO SH IFT

REGISTER

DOT OUTPUTS
TO VIDEO SHIFT

REGISTER

Fig. 3-1. If you replace a character generator with an EPROM, you gain
complete control over the characters and graphics symbols.

These extremes are seldom useful. Most often, we would be more
interested in reasonable combinations of input words and output
dots. Several of these format options are shown in Fig. 3-2.

In Fig. 3-2A, we use 8 character select inputs and 3 row select
inputs. This gives you 256 different characters. Each character is 8
bits wide by 8 bits high in an 8 X 8 matrix. Most often, the cursor is
stored as one of these 256 characters. Since we have used all eight

66

+sv

r
AIO cs

ROW SELECT R2 A9
RI AS
A7 A7
A6 A6
AS AS

CHARACTER A4 A4
SELECT A3 A3

A2 A2
Al Al
AO AO

(A) 256 characters, 8 X 8 dot matrix.

l" ROW
SELECT RZ

R I
+SVo-o

FONT _
SELECT �

AS
A4

CHARACTER A3 SELECT
A2
Al
AO

+sv A7 (CURSOR)

AIO cs
A9
AB
A7
A6
AS
A4
A3
A2
Al
AO

+ s v

{"
AIO cs

ROW SELECT R2 A9
RI AS

CURSOR OR A7 REVERSE
A6 A6
AS AS
A4 A4

CHARACTER A3 A3 SELECT A2 A2
Al Al
AO AO

-

(B) 128 characters, 8 X 8 dot matrix,
cursor or reverse video.

{" ROW
SELECT RZ

RI
A7 OR RS

A6
AS
A4

CHARACTER A3 SELECT
A2
Al
AO

+s v (OR A7)

AIO cs
A9
AB
A7
A6
AS
A4
A3
A2
Al
AO

(C) Two fonts of 1 28 characters each, (D) 128 characters, 8 X 16 dot matrix.
8 X 8 dot matrix.

Fig. 3-2. Some format options for 2K x B EPROM character generators.

input lines available to us on a data bus to pick characters, there is
no input bit left for the cursor. So, the cursor becomes a stored
character instead.

We have eight output lines. If we want only five, six, or seven of
these, we simply output blanks on the unused lines, or else leave

67

them unconnected. Outputting blanks is the better choice, as it
gives us compatibility with graphics outputs that may need all eight
lines.

In Fig. 3-2B, we get 128 characters, each an 8 X 8 dot matrix. This
frees up data bus line A7. We can then use A7 as a software con
trolled cursor, or we can use it to reverse selected characters, giving
us black characters on a white background, or vice versa. To do
these options, you make one half of the words inside the EPROM
the cursor symbol, or you make one half of the words inside the
complement of the other half.

In Fig. 3-2C, we get two fonts or graphics groups of 128 charac
ters each. This lets you pick either font with a jumper or a switch,
and still lets you use data bus line A7 as a cursor. This time, A7
forces the outputs high at the chip select input, giving you all white
boxes. With some simple extra hardware, you can pick up the wink
ing "jail" type cursor like we did on the TVT 6% (Fig. 4-3, pp 160-
161 of The Cheap Video Cookbook) .

This combination might be useful to let one chip serve for two
different games, or to provide special symbols for two different lan
guages.

In Fig. 3-2D, we get 128 characters again, but this time we can
make the characters up to 16 bits high by 8 bits wide. The 8 X 16
format is very useful for graphics chunks, such as are needed in the
music system we are going to build. An 8 X 12 font has advantages
if you want your display to include lower-case characters with at
tractive descenders.

Somehow, we have to get four inputs to give us a choice of sixteen
rows. We have two ways to do this. We can add a new timing line
RB and always generate the 12 or 16 dot high character we need.
This fixes everything to the full height, and frees up line A 7 for the
cursor.

Or, we can use data bus line A7 to be an "upper or lower chunk"
selector. This has two advantages. First, it is directly compatible
with the existing TVT 6%, and second, it lets you mix 8 X 8 and
8 X 16 characters inside the same character generator. This gives you
many more characters and incredibly more display flexibility. For
instance, you can single or double underline characters, and only
those characters with descenders would need double chunks.

By the way, it is a simple matter to provide an extra row command
on the TVT 6% if you really want to. Simply rework the decode
PROM slightly and add a new wire to reach the unused plug-in
module pin 12.

So, as you can see, there are lots of new format options you have
when you replace a character generator with an EPROM. Can you
think of any more?

68

GRAPHICS CHUNKS

For alphanumerics, you use each character separately as it comes
out of the character generator or EPROM. Blanks for the undots
between characters are gotten either by coding in your PROM or
by hard-wired inputs on the video serial shift register.

To do graphics type stuff, you usually do not want these blanks.
Instead, you probably want each symbol to butt up against the next
one. The individual chunks then combine to give you a complete
picture. Since the TVT 65h video shift register accepts a full 8-bit
wide dot word, we can easily do both graphics and alphanumerics
interchangeably. The same feature is usually possible but may take
lots of hardware modifications in other terminals and displays. This
is particularly true if the video shift register is less than the full eight
bits long.

Fig. 3-3 shows two ways to put together graphics chunks to get
bigger symbols. In Fig. 3-3A, we combine the 8 X 8 upper and lower
halves of a G-clef to get a treble music staff. In Fig. 3-3B, we use four
adjacent symbols to build a rook for a chess display.

Using graphics subelements like this lets you build up attractive,
high-resolution symbols with a minimum of software and RAM stor
age. For instance, the 16 X 16 chess square has a 256 dot resolution,
but it is put on the screen with only four words of storage. A full
chess screen takes only 256 RAM locations, compared to the 2048
that would be needed in brute-force, hi-res graphics. The software
overhead and access times are also much better when you use the
call-from-a -character-generator approach.

USING EPROMs

The 2716 is often a top choice for EPROM use. It was one of the
first to use a single +5-volt power supply. It is simple to program
and erase. You can program the 2716 in-circuit by changing the volt
age on a single pin. The 2716 is an industry standard device with
standard pinouts, and it is widely available.

While the 2716 was initially an Intel product, the part is second
sourced by just about every semiconductor house. The usual dis
tributors and suppliers that list in the electronics and hobby com-

IMPORTANT NOTE: Do NOT use a Texas Instruments
2716! This is an obsolete, oddball, multisupply part.
The Texas Instruments part that is identical to the in
dustry standard 2716 is called a TMS 2516.

69

--
(A) Two chunks. 8 X 16

�

+

rn
+ 16 X 16

�

+

w
(8) Four chunks.

Fig. 3-3. How 8 x 8 graphics chunks may be combined into larger symbols.

70

puter magazines almost all carry the 2716, so the part is also easy to
get. More technical details on the 2716 are shown in Appendix A.

Sources of the 2716 include American Micro Devices, Fairchild,
Intel, Motorola, National, Texas Instruments, American Microsys
tems, Electronic Arrays, Toshiba, Mostek, Synertek, Hitachi, Mitsu
bishi, and Computer Microsystems.

Erasing an EPROM

When you get a new EPROM from the factory, all of the bits in
all of the locations are supposed to be in the "one" or output high
state. To ,make the part useful, you go through an electrical pro
gramming\ procedure that changes the ones you don't want into
zeros. The net result is a truth table programmed into the EPROM
that meets your needs.

EPROMs are nonvolatile memory. They will hold your truth
table forever, with or without power applied. To get back to the
"empty" state, an EPROM is erased with high-intensity, short-wave
length ultraviolet light. Fig. 3-4 shows a typical 2716. Unlike the
usual 24-pin integrated circuits, the 2716 has a transparent lid, usu
ally made as a quartz window. To erase the chip, you shine strong
ultraviolet light through the window.

Unfortunately, there is no sane way to erase a single bit. You have
to erase the entire 16,384 locations all at once. If you happen to make
a programming error that changes a one to a zero, you have to erase
everything and start over. If you happen to forget a zero, you can
simply reprogram the single bit as needed. Thus, you can put any

Fig. 3-4. Typical 2716 EPROM.

71

number of zeros anywhere at any time, but to erase any one, the
entire chip has to be erased.

Ordinary fluorescent lights and poster "black lights" do not put out
short enough wavelengths of uv light to let you erase an EPROM.
To erase your EPROM, you can leave it in direct sunlight outside
for a week, or you can erase in twelve minutes or so with a suitable
lamp specially designed to output short-wave ultraviolet energy.

You can buy lamps just for EPROM burning. A few commercial
sources of EPROM erasers are listed in Chart 3-1.

Chart 3-1 . EPROM Eraser Sources

Electrolabs
Box 6721
Stanford, CA 94305
(41 5-321 -5601)

I nformation Central
5521 Broadway
Chicago, IL 60640
(312-271-6418)

Ultra Violet Products
5100 Walnut Grove Avenue
San Gabriel, CA 91778
(213-285-3123)

All commercial EPROM erasers have special plastic shields that
block uv energy. They usually also have a lockout safety switch that
keeps the lamp from lighting when the trar holding the EPROMs is
accessible. The EPROM should be held in protective foam during
erasure. Several EPROMs can usually be erased at once.

IMPORTANT SAFETY NOTE: Don't EVER look di
rectly at short-wavelength ultraviolet light! Permanent
eye damage can result.

Should you have just a single EPROM or two to erase, someone
at a local computer club will almost certainly have a lamp you can
use. Sometimes rockbound mineral lamps can be used if the filter is
removed and the bulb is the short-wavelength type.

'It's a good idea to erase all EPROMs completely before program
ming them, just in case a "new" chip has been preprogrammed.

Programming an EPROM

The 2716 is much easier to program than just about any earlier
EPROM. All programming is done with the usual TTL system level

72

signals, except for a single supply pin that gets manually switched
to a higher supply voltage.

Chart 3-2 summarizes the rules for reading and programming a
2716 EPROM. There are really only three pins you have to worry
about, the chip enable I program pin (18) , the output enable pin
(20) , and the programming voltage pin (21) . Here's what they do:

* Pin 18 is the chip enable. Hold it low to read the chip. Hold
it low to program the chip. Only after all inputs are stable and
after you apply the right data, the chip enable is brought high
once for exactly 50 milliseconds and then brought low again
to complete programming. * Pin 20 is the output enable. Hold it low to read and high to
program.

* Pin 21 is the programming voltage pin. Power it from +5
volts for read and from +25 volts for programming. The pro
gramming +25 volts should be current limited to 40 milli
amperes.

So, to read, make VP +5 volts, ground OE and ground CE. To
program, make VP +25 volts, make OE high, and ground CE. Then
feed the desired address to the address pins and the desired data to
be pro�mmed to the output pins. The output pins will act as inputs
since OE has them floating. After the address is stable, the data is
stable, and +25 volts has been applied to VP, bring CE high once

Chart 3-2. Three Operating Modes of the 2716

I. To READ the memory:

Apply + 5 volts to PROGRAMMING VOLTAGE VP (pin 21).
Make CHIP ENABLE CE (pin 18) low.
Make OUTPUT ENABLE OE (pin 20) low.

I I . To PROGRAM the memory:

Apply + 5 volts to PROGRAMMING VOLTAGE VP (pin 21).
Make CHIP ENABLE 'O'E' (pin 18) low.
Make OUTPUT ENABLE UE' (pin 20) high.
Apply + 25 volts to PROGRAMMING VOLTAGE VP (pin 21).
Then - select the correct address and apply the data

word to be programmed to the output pins.
Then bring CHIP ENABLE GE high once for exactly
50 mi l l i seconds. Then return CE low.

Bring VP back to + 5 volts when f in ished.

I l l . To DESELECT the memory (standby):

Apply + 5 volts to PROGRAMMING VOLTAGE VP (pin 21).
Make CHIP ENABLE C'E (pin 18) high.

73

for exactly 50 milliseconds. Then return CE low before any address
is changed.

All bets are off if you hold CE high during programming or if you
apply high VP voltage without putting the usual +5 on the chip 'first.
Be very careful to observe these two rules!

There's no need to program an entire EPROM at once. You can
use part of it, and then add to your code later.

In theory, you could program your EPROM with nothing but a
bunch of slide switches, two power supplies, and a handy source of
SO-millisecond single-shot pulses. But there is absolutely no way you
can hand program 16,384 bits of information without a mistake. For
EPROMs this large, something saner and more automatic MUST
be used.

There are lots of 2716 programmers available. Some of these are
expensive stand-alone machines. Many work with older EPROMs
and thus are much more complicated than needed for 2716s. Some
distributors will program 2716s for you free, at least the first time.
Usually they will want the code in some inane form like paper tape
or punched cards.

Fig. 3-5 shows a simple, low-cost commercial EPROM program
mer that attaches to a KIM-1. Chart 3-3 lists a few sources of rea
sonably priced programmers. Check recent hobby computer maga
zine articles for do-it-yourself alternatives to these commercial de
vices. Programming a 2716 requires almost negligible hardware on
top of an existing micro such as a KIM-1.

A simple attachment to convert your KIM-1 into an EPROM pro
grammer is shown in block diagram form in Fig. 3-6. All you need
is a CMOS binary counter and a regulated power supply. Parts cost
is around $3.

Courtesy Optimal Technology, Inc.

Fig. 3-5. An EPROM programmer that fits a KIM-1 or other microcomputer.

74

Chart 3-3. EPROM Programmer Sources

Microproducts
1024 Seventeenth Street
Hermosa Beach, CA 90254
(21 3-374-1673)

Ol iver Audio Engineering
676 W. Wilson Avenue
Glendale, CA 91203
(213-240-0080)

Optimal Technology, Inc.
Blue Wood 1 27
Earlysville, VA 22936
(804-973-5482)

Here's how it works. Eight of the KIM's parallel output ports are
used to supply the data for programming. Programming addresses
are provided by the binary counter whose length matches the
needed 11 address lines.

Four additional parallel I/ 0 lines are also used. CLEAR resets
the binary counter if it is brought high. COUNT advances the binary
counter when it is driven high and then low again. OUTPUT EN
ABLE controls the output enable, forcing oE high during pro
gramming and oE' low for read or verify. The final CHIP ENABLE
line is held low for both read and program, except that, during pro
gramming, CE is brought high once for exactly 50 milliseconds for
every word to be programmed. CE is then returned low before any
input or voltage changes are made.

Your software is mostly a bunch of timer loops. You first initialize
things, resetting the counter, making CE low and then OE high.
Then you manually change the program voltage to +25 volts from
a 40-mA current-limited source. You then clock the binary counter
to pick the addresses and apply the data to the correct output pins
of the 2716. The software times out the positive 50-millisecond chip
select time after each desired program address and data is applied.

Most often, you'll get your data out of RAM storage in sequential
order as needed. Obviously, you should check this entire data table
before starting. Since you can make several programming passes,
this table needn't be the full 2048 words in size. For instance, you
can program 512 words at a time using pages 2 and 3 of a bare
KIM-1, and make four passes to complete burning the whole chip.

To do this, adjust your software to let the counter run until it gets
to the right address, and only then start applying the 50-millisecond
CE high pulses. The whole process takes around two minutes. You
can follow programming with a verify check, testing everything to
be sure it is correct.

75

Your Turn:

PARALLEL
PORT "B"
CONTROL

PARALLEL
PORT "A"

DATA

+ 5 V

Show the software needed to program a
271 6 EPROM on a KIM-1 .

CLEAR

COUNT

OUTPUT ENABLE

CHIP ENABLE

+ 5 V

V,
1-
:=,
c...
1-
:=,
0

330

EPROM 2716

READ

1N4 148

OE

AO .___....____. QO
CLK RST

V,
u.J
V,

Cl
Cl

VP

0.� l

PROGRAM

QlO

+5V

4040
CMOS

COUNTER

-

+25-VOLT
REGULATED

SUPPLY,
40 mA L IMIT

Fig. 3-6. This circuit and suitable software let you program a 2716 with your
KIM-1 microcomputer.

76

Chances are you can find someone in a local club to burn a single
EPROM for you or loan you a programmer. Only, don't expect him
to hand load 2048 words of code for you, unless he happens to be a
very good friend.

Some EPROM Programming Hints

Here are three hints that may save you hours of grief if you do
build your own EPROM programmer :

1. If you are using a separate power supply for VP, make the
ground connection directly to the EPROM card, and connect
the positive supply directly to the 25-volt regulator used for
programming. These precautions keep noise off the rest of the
computer bus.

2. Make sure there is no way to suddenly discharge a bypass ca
pacitor charged to 25 volts back into the computer's +5-volt
bus. The 330-ohm resistor shown in Fig. 3-6 limits discharge
current to a safe value. Spiking the power supply on a micro
computer can raise all sorts of havoc.

3. Be sure everything else is removed from the parallel ports when
you are programming your EPROM. Leaving a keyboard en
coder connected, or having a short to ground on, say, PA7, left
over from previous cheap video use does the strangest things
to your EPROM data.

DESIGNING A CHARACTER SET

Character and graphics dot programs for an EPROM are much
easier to design than the usual EPROM stuff, since you can look
at your results ahead of time, and since there is a one-to-one corre
spondence between the stored code and the dots that appear on the
screen.

Fig. 3-7 shows a form that makes designing characters and graph
ics simple and orderly.

A typical symbol is shown listed on the form in Fig. 3-8. The ad
dress of the character is located in the upper boxes. This is the base
location in the EPROM where you want the symbol or character to
reside. The hex coding for the various dot rows goes on the left. This
is the data you want stored in your EPROM at the symbol location.
Note that there are actually eight different data locations, decided
by the row code selected. The address code is the base address for
code 000. We'll see a detailed example of how to use these forms
later when we do a music display.

There are several ground rules that you'll want to follow to make
your symbols more attractive.

77

:::::===::::::::::: D

lilliililli
-., 1i1 Iii Ii-

I 1 1 1 1 1 1 1 i t I 1 1 1 1 1 1 1 , � I 1 1 1 1 1 1 1 'i I 1 1 1 1 1 1 I i

111!111!111!111
>- I I I I I I I I 17 I I I I I I I I i � I I I I I I I I i 1 1 I 1 1 I I i I ,-

111 i III i 1111111

78

Fig. 3-7. This form helps you design your own EPROM characters or
graphics chunks.

* Use the lowest resolution you can. Counting on detail from
every last dot may limit your display to quality video monitors.
Tv sets may smear adjacent dots together and make the sym
bols illegible.

* Rely on the overall, dominant, or bulk shape to give the viewer
all he needs to know to tell the character or symbol from the
others.

* High resolution vertically is much easier go get than high reso
lution horizontally.

* Make all the symbols look like they "belong" together. Use the
same style, height, and the same general overall font "vibes."

* Test to be sure adjacent characters or chunks work well to-

gether, particularly in graphics where subelements have to
combine in building a larger image. * Check your results on an actual video display. There are
enough differences between pen-on-paper and electrons-on
screen that on-screen testing is a must.

Actually, we'll be violating our "low resolution" rule on the music
display, just to show you the potential of hi-res graphics. As a result,
our music will look best on a monitor and may not look too good on
a cheap to average-quality tv set.

Fig. 3-8. Example of how to use
EPROM character design block.

i- - - - -----------

I
I
I
I
I
I
I
I
I
I

1 I 1 1 1 1 l b I F I

L _ _ _ _ _ _ _ _ _ ____ _

You can emulate your EPROM character generator symbols on
just about any microcomputer or terminal that lets you put chunks
or dots on a screen. Fig. 3-9 shows a way to put large symbols on an
Apple II that makes it easy to create and change your symbols. This
program is good to show how well graphics subelements will work
together.

To use the program, you type R, L, U, or D to move the cursor to
a desired square. 'T' lights the square; "O" puts it out. "X" clears
everything. A red cursor appears briefly after every keystroke, so
if you watch for this indicator you can always know where you are
on the screen.

Be sure to do some sort of character emulation ahead of time. For
example, the music display presented in the following chapter had
to be redone several times in order to make the notes and the note
dots look good together.

We'll pick up more details on designing characters and symbols
in just a bit. But, first, let's go on and build up a simple adaptor that
lets you plug an EPROM into your TVT 6% or other video display
system.

79

This BASIC program is useful to design your own characters and graphic shapes.
It's especial ly good to see how the symbols wi l l work and how they wi l l look on
a screen.

The program is shown for an Apple I I .

10 REM: CHARACTER GENERATOR SYMBOL EMULATOR FOR APPLE I I
1 1 REM: U = UP D = DOWN L= LEFT R= RIGHT X=CLEAR 1 = LIGHT 0= DARK
1 2 REM: CR=CURSOR RUN +CR=START CTRL C =STOP

1 5 DIM A$(1 0): X=0: Y = 0

20 INPUT A$
30 IF A$= "R" THEN GOSUB 300
40 IF A$= "L" THEN GOSUB 400
50 IF A$= "U" THEN GOSUB 500
60 IF A$="D" THEN GOSUB 600
70 IF A$= "X" THEN GOSUB 700
80 IF A$=" 1 " THEN GOSUB 800
90 IF A$= "0" THEN GOSUB 900

1 00
1 1 0
1 20

1 30

Z= SCRN(X,Y):COLOR= l : PLOT X,Y
FOR N= 1 TO 1 25: NEXT N
COLOR =Z: PLOT X,Y

GO TO 20

200 REM: 20 GETS COMMAND; 30-90 PICK SUBROUTINE; 100- 1 20 BRIEFLY
2 1 0 REM: FLASHES CURSOR; 1 30 LOOPS FOR NEXT COMMAND. SUBS FOLLOW:

300 IF X<40 THEN X=X+ l : RETURN
400 IF X >O THEN X=X-1 : RETURN
500 IF Y >O THEN Y = Y-1 : RETURN
600 IF Y <40 THEN Y=Y+ 1 : RETURN
700 GR: RETURN
800 COLOR=6: PLOT X,Y: RETURN
900 COLOR=0: PLOT X,Y: RETURN
1000 END

Notes:

To use the program, type RUN followed by a RETURN. "U," "D," "R," and "L"
move the cursor around. The cursor briefly appears in red after each activily.
" 1 " l ights the cursed position, while "O" puts it ou1. A RETURN musl follow each
command. CTRL-C stops the program. The display is a very large dot matrix
40 x 40 array.

Fig. 3-9. Character generator symbol emulator.

80

BUILDING EPROM ADAPTOR MODULE "E"

All you really need to put a 2716 EPROM onto a TVT 6% or other
computer or terminal that has 2513 style pinouts is a simple adaptor
to rearrange the pins. Fig. 3-10 shows details on a Custom Pro
grammed EPROM Module "E."

You can make this adapter from a 24-pin DIP carrier, a small PC
card, a 24-pin socket, and five jumpers. The adaptor rearranges the
pins so that a 2716 looks like the "enhanced" 2513 pinout arrange
ment we used on the TVT 6%.

On the 2716, programming pin VP is permanently held at +5 volts.
The output enable and chip enable pins are tied together and routed
to the module's c1:1rsor input. The cursor input is held grounded by
the OFF position of the cursor switch. With the cursor switch in the
CON position, a 'T' on upstream tap line VD7 will flash the "jail"
cursor as is done on modules "A" and "D." Module pin 12 is not used,
while pin 1 provides a permanent ground to the serial input of the
video shift register.

Construction might go something like this :

Carefully inspect the circuit board for opens, solder bridges,
etc. Try tinning one of the pads on the board. If there is any
problem with easy solder adhesion, carefully clean all areas
to be soldered with an ordinary pink eraser. Avoid handling
the board, as this will make soldering harder.

(Place the PC board bare side up with the notch at the up
per left. Insert a 24-pin IC socket in the 24 holes at the up
per right. Put any code notch indicating pin one of the
socket at the top of the board. Bend all the socket pins flat
against the foil and solder in place. Important note: Be sure
the socket goes in the upper righthand corner.

(Insert a bare wire jumper in the bottom two holes and solder
in place (Fig. 3-l0C) .

(Insert a bare wire jumper in the two holes just to the left of
the socket and solder in place.

(Turn the PC board over so that the foil side is up and the
notch is at the upper right. Try fitting the 24-pin PC carrier
onto the unused and unsoldered 24 foil pads. The jumpers
we are going to add in the next four steps are not to inter
fere with our later mounting of this socket. So, be sure
jumper leads are routed "end around" and not through any
pads.

(Note the pin numbering (Fig. 3-10D) . The rightmost col
umn refers to DIP Carrier numbers and goes vertically from
pin 1 at the top to pin 12 at the bottom. The next column

81

'cc
A6

A5

"
Al

A1

Al

AO

AIO

" ..
"

82

Custom Programmed

Parts List

1 -271 6 EPROM, programmed as wanted
1 -24 pin DIP socket
1 -24 pin DIP carrier
1 -Circuit board "E"
2-jumpers, bare, #24 solid wire
3-jumpers, insulated, #24 solid wire

-solder
-flux remover
-protective foam

,.,
QO

QI 10

01
II

03
13

04
14

05
15

Q6 16

07
17

GHQ 12

cl 18

ii[10 @ NC
2716

(A) Schematic. (8) Foil pattern.

Fig. 3-10. Module "E"

E
EPROM Module

How It Works

8-bit character or chunk code is input on pins VD0
through VD7. Corresponding 8-bit dot code appears
on outputs A through H. Row inputs R l , R2, and R4
select dot row. · Input VD7 can act as cursor, font
select, or upper /lower chunk select as desired.
CURSOR input is grounded to provide display, made
high to float outputs and output all-white box.

I
BARE WIRE/

JUMPERS (2)

· -

(C) Bare side. (D) Foi l side before mounting
DIP carrier.

Normal Settings: Cursor OFF; FAST clock; WIDTH set to EIGHT pulses

construction details.

83

over is the EPROM Socket and numbers vertically again
with pin 1 at the top and pin 12 at the bottom. Unlike our
earlier modules, both the DIP Carrier and the EPROM
socket number "clockwise" when viewed from the bottom
or foil side.

) Study Fig. 3-IOD. Put an insulated wire jumper between
EPROM socket pin 1 and DIP Carrier pin 13. Route this
lead well to the right, leaving the pads at DIP Carrier 14
and DIP Carrier 15 exposed.

() Route a fairly long insulated wire jumper from DIP Carrier
pin 14 to EPROM socket pin 23. Be sure this wire goes
around the bottom and not through the pins. Test your DIP
carrier again to make sure it will still fit.

() Route a similar insulated wire jumper from DIP Carrier pin
15 to EPROM socket pin 22. Be sure this wire also goes
around the bottom and not through the pins.

) Neaten the position of these three jumpers, and once again
check to make sure the dip carrier will fit.

() Check to see how hard it will be to solder your dip carrier
in place. Find a suitable small-tipped soldering iron.

() Study Fig. 3-11. If you have to, cut one each of the small
dual barbs on each pin end of the DIP Carrier as shown.
Again, if it will help soldering, file off any flanges or any
thing else that keeps you from soldering at close range. Do
not file the insulating portion of the carrier down so close
that soldering heat can loosen the pins. Remove only as
much material as you have to in order to solder the carrier
in place.

BEFORE ttl I CUT OR FILE .
I

AFTER

H
(A) Trim excess material outside pins.

BEFORE AFTER

t t-
(B) Clip one barb off each pin.

Fig. 3-11 . The 24-pin DIP carrier may have to be modified to ease soldering.

84

) Carefully tin each of the remammg 24 pads on the PC
board, leaving a nice, even, medium-height bump of solder
on each pin.

() Tin the pin ends of the dip carrier that are to be soldered
to the PC card.
Carefully align the Dip Carrier to the PC board. Then "re
flow" solder the pins together. Fig. 3-12 shows how the
board will look after the DIP Carrier is in place.

() Use a magnifying glass to make sure all pins are in fact
soldered and no pins are shorted to adjacent ones.

() Clean the board with flux remover or lacquer thinner.
() Press the board into a piece of protective foam. Then insert

the already programmed 2716 EPROM so that pin 1 is near
est the notched corner.

Fig. 3-12. Foil side of Module "E"
after reflow soldering DIP carrier.

This completes the assembly of your Module "E." Always store
module "E" in protective foam when not in use. If you are using
several 2716s, keep them in foam as well.

CHECKOUT

For a quick test, get your TVT 6% up and working with alpha
numeric Module A or D and a random character load. Then unplug
the alpha module and plug in Module "E." A new random display
should result, depending on the program you put in your EPROM.

Your choice of format per Fig. 3-2 decides what you are going to
do with lead A 7, how your cursor is to be entered, and whether or
not you will use a Row 8 line. For most uses, keep the cursor switch
in the OFF position to force grounds on the EPROM's enable inputs
as needed for a live output.

Any troubles in your display can give you hints as to EPROM pro
gramming difficulties. If the eighth output line is always a zero, pos
sibly a hard-wire ground was left on the parallel port during pro-

as

gramming, or else the WIDTH pot is giving you nine clocks per load.
If the bottom half of all characters is missing, the programmer
stopped short of filling the EPROM. If the whole display is blank,
but everything else is apparently "alive," you may have an unpro
grammed but erased EPROM. Double or funny single characters
can usually be traced to incorrect coding on your worksheets, or an
error between the worksheet, your RAM loading, and the actual
EPROM programming process. Lots of extra dots may mean an in
complete previous erasure.

86

C H A P T E R 4

A Music Display

Let's do a detailed design example to see just how you can use a
2716 EPROM in a custom alphanumeric or graphics display. Fig.
4-1 shows a photo of a music display that has some very fancy fea
tures but still runs on a bare-bones KIM-I or other "minimum"
micro.

The features of our music display are listed in Chart 4-1. We have
whole, half, quarter, eighth, and sixteenth notes, any of which can
be dotted, Ratted, sharped, or naturaled. There are lots of measure
and line symbols, a few of the more important keys, and four popular
tempos. Above-staff notation includes guitar chords, loudness, ties,
repeats, and so on. Additional ties and a location pointing cursor
can go below the staff.

Chart 4-1 . Features of the Music Display

Monotonic, approximately five measures across the screen.
Number of l i nes varies with display and system.

Whole, half, quarter, eighth, and sixteenth notes, any of which
can be made sharp, flat, or dotted. Treble low A through
high G, or bass equ ivalent.

Seven different measure symbols, five keys, four tempos.

Treble and bass clefs, rests, repeats.

Guitar chords A-F, sharps, minors, minor sevenths.

Single and double repeats, loudness, d iminuendo, crescendo,
loudness, s lurs, ties.

Ful l cursor control.

Above-staff, staff, and below-staff space separately accessible.

Expandable and modifiable.

87

Fig. 4-1. Music display using EPROM character generator.

On a bare-bones KIM-I, there's room for one music line. This gives
you around five measures on the screen at once. It's easy to extend
this to almost any size display you want, just by adding memory, or
going to a slightly larger micro.

Our music display takes either a video monitor or a very good tv
set for its display. Results may not be too attractive on an ordinary
tv set. Only a single note is displayed at a time in any position. We'll
see how to add multiple notes later on.

What we'll be looking at is by no means limited to music. The
same ideas will work to give you chess pieces, tanks, foreign lan
guages, PC layouts, circuit symbols, or galactic transports. It all
depends on your character set and your display plan.

THE DISPLAY PLAN

The first step in designing something new in a custom display
is to set up an overall display plan. Are you going to use alphanu
merics only, mixed alphas and graphics, graphics symbols only, or
larger graphics symbols that are built up out of combinations of
smaller chunks? How many chunks or characters vertically? How
many h01izontally? Do the chunks always abut, or are there always
to be undots between characters? Is everything 8 X 8 or 8 X 16? Or

BB

8 X 8 DOT MATRIX

\

0 2 3

HORIZONTAL CHUNK POSITIONS
(54 PER LINE)

ABOVE-STAFF CHUNK

UPPER-STAFF CHUNK

LOWER-STAFF CHUNK

BELOW-STAFF CHUNK

EACH DOT IS FOUR
SCAN LINES HIGH
(2 LINES/FIELD;
2 FIELDS/FRAME)

Fig. 4-2. Four vertical 8 x 8 chunks are used for music display.

are we going to mix matrix sizes to suit the display and still get as
many characters or chunk symbols as possible?

Your answers to these questions decide just how you are going to
build your custom display. Always start with these basic questions
and then work from there.

For a music display, it turns out convenient to use a matrix that
is 8 dots wide by 16 dots high for many of the symbols. Fig. 4-2
shows a useful display plan.

We will use a graphics space that is four chunks high by 54 chunks
wide. The width is set by the tv or monitor capabilities and is ad
justable. This is typically enough space for five or six measures. Our
initial plan will be for a single line of music; later you can easily
extend things with more memory and different scan software.

We'll make a single dot four lines high. To do this, we will use
two lines on the first field and two additional lines on the interlaced
second field. Anything less than this looks pretty bad.

Our vertical display space is made up of four chunks, the above
staff chunk, the upper staff chunk, the lower-staff chunk, and the
below-staff chunk. The middle two chunks are paired with software
to give us an 8 x 16 dot symbol space. The actual staff lines are
somewhat above center in this 8 X 16 space, since below-staff notes
(treble low A through D) are more common than above-staff ones.

89

The above-staff chunk gives us room for guitar chords, repeats,
diminuendo, ties, and stuff like that. The below-staff chunk will usu
ally be 'blank, except for a cursor box or possibly some below-staff
note ties. This space will also be needed to separate additional lines
of music on the screen in fancier displays.

Your staff chunks work as a vertical pair. We will use the conven
tion that the lower chunk will always have an EPROM address of
hex 80 more than the upper one, letting us pair chunks easily with
software. Thus, two 8 X 8 chunks will automatically be combined
into a single 8 X 16 symbol. The location of our symbol in EPROM
will decide whether it gets entered above staff, below staff, or on
staff. We'll see how some simple software sorts things out for us.

Each symbol will be one chunk wide. All on-staff symbols must
be arranged to abut each other peacefully. A continuous appearance
is gotten by abutting each symbol and having the staff lines exactly
align. Usually, we will fill the screen first with an empty staff. The
notes will magically "appear" where they belong by replacing the
empty staff chunk with a new symbol that has both the staff and the
new note on it.

Fig. 4-3 shows the display space we will use if we are on a bare
bones KIM-1. Most of page two is used as shown. The width of the
display is adjusted by changing the starting address to suit the tv
or monitor in use. Up to eight music lines can be put on screen with
a larger system, just by arranging for a new page of 256 bytes for
each line to be displayed, and adding suitable scan and cursor soft
ware.

ABOVE STAFF (

MUSIC STAFF !
BELOW STAFF {

WIDTH OF DISPLAY ADJUSTED
FROM THIS END

I
OA Ob oc Od OE OF

4A 4b 4C 4d 4E 4F

8A 8b ac 8d 8E 8F

CA Cb cc Cd CE CF

10 1 1 { 3A 3b 3C 3d 3E 3F

50 51 I 7A 7b 7C 7d 7E 7F

90 91 9\ \bA bb bC bd bE bF

dO di d2) /FA Fb FC Fd FE FF

Fig. 4-3. One page of 256 words in a display memory is needed per line of
music. Here are typical memory locations used.

A CHARACTER SET

Fig. 4-4 shows the character set we will use. Since you can custom
program everything with your EPROM, if you don't like this one,
do it your way. This particular set leans heavily toward guitar chord
ing and as a teaching aid for beginning band. While rather fancy,

90

it doesn't let us put more than a single note on a particular location,
omits grace notes, and has some compromises in calling for sharps,
Hats, and naturals. We11 find a sledgehammer way around these
limits later, but for now, let's use it as shown.

Each symbol is called by a single word or word pair stored in a
display memory. For instance, a hex "3b" will give us the upper half
of an eighth note at high "E" on the treble staff.

MSB

----------- LSB -----------.

IBLANI i 'g =b= I� I� 1� .. =
I == --- ---

� = l ::E ,� � � I� 'r- BLANI

A J a J c .f o.f E J f J GJ A.f a J
A I al c l o J E l f J G J A i a l

A J s J c J o J E J F J G J AJ a J

Ad ed c d o d E d F d G d Ad a d

A -0- B-<>- c -o- o-o- E -o- F -<r G-<r A-o. B -o-

A • a . c . o . E • F • G • A • B e

A

} 7 # l:,

LANI 2 ! i
4 4

cJ o.f E .f F.f

cJ oJ E l d

c J o J E J F J

c d o d E d r d

C -o- 0 -0- E -o- F -o-

c . D • E • F e

l:i
A B
C D

! E F
8 G 7

G JI ;��� G rr
G J

I fT , 7

G d
BLNK --

G-o-
r->""'

, --
Ge 'lil'W'I IRLNK

'--------
DO-IJ

-BL_E _H-EIG..-HT-SY-MB-0-LS ______ _,S�lT
LOWER = UPPER + $80 SYMBOLS -., = $80

Fig. 4-4. Character set for music display.

Now, if the least significant bit of the word is d or less, the symbol
will be a double one that needs two chunks. The second chunk ad
dress can be found by adding hex 80 to the first, and then storing
this value in a suitable display memory location. As we've just seen,
a word of "3b" represents the upper-chunk half of eighth-note high
"E." The matching lower chunk will have a value of hex (3b + 80)
or hex bb. To put a character on the screen, you call for the upper
value and store it in the correct display memory location. Then you
add hex 80 to this value and store that value in the lower chunk
display memory location that appears immediately below the upper
on the screen.

Thus, while only a single word is needed to call an 8 X 16 symbol,
two words get stored in the proper display memory locations. One
of these is the upper chunk, stored as called for. The other is the
lower chunk, calculated by adding hex 80 to the upper chunk. While
the upper and lower chunk data values will be hex 80 apart, the
address locations in the display memory will be such that they
appear immediately above and below each other. Typically, this will
be an address difference of decimal 64, or hex 40.

91

OQI'--0 ,2_
0 0 _ 0£
0 2.

���
o§:V

�&" o o ,-,-0 0

�� �� o o ...-,-,-o o
'.2S/

92

1� "'
<o P.
roe
o[
I l_ ...-
q �
Z. £ /

i MLl".,1C., CC;i

100-01 ; <ao-s1 I

�I '-
2..2.
£.£.
2..Q.
.QS!.
2..£ -/ 2� / £2.

Fig. 4-5 Character set

I MUSIC, C,q
! 00 - OF- ; llll-'3F!

�� I'.
'f: F
'o 0

s2,
0 0
F F
00

0 0 t'--. 0 0 "-.
F F--o o

�..2 I 'i! ----
1/ ��

J.�

b-9_
3 .1 �
�! /

]._i
t.� --S 3 v !l

[t'F
o'o "-. __ ,
F- F �

]�"' 2�r--...
F F

00
00 0 0
oo....---,,,
Q.2/ .2.2

££
£.2 /

_ei.2 /

-- --
�Q,
0 0
FF

�.2"-.
�£:

I 1. -
0 0
Sf
4£ l .l / S,Q.

7�
7�
l'c:..-
0� --/ .2£?

(Continued on next page)

for music display.

93

--
�& I'-...
�&
..E.!: �
.2.2
,F,F -
10,0

..E.!: I/ &�

F-] "-
0,2 ,..,__.
FJI,,._
O_Q
O,Q
0,2 ,._

V 0.2 V 0.2

94

--
.2&>1',... &&
.f.!:
�8
.£J: . 1 .0
.£.£ v i..!.L2

F,!: I'-...
J.�
J:t
O,Q
o,o
0 0
0.2 V o.g

00 "-D ot-..
F F L

z. 8
F F

l.lf I/ F F I/ � ll

! MlJ'SIC., C6

!,o-n ; 90-'n!

-
0.9 '-c�,
F�...._
OJ_
F F

�.2 V .£ t. V L2..2.

,_!: F
1:::-,2 >

_t F

&�
._QLQ

a.9� ,.....-
&�
�.E I/

Fig. 4-5. Cont'd. Character set

--
,2,2 I'-.
�� o o-
��
£?� oo...-..........
�,Q V .2�

2:§, 0 0
0 0
00
QQ
O.Q.
0 0 ,..
OQ/

OQr--,.._
Z.jir---..
A b'"-
Ji
B.ll_
o s...-�v 9 1-v � !i

for music display.

--
Q�
Q�

I'-..
��
$!.� ��
Qi2
£� --; .2.£

! M\J":,IC C8
J1,a- 1f- ; q,a-qr-J

�J, k�
A b
}]:
Q]_ / .Q� / 22. / .£.2

--
2.�, ��
I 0 , 1£

J. .2
I 0 ,,.-

O.Q_ / �2

(Continued on next page)

95

I MU":,IC, C,q

� lw-21 P,() - P.1 I

1 1 lz.l • I I I 1-z.lz-l -- --
.Q.iQ' .2.2ts,. £� i2L52
u� .f.f �s .2..Q
�Lf- ,E,O

s&�
EJ:,/ O.J2

c--· ,O,E !c�v i2�

-- -- -
.s>&ts,.
...Q�"-.

&.S "'
.E� I'-.

0£>"'
0.E,I'-.

Lf.�1-... �.El,.._ ..!-�I,.._
.9.E ...Q� .9�
,E-� ._Q�:� .E-.E r/
.gie,

��
��

L.,.,-

.fc.t-1/ s�

&�
.9�
[f�I/ �&

Fig. 4-5. Cont'd. Character set

96

!MU";1C, CG

! '2£\-Z.F ; A8-AF(

B]: "-O f:!_
E E -
oi
O.!:,_
O_s o�v 0.£

]:E� 0 E.t--,.
IH,.__
0 A
OE
0�
o ov
o oV

�i� 2i,
E. A -
H 0 0
.QQ /

.Q.Q. £a /

£8 I'-.
SI "
E. E.-
]o
0 0

0 0 ..,..
0 0 v :§ 0

- --
OQr,.._ ' .QQr,.._
OQt--,_ £> 1 r---.._
OQ_r--....
1 C .£? l �

F q
S 4
5 4v

1 A
A A..,-

o oV
o oV ��v

(Continued on next page)

for music display.

97

o:§, S.Q f F

021'-. o o,.__
fF

0 0 0 �
F£ ff.
OQ.,,,,,..
f £./ O.Q

o o� rn,,v .2 E

��
Q� "
�Q
t.2 0 !'.
&�
Q A V

�>---' �..?av �l.

98

ofi:, c o ,
f F
O.Q
F.t
0 0
E. t.
og;/

!MllS\C, C,(:,

!',,i) -"Sl ; bO -bl(

��
9.S. I'-. £9. "
F F �
075
10
Q& �
�t /
�� /

Fig. 4-5. Cont'd. Character set

�:I, o o,
I�, OE,_

��
E.Q
OQ

S.2 OQ
0 0 --,,,,
��/

0 0
oOv
o:§:V

o:§�
I & rs._ ' l�
l E.
I 'o
i'ov
o'oV.
o:§V

,r music display.

l MLJSIC, C,q

1�-�F- ; bO -bF!

k]"-
,2,2 rs.. u�
£9.
.Q.2
o o �
Q'o/
:§:§/

ti�
2s� o o -
��
.Q.Q
Q�
£!,2/ .2S2

(Continued on next page)

99

1 1 1 1
oQr--,__ OQ
F F -

�s"'
�.,Q
f f -

00
F F
o ov-
F F
,2 0V

�s ,: F >--�
Q�
v n

�.f

EQ� OQr--,_
F-..E.�

Q:§ '
0 0

I�
0 0
FE

.Q.�
£.� 0 z...-

F Av
oz:v �¾;:

o]>/

100

1 1
���
�._Q F F -
�o
\C F

0 0 � I> v �..1

Q'.§"
�� ,,
�%

f..t.
%½/
�]: /

o o
0 0
O D

!Mu<,,c., C-G
!40 - 41 ; C,O-c,1!

1 1
Q£, O.Q,
F F �
00
F "n _.,
o z
FA,,, oI /

O D /'t,t;,':!,:!.:t!::::
0 0

Fig. 4-5. Cont'd. Character set

!Mus,c e,q
! 411 - 4F ; C,l?,-{,FI

e.I � OQ r-... � �
00
00
oOi,,,---
ooV
o oV

J� � S.:b r-...
t��
01,_
0 2_

i9.Q �
.9 0 V
.9 0 V

:tb['.. 0 z.
FA -,-
Q�
.9.�
.Qr2-o o

/ £Q

F A
'--;; z.

� I',
� o
.9 0

t2�1--"'" � ov .Q 0

10�
•Qt---.
l Qt-,.,.
1 0
1 §:
, o
1 oV
, oV

(Continued on next page)

for music display.

101

--
$,9['...
.Q O
F F

0 0

@:t
�t2
ti V
£?.Q V

I�,
.Q.k,
F 1' -

Qk
E. E

£b
E E. ,-

££/

-- --
QQ"
0 0
FF,
0£

22, 2.2,
£�
£k

F 1' F 1'
01,_
F.f:::.V Ol_

oz:
F�

/ o,..

102

--
t22 � 0 0 1� ,.__
00 g F
,2 0

.t"' v .2 2.

--
QQ,
�Q, t�'-
£k
F P.
0 2. ..--__ ,,, U/ £&

! MUSIC. C.q

!SO -S7 ; dO-d7!

F A '
Ot
EE
0 �
O f,_
0 .Q.'°'
0 0 V 02

--
SQ ' Sl:.
F A
�I
.f !:::.
0 z.

� !I ..Qh

Fig. 4-5. Cont'd. Character set

1 1
:§2 "-.2�__
f-,!:_ o o -
E.!, o p. �
E.i:° /
o '.z;/

EQr---_
0 .Q
F F
oQ

--
£� "-
M

'-

g�
J;Q o ov
o ov
o oV

0 0
/

.Q.�
.Q�
.Q.,g /

O£r---_
o.Q_r-,....
0 0 -
0 0
0 0
oo...-
o oV
o oV

for music display.

I MUSIC cc:.
!S'3-Sf- ; d'3-df I

1 1 --
,Q.Q '-
�£ '
.E:&
0 1'

!I o z.
fl\ /
o];: /

� ol's.
.t F
0 0 "-.
@ o
0 0
FF
s�v .2�

(Continued on next page)

103

1 1 1 1
[2;§,
S&
F F

--
0 0 " oo ' _,_ l" F-

00 �
.!:.!:

00
E

1-Q,Q.
�
V .ti / _Qi£

%�-
QQ/

FF '-OQ '-
F- P--
00
£.°E:
o Pi
e."r;V
o:§V

££1',.
0.2_t--,._

--
,2 .Q" 02, F-£

0 0
F I' .._
00 FI o ov

FFV
o:§V

:E: / o o
i=-t: V

£?.2 /

104

.SQ, '
0 2.,
F F- .._
00
l'F
f.2

/
/ !:?. / 0�

0 0

! MUSIC. Cci

!<d:H ol ; c.0 · £.1 !

1 1 -
0 ,2 '-..
�% '
00
FF

00 V
�F v 22

�!i'-.
�SI'-..
..s-&-
,2!,
,2 £.
,2 'd
so v .£0

-
� of'..
sor--.....
i f-"-
,2 0
F- f
Oo�
J1:.v .Q A

0 0 _,.....��
0 0

Fig. 4-5. Cont'd. Character set

I MUSIC, C§

! (o\H,F ; EQ - f.F l

--
�Q I"-.
Q�
F F ----
0 0

];]:
"1�

� u
Q.Q

t:§, 0 0
FF
o2

--F F "-
�� F F --
.Q�

I F�
,Q 0
,£: F
,Q C

FF '---
0 0
r:�
2£

OQ .Q� Q O .2.2 cg cg/ og
0,2 �

��
/
/

��v
]'.§V

.2� �
/ .QQ / .22

o];-..__ O A
E.E
o2
F F -
0 0
FF
£2/

(Continued on next page)
for music display.

105

-- --
S&t--.
S&

i2S � i2S
.E..E� .£..E�
.2.Q
IF,F- S!S!

t.E,F
&SL,., -

�&
Lf.£:1/ �&

L!:� r/ ��

--
.ft':!',.
0 0>-

.£:.£:
��
@,2
��[_...... �,Qi;, �&

--
.2.Qr--.
L2&
F-.£
0.9
F-,F-
OL2t:, F-.fv O,Q

106

--
,9,Q�
S&

F- F-

]]
,F,F-
,o,o -
.E.E v i2�

! MU':>IG C-9

l•o-11 ; ro-Fl !

-
OQ '-o o
F-.£.�
0 0

�J-ss
v .Et.

..Q�

�] l's.
i9�t--...
..§ r...._
��
S!.E
J2.!2 �

V i9.:2 V i9.g

--
'9£>1'..
.E�t-...
.f.f�
.2S
��
.E,QV' .e-..Ev J:.,,E

Fig. 4-5. Cont'd. Character set

-- -
�L-2 r--.. &&"'-

og r--..
O,Q '-

.f:.f: C F.E_
.Q.Q O,Q -

1,F I F
4,Q

......
I/ S.E_ r/ 0,Q

4 0 2.E.v t9�

--
..fJ't---.
�i9"'-
J:J:
&S
&i9
�.Q� .9Sr/ �.Q

--
.9.9�
�.Q
2.£
�&

l,.f
os
f-J' 1.1 0,0

for music display.

--
&&ts-.
��,..,_
,£-.!: �
.9.Q
�.£
4 0
.J.£v &.Q

I MUSIC, C§

l1ca-1F- ; Fe- Vi' I

:§:§ �
.Q.Q '-.

I F �
l<Q
I� F
O.Q

F.f:V O,Q

-
,£ F

� ,9 0
.£ f-
,9 0
.QS
.go -
.Q 0 V
�,E

107

000 00 18 30 00 08 20 20 00 00 00 00 00 00 00 00 00
010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
020 00 00 00 00 00 00 00 OE 00 00 00 00 00 30 00 00
030 00 00 00 00 00 00 00 00 OE 00 00 00 00 OC 00 FF

040 00 00 00 00 00 00 00. 00 02 00 00 00 00 OC 10 7F
050 00 00 00 00 00 00 00 00 02 00 00 00 00 OE 00 00
060 00 00 00 00 00 00 00 00 00 00 00 00 00 OE 00 00
070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 FF

080 00 89 4F 87 OF FF El FF FF 63 d7 53 67 1 7 00 00
090 FF FF FF FF F5 AF FF 60 00 00 83 83 83 83 00 00
OAO EA EB EE EA 88 bb F7 67 88 EA EE EB EA EE 08 00
060 EE EA EA E2 E2 EE FC EC El E2 EA EE EO FF 00 7F

QCO FA FA FA FA E2 EE FC EC El FA FA FA FA FB 10 FE
OdO FA FA FA FA E2 EE FA EE EO FA FA FA FA FB 00 00
OEO FF FF FF FF EO EE FA EE EO FF FF FF FF FF 00 00
OFO FF FF FF FF l F SF SF l F FF FF FF FF FF FF 00 00

1 00 00 24 4A 00 08 60 60 00 00 00 00 00 00 00 QC l C
1 1 0 00 00 00 00 00 00 00 00 00 00 38 38 28 38 l E l E
1 20 00 00 00 00 00 00 OE QA 00 00 00 00 30 30 00 07
1 30 00 00 00 00 00 00 00 OE QA 00 00 00 QC QC l E 00
1 40 00 00 00 00 00 00 00 02 02 00 00 00 QC OC 1 0 60
1 50 00 00 00 00 00 00 00 02 02 00 00 00 OE QA 00 FF
1 60 00 00 00 00 00 00 00 00 00 00 00 00 OE QA 00 00
1 70 00 00 00 00 00 00 00 00 00 00 00 00 00 40 00 FF

1 80 00 89 00 00 00 00 00 00 00 00 00 00 00 00 l E l C
190 co 00 1 0 03 do Ob 28 00 00 00 28 28 28 38 l E 78
l AO 08 OE QA 08 38 30 30 00 OA OE 08 OA OE 00 28 00
1 60 QA QA 02 02 OE OC QC 00 00 QA OE 00 00 00 00 60

l CO 02 02 02 02 OE oc QC 00 00 02 02 02 00 00 1 0 06
l dO 02 02 02 02 OE QA OE 00 00 02 02 02 00 00 00 00
l EO 00 00 00 00 OE QA OE 00 00 00 00 00 00 00 QC QC
lfO 00 00 00 00 40 40 00 00 00 00 00 00 00 00 AA 00

200 00 AS 6A BF OE FF FB FF FF FF FF FF FF FF 1 2 1 2
2 10 FF FF FF FF FF FF FF FF 00 00 86 86 Ab A3 10 10
220 FF FF FF FF EO EE EA EB FF FF 87 67 F3 bb 00 01
230 FF FF FF FF FF EO EE EA EA FF E l EC FC EE 1 2 00
240 FF FF FF FF FF FB FA FA FA FF E l EC FC EE 10 6E
250 FF FF FF FF FF FB FA FA FA FF EO EE FA EE 00 00
260 FF FF FF FF FF FF FF FF FF FF EO EE FA EE 00 00
270 FF FF FF FF FF FF FF FF FF FF FF l F SF SF 00 FF

280 00 49 FF FF FF FF FF FF FF FF FF FF FF FF 1 2 1 2
290 FF FF FF FF FF FF FF FF 00 00 Ab Ab Ab Ab 10 08
2(>,.0 EE EA 88 bb F3 67 87 FF EE EB EA EE EO FF 7C 7E
260 EA E2 E2 EE FC EC EO FF FF EE EO FF FF FF 06 6C
2CO FA FA E2 EE FC EC EO FF FF FA FA FB FF FF 1 8 06
2d0 FA FA E2 EE FA EE EO FF FF FA FA FB FF FF 00 FF
2EO FF FF Cl EE FA EE EO FF FF FF FF FF FF FF QC OC
2FO FF FF l F SF SF l F FF FF FF FF FF FF FF FF 54 00

Fig. 4-6. Hex dump

108

300 00 28 68 20 4A 60 62 00 00 00 00 00 00 00 1 2 lC
310 co 00 1 0 03 dO Ob 28 00 00 00 38 38 38 38 l C l C
320 00 00 00 00 OE OA OB OE 00 00 30 30 38 OB 7C F9
330 00 00 00 00 00 OE OA OA 02 00 oc oc OE 02 l E 00

340 00 00 00 00 00 02 02 02 02 00 oc oc OE 02 10 62
350 00 00 00 00 00 02 02 02 02 00 OE OA OE 02 00 00
360 00 00 00 00 00 00 00 00 00 00 OE OA OE 00 03 FO
370 00 00 00 00 00 00 00 00 00 00 00 40 40 00 00 FF
380 00 3E 00 00 00 00 00 00 00 00 00 00 00 00 10 12
390 00 00 00 00 00 00 00 00 00 00 38 38 38 38 16 1 0
3AO OA OB 38 30 30 00 00 00 OB OA OE 00 00 00 28 42
360 02 02 OE oc oc 00 00 00 00 00 00 00 00 00 OE 64

3CO 02 02 OE oc oc 00 00 00 00 02 00 00 00 00 OB 06
3d0 02 02 OE OA OE 00 00 00 00 02 00 00 00 00 FF 00
3EO 00 00 l C OA OE 00 00 00 00 00 00 00 00 00 OE l C
3FO 00 00 40 40 00 00 00 00 00 00 00 00 00 00 AA 00

400 00 31 OB A3 4C 4F 46 FF 3C 63 bd 53 5F 47 I E 1 2
4 10 FF FF FF FF F5 AF FF 06 00 00 A3 Bb Bb Ab 10 1 0
420 FF FF EO EE EA EB EE EA 87 67 F3 bb BB EA 54 AA
430 FF FF FF EO EE EA EA E2 E2 EC FC EE E2 E2 10 00

440 FF FF FF FB FA FA FA FA E2 EC FC EE E2 FA 10 6E
450 FF FF FF FB FA FA FA FA E2 EE FA EE E2 FA 00 00
460 FF FF FF FF FF FF FF FF EO EE FA EE EO FF OE J C
470 FF FF FF FF FF FF FF FF 1 F 1 F 5F 5F I F FF FF FF

480 00 OB 00 00 00 00 00 00 00 00 00 00 00 00 1 2 1 2
490 00 00 00 00 00 00 00 00 00 00 OB OB OB 28 1 2 20
4AO BB bA FC 30 00 00 00 00 OA OE 00 00 00 00 7C 5A
460 E2 EE FC oc 00 00 00 00 00 00 00 00 00 00 OE 64

4CO 62 6E 7F oc 00 00 00 00 00 00 00 00 00 00 OE 06
4d0 E2 EE FA OE 00 00 00 00 00 00 00 00 00 00 00 FF
4EO Cl EE 77 OE 00 00 00 00 00 00 00 00 00 00 03 FO
4FO 00 40 40 00 00 00 00 00 00 00 00 00 00 00 54 00

500 00 50 1 2 38 70 00 06 3C 3C 1 8 34 FB 40 70 1 2 l C
5 1 0 co 00 10 03 d4 26 28 4C 00 00 38 38 OB 38 l E 1 0
520 00 00 OE OA OB OE OA OB 30 30 38 OB OA OE 54 AA
530 00 00 00 OE OA OA 02 02 OE oc OE 02 02 OA 10 00

540 00 00 00 02 02 02 02 02 OE oc OE 02 02 02 10 68
550 00 00 00 02 02 02 02 02 OE OA OE 02 02 02 00 FF
560 00 00 00 00 00 00 00 00 OE OA OE 00 00 00 oc oc
570 00 00 00 00 00 00 00 00 40 40 40 00 00 00 00 FF

580 00 OB 00 00 00 00 00 00 00 00 -' 00 00 00 00 l E J C
590 00 00 00 00 00 00 00 00 00 00 OB OB OB 38 l E 20
5AO 38 30 30 00 00 00 00 00 OE 00 00 00 00 00 28 5A
560 OE oc oc 00 00 00 00 00 00 00 00 00 00 00 1 8 64

5CO OE oc oc 00 00 00 00 00 00 00 00 00 00 00 06 06
5d0 OE OA OE 00 00 00 00 00 00 00 00 00 00 00 00 00
5EO J C OA l C 00 00 00 00 00 00 00 00 00 00 00 00 00
5FO 40 40 00 00 00 00 00 00 00 00 00 00 00 00 AA 00

(Continued on next page)
of music PROM coding.

109

If the least significant bit of the character code is E or F, then we
get single-height chunks that are intended to go above or below the
staff lines. These symbols will usually go above staff, except for the
blanks, cursor, and possibly some ties that might be needed below
staff.

The shape of each note is set up so that it can be dotted. Done this
way, the separate dot symbols aren't needed for dotted eighth,
dotted quarter, and dotted half. But, only a single sharp, flat, or
natural symbol is used for the entire staff. This compromise looks
good enough on most notes and saves us EPROM space for more
useful things.

You'll find two user-definable notes at hex 18 and 19, and there
are tricks you can pull to get more space for even more symbols if
you really need them.

600 00 Sb 92 EF dF FF F6 3C FF Cb 85 53 77 57 00 00
610 FF FF FF FF Fl BF FF 18 00 00 83 83 83 83 00 00
620 EO EE EA EB EE EA 88 bb F3 bb 88 EA EE EB 00 00
630 FF EO EE EA EA E2 E2 EE FC EE E2 E2 EA EE 00 00

640 FF FB FA FA FA FA E2 EE FC EE E2 FA FA FA 1 0 6E
650 FF FB FA FA FA FA E2 EE FA EE E2 FA FA FA 00 00
660 FF FF FF FF FF FF EO EE FA EE EO FF FF FF oc oc
670 FF FF FF FF FF FF l F AF SF : SF l F FF FF FF 00 FF

680 00 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00
690 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
6AO FE B6 00 00 00 00 00 00 00 00 00 00 00 00 00 00
660 FE EC 00 00 00 00 00 00 00 00 00 00 00 00 10 6E

6CO 7F 6C 00 00 00 00 00 00 00 00 00 00 00 00 06 06
6d0 FA EE 00 00 00 00 00 00 00 00 00 00 00 00 00 00
6EO Fl EE 00 00 00 00 00 00 00 00 00 00 00 00 00 00
6FO 40 00 00 00 00 00 00 00 00 00 00 00 00 00 54 00

700 00 Sb 20 30 60 00 04 00 00 18 08 FB 50 70 00 00
7 10 co 00 1 0 03 d4 26 28 32 00 00 38 38 38 38 00 00
720 OE OA OB OE OA 08 38 30 38 08 OA OE 08 OA 00 00
730 00 OE OA OA 02 02 OE oc oc 02 02 OA OE 00 00 00

740 00 02 02 02 02 02 OE oc oc 02 02 02 02 02 10 00
750 00 02 02 02 02 02 OE OA OE 02 02 02 02 02 00 00
760 00 00 00 00 00 00 OE OA OE 00 00 00 00 00 OCi 00
770 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 FF

780 00 1 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00
790 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
7AO JO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
760 oc 00 00 00 00 00 00 00 00 00 00 00 00 00 10 00

7CO oc 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
7d0 OE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
7EO l C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
7FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 AA 00

Fig. 4-6. Cont'd. Hex dump of music PROM coding.

1 1 0

Once you have your design plan and an overall list of what sym
bols you want and where you want them to go in EPROM, you can
go on to design each symbol or symbol pair using the emulation pro
gram and the forms we already have looked at in the last chapter.

Fig. 4-5 shows my selection of the music chunks. This character
set includes 32 single-height symbols and 112 double-height ones.
A dark square on the form indicates light on the screen. On each
coding square, the hex value for each successive row appears at the
left, while the upper-chunk location in EPROM is shown above the
symbol.

Once you have your forms complete, you should double-check the
coding. Then go to an emulator of some sort that will show you how
well the characters work together.

After you are reasonably sure you have workable symbols and
believe your coding is right, you can go on and compile a truth table
for your EPROM. Fig. 4-6 shows the coding we need, as lifted off
the music forms.

To generate your truth table, assume your EPROM coding space
is broken into 8 pages of 256 words each. Page 000 is the top dot
row. Page 100 is the next row down, and so on down to page 700,
which is the bottom dot row. Now, go across your symbol sheet,
a row at a time in address order, to generate your truth table.

For instance, at location 24, the coding for the sixth dot row is EE.
Coding EE then appears at location 24 on page 600, or as entry 624
EE on the truth table.

Note that the EPROM doesn't know about the "add hex 80" pair
ings of the chunks. Each individual 8 X 8 chunk simply goes into
the EPROM truth table in the sequence it comes up. Now, our work
sheets show the chunks paired. So, you make two trips through the
worksheet when you compile your truth table, picking up each loca
tion in sequential address order.

After your truth table is completed, check it thoroughly. If you
don't find any mistakes, this means that you haven't checked it well
enough. Then load it into RAM somewhere, and make a tape or disc
copy of the truth table for future use. Hand loading 2048 words is
a bit painful on the KIM keypad. An easier route is to use a full
ASCII keyboard and a loader program similar to the one in Fig. 2-21
in The Cheap Video Cookbook. This will shorten your routine by
some 2048 keystrokes and is far more pleasant to do.

If you do things right the first time, you will only have to make
a full 2048 word entry into your computer once. Then change the
existing loading so that you won't have to redo the code over and
over again.

As soon as you get a good tape or disc copy, program your
EPROM. After programming, you can run a quick check on any old

111

alphanumeric display program. This should give you a random load
of bits and pieces of badly jumbled music symbols. To get something
more interesting, we have to add some music software.

MUSIC ·soFTWARE

As usual, it takes a combination of software and hardware work
ing together to get us a useful result. Now that we have our music
symbols safely and permanently in EPROM, we need a SCAN pro
gram to put things on the screen for us. We also need some sort of
a CURSOR program that decides what symbol goes where.

We'll use four scan lines for each dot row of the music symbols,
two per interlaced field. This makes things large and easy to read.
A typical music display program for your KIM-I and TVT 6% is
shown in Fig. 4-7.

We have once again kept the program in several sections to let
you rework things any way you like. Our program sections are the
main scan, the keyboard interrupt, the cursor processor, and the
keyboard formatter.

The main scan gives us a display of 4 X 56 chunks on an otherwise
blank screen, accepting note values from a display memory and
putting them on the screen.

The keyboard interrupt is a trick to improve transparency. When
a key is pressed, the keyboard interrupt program saves this infor
mation until the next vertical blanking time, and spends exactly one
horizontal line doing so. This "pseudo-transparent" approach gives
a very slight bump when a key is pressed. It eliminates the need for
a handshaking flip-flop as was used in Fig. 5-5 of The Cheap Video
Cookbook.

The cursor processor picks up after each key is pressed. It inter
prets the key strokes. If a cursor entry was made, this program clears
the screen, moves the cursor, or turns the cursor OFF or ON. A
single key entry is used for cursor motions.

To enter a music chunk, a hex code pair of key closures must be
entered, such as a "3b" for our high E eighth note. If a noncontrol
character is fed the cursor processor, it is assumed to be part of a
valid hex entry which is passed on to the keyboard format part of
the program .

. The keyboard formatter is a subprogram of the cursor processor.
This program combines two hex keystrokes into one word. It then
decides where on the staff the symbol is to go. If needed, the key
board formatter program finds a matching bottom staff chunk and
puts it in place.

The reason for separating the keyboard formatter from the cursor
processing is mostly to leave you with an option to pick up a better

1 12

way to enter note commands. As shown, the program takes a hex
two-digit entry from an ASCII keyboard to put a symbol on the
screen. You might like to use a BASIC string command, or actually
input from a real music keyboard instead. This may take a larger
system than a bare KIM. There are all sorts of interesting possibili
ties, so we've kept this part separate.

Here is a more detailed look at how the Music Display program
works :

MAIN SCAN PROGRAM-The scan uses a brute-force program that
calls each live line as needed, rather than computing each line's
location. This eliminates any self-modifying code and lets you put
your music scan into PROM or EPROM if you like. Full interlace
is used, with the carry bit representing the interlace even-odd Hag.

The program starts by putting down the blank scans (steps
0300-0307) followed by calling the live scans as needed for a sin
gle field. Each scan is called twice for the two lines per dot per
field.

After the live scans are finished, the carry bit is saved on the
stack to hold the even-odd field value through any cursor process
ing. A check for a newly pressed key is made by 03C8. Usually, no
new key will be pressed, and the scanning will continue. If a key
was pressed, the main scan program jumps to the cursor process
ing subroutine.

Either way, the carry bit even-odd flag is brought back off the
stack in 03d0 and then either an even or an odd field sync process
ing is done to create the interlace. With a set carry, an early V
sync pulse is put down and one scan is removed from the next
field. With a clear carry, a late V sync pulse is put down and a
normal number of scans is used for the next field. The carry bit is
then changed so that the next field reverses the process, picking
even field if odd and vice versa.

After some equalization in 03Eb, the program jumps back to
0300 for the next field's blank scans. The process is repeated 60
times a second, putting down 30 pairs of even-odd interlaced
fields.

KEYBOARD INTERRUPT-Memory location OOEA is a temporary
store. Its seven lower bits hold the ASCII keyboard code of the
last pressed key. The eighth bit is a flag that tells us "a key is newly
pressed that hasn't been processed yet." If the eighth bit is a zero,
there is a new key that needs to be serviced. If it is a one, no atten
tion is needed.

The keyboard interrupt program is a short interrupt sequence
beginning at 03F3. When a key is pressed, the scan program is in-

113

µP----6502
System-KIM-1 , TVT 65/e , Music "E" pl ug-in
Start-JMP 0300
Stop-STOP

Cursor Motions - ERASE-clear screen (CAN)

Displayed -

-+-cursor right (HT)
+--cursor left (BS)
f-cursor ON (VT)
!-cursor OFF (LF)

ENTER-Hex pairs of music code; cursor disappears
between first and second enlry.

020A-023F (above staff)
024A-027F (upper staff)
028A-02bF (lower staff)
02CA-02FF (below s1aff)

Program Space - 0300-03FF (MAIN SCAN program)
1 780- 1 7dC (CURSOR program)
0 100-0129 (KEYBOARD FORMAT program)

ODEA-Keyboard strobe and character
OOEb-Character complete flag

OOEd-Cursor low
OOEF-Cursor high (02)

1 7FE-IRQ low F3
1 7FF-IRQ high 03

Main Scan Program:

START-+ 0300 20 d2 62 JSR 621 2 Do blank scan
0303 CA DEX One less blank scan
0304 do oo BNE 0306 Equalize 3 µs
0306 d0 F8 BNE 0300 Last blank scan?

0308 20 1 0 62 JSR 621 0 Scan Staff + 8
030b 20 0A 62 JSR 620A again
030E 20 0A 72 JSR 720A Scan Staff + 7
031 1 20 OA 72 JSR 720A again

031 4 20 0A 82 JSR 820A Scan Staff + 6
031 7 20 QA 82 JSR 820A again
031A 20 0A 92 JSR 920A Scan Staff + 5
031 d 2 0 0A 92 JSR 920A again

0320 20 0A A2 JSR A20A Scan Staff + 4
0323 20 QA A2 JSR A20A again
0326 20 QA b2 JSR b20A Scan Staff + 3
0329 20 0A b2 JSR b20A again

Fig. 4-7. A music display program

114

032C 20 0A C2 JSR C20A Scan staff + 2
032F 20 0A C2 JSR C20A ogoin
0332 20 0A d2 JSR d20A Scan staff + I
0335 20 0A d2 JSR d20A ogoin

0338 20 4A 62 JSR 624A Scan staff 1 6
033b 20 4A 62 JSR 624A ogoin
033E 20 4A 72 JSR 724A Scan staff 1 5
0341 20 4A 72 JSR 724A ogoin

0344 20 4A 82 JSR 824A Seo n st off 1 4
0347 20 4A 82 JSR 824A ogoin
034A 20 4A 92 JSR 924A Scan staff 1 3
034d 20 4A 92 JSR 924A ogoin

0350 20 4A A2 JSR A24A Scan staff 1 2
0353 20 4A A2 JSR A24A ogoin
0356 20 4A b2 JSR b24A Seo n staff 1 1
0359 20 4A b2 JSR b24A again

035C 20 4A C2 JSR C24A Scan staff 1 0
035F 20 4A C2 JSR C24A ogoin
0362 20 4A d2 JSR d24A Scan staff 9
0365 20 4A d2 JSR d24A again

0368 20 8A 62 JSR 628A Scan staff 8
036b 20 SA 62 JSR 628A ogoln
036E 20 SA 72 JSR 728A Scan staff 7
0371 20 BA 72 JSR 728A ogoin

0374 20 BA 82 JSR 828A Scan staff 6
03n 20 SA 82 JSR 828A again
037A 20 8A 92 JSR 928A Scan staff 5
037d 20 BA 92 JSR 928A ogoin

0380 20 SA A2 JSR A28A Scan staff 4

0383 20 8A A2 JSR A28A again
0386 20 SA b2 JSR b28A Scan staff 3
0389 20 BA b2 JSR b28A ogoin

038C 20 BA C2 JSR C28A Scan staff 2
038F 20 SA C2 JSR C28A ogoin
0392 20 8A d2 JSR d28A Scan staff l
0395 20 SA d2 JSR d28A ogoin

0398 20 CA 62 JSR 62CA Scan staff -1
039b 20 CA62 JSR 62CA again
039E 20 CA72 JSR 72CA Scan staff -2

03Al 20 CA72 JSR 72CA ogoin

03A4 20 CA 82 JSR 82CA Scan staff -3
03A7 20 CA 82 JSR 82CA ogoin
03M 20 CA 92 JSR 92CA Scan staff -4

03Ad 20 CA 92 JSR 92CA again

03b0 20 CA A2 JSR A2CA Scan staff -5
03b3 20 CA A2 JSR A2CA ogoin
03b6 20 CA b2 JSR b2CA Scan staff -6
03b9 20 CA b2 JSR b2CA again

(Continued on next page)

for the KIM-1 and TVT 6%.

115

03bC 20 CA C2 JSR C2CA Scan staff -7
03bF 20 CA C2 JSR C2CA again
03C2 20 CA d2 JSR d2CA Scan staff -8
03C5 20 CA d2 JSR d2CA again
03C8 08 PHP Save ILCE carry flog
03C9 24 EA BIT EA Is a new key pressed?
03Cb 30 03 BMI 03d0 No, continue
03Cd 20 80 1 7 JSR 1 780 Yes, process CURSOR JSR

03d0 28 PLP Get ILCE carry flog bock
03dl A2 C4 LDX #C4 Set # of blank scans
03d3 90 OC BCC 03El Pick even or odd scan
03d5 AC OO EA LDY EAOO Output odd field V sync pu lse

03d8 AO 05 LDY #05 Deloy 26 1.1s
03dA 88 DEY con1inued
03db d0 Fd BNE 03dA continued
03dd CA DEX Subtract l ine for odd field

03dE 1 8 CLC Change to even field
03dF 90 0A BCC 03Eb Bypass even field V sync
03El AO 05 LDY #05 Deloy 26 1.1s
03E3 88 DEY continued
03E4 d0 Fd BNE 03E3 continued
03E6 AC 80 E0 LDY E080 Output even field V Sync pulse
03E9 EA NOP Equal ize 2 1.1s
03EA 38 SEC Change to odd field
03Eb AO 03 LDY #03 Equalize 1 4 1.1s
03Ed 88 DEY continued
03EE d0 Fd BNE 03Ed continued
03FO 4C 00 03 JMP 0300 Go lo blank scans

KBD I RQ-03F3 48 PHA Save accumulator
Entry 03F4 Ad 00 1 7 LDA 1 700 Gel key from Keyboard

03F7 85 EA STA EA Hold character in OOEA
03F9 A9 20 LDA #20 Equal ize t iming
03Fb 4A LSR continued
03FC dO Fd BNE 03Fb continued
03FE 68 PLA Restore accumulator
03FF 40 RTI Return to main scan

Notes:

To test main scan without keyboard entry, defeat IRQ (OOFl 04) and
store 8� in the keyboard strobe (OOEA 80)

To test main scan with keyboard entry, use 1 780 60, and set IRQ vector
to 03F3 (l 7FE F3; l 7FF 03).

To el iminate any wh ite ports of the nondisploy area, connect blanking
input BNK to DEN (test point HR) i nstead of to ground. Another route to
a clean background is to put the scan program outside the memory with
the upstream top.

Fig. 4-7. Cont'd. A music display

116

Cursor Processing Program:

ENTER -+ 1 780 A9 02 LDA #02 Set cursor to page two
VIA JSR 1 782 85 EE STA EE continued

1 784 A5 Ed LDA Ed Set cursor above staff
1 786 29 3F AND #3F continued

1 788 85 Ed STA Ed conti nued
1 78A A9 80 LDA #80 Erase KP strobe flag
1 78C 05 EA ORA EA continued
1 78E 85 EA STA EA continued

1 790 AO CO LDY co Erase old cursor
1 792 A9 00 LDA #00 continued
1 794 91 Ed STA (Ed,Y) continued
1 796 A5 EA LDA EA Read keyboard

1 798 C9 9F CMP #9F Is key a CTRL command?
1 79A 90 03 BCC 1 79F yes, move cursor
1 79C 4C 00 01 JMP 01 00 no, go lo keyboard formal
1 79F C9 98 CMP #98 Clear screen?

1 7Al FO 1 3 BEQ 1 766 yes, go clear screen
1 7A3 C9 BA CMP #SA Cursor off"
1 7A5 F0 OE BEQ 1 765 yes, RTS without cursor
1 7A7 C9 89 CMP #89 Cursor right?

1 7A9 F0 l b BEQ 1 7C6 yes, move cursor right
1 7Ab C9 88 CMP #88 Backspace cursor?
1 7Ad F0 22 BEQ 1 7dl yes, go backspace cursor
1 7AF AO CO LDY #CO Replace cursor

1 761 A9 FE LDA #FE continued
1 763 91 Ed STA (Ed),Y continued
1 765 60 RTS Return to main scan

Cursor Processing Sequences:

1 766 A9 00 LDA #00 CLEAR SCREEN///////////
1 768 85 Ed STA Ed home cursor
1 7bA AB TAY reset i ndex
1 766 91 Ed STA (Ed),y store blank

1 7bd ca INY next position
1 7bE d0 Fb BNE 1 766 repeal ti l l end of screen
1 7C0 A9 0d LDA #Od home cursor
1 7C2 85 Ed STA Ed continued
1 7C4 1 0 E9 BPL 1 7AF exi t to main cursor program

1 7C6 A9 3d LDA #3d CURSOR RIGHT///////////
1 7C8 C5 Ed CMP Ed right end of screen?
1 7CA 90 02 BCC 1 7CE yes, ignore
1 7CC E6 Ed INC Ed no, move right one
1 7CE 4C AF 1 7 JMP 1 7AF exit lo main cursor program

1 7dl A9 0d LDA #Od CURSOR LEFT////////////////
1 7d3 C5 Ed CMP #Ed left end of screen?
1 7d5 60 02 BCS 1 7d9 yes, ignore
1 7d7 C6 Ed DED Ed no, move left one
1 7d9 4C AF 1 7 JMP 1 7AF exi t lo main cursor program

(Continued on next page)
program for the KIM-1 and TVT 6%.

117

118

To test this portion of the cursor and the main scan program i ndependent
of the keyboard formatting, use 1 79C 60.

Keyboard Format Program:

0 100 A5 EA LDA EA Get keystroke
0 102 C9 co CMP #CO Is it A-F?
0104 90 02 BCC 01 08 no, continue
0106 69 08 ADC #08 yes, correct code

0108 85 EA STA EA replace corrected hex code
0I0A 24 Eb BIT Eb 1 st or second keystroke?
0IOC 30 07 BMI 01 1 5 g o enter i f second
0l0E A5 EA LDA EA get 1 st keystroke

01 1 0 09 80 ORA #80 and erase keyf log
01 1 2 85 Eb STA Eb and hold for 2nd keystroke
01 1 4 60 RTS Return to owoit 2nd keystroke
0 1 1 5 26 Eb ROL Eb Shift 1 st keystroke lo upper byte

01 1 7 26 Eb ROL Eb continued
01 1 9 26 Eb ROL Eb continued
0l l b 26 Eb ROL Eb conti nued
0l l d A9 F0 LDA #F0 Clear tower byte 1 st keystroke

01 I F 25 Eb AND Eb conti nued
01 21 85 Eb STA Eb conti nued
0123 AS EA LDA EA Get 2nd keystroke
0125 29 OF AND #OF clear upper byte 2nd keystroke

0127 05 Eb ORA Eb Combine upper and lower bytes
0 129 AO OO LDY #00 Clear keystroke flog
0 12b 84 Eb STY Eb continued
0 12d AB TAY Save character

0 12E 29 OF AND #OF Is this above staff character?
0 130 C9 OE CMP #OE If so, go to above staff entry
01 32 bO OE BCS 01 2 continued
0134 98 TYA Get character bock

0135 AO 40 LDY #40 Set cursor to upper staff
0 137 91 Ed STA (Ed),Y Store upper stoff character
0 139 69 80 ADC #80 Calculate matching lower staff
013b A0 80 LDY #80 Set cursor to lower staff

0 13d 91 Ed STA (Ed),Y Store lower staff choracter
013F 4C C6 17 JMP 1 7C6 And return lo cursor program
0 1 42 98 TYA Get character bock
0 1 43 A0 OO LDY #00 Set cursor above staff

0 145 91 Ed STA (Ed), Y Store abo11e staff character
01 47 4C C6 1 7 And return to cursor program

Fig. 4-7. Cont'd. A music display

Main Scan Flowchart:

NO

(03C9)

EVEN

KEYPRESSED IRQ SAVES
KP PROCESSING UNTIL

BLANK SCANS FOR
IMPROVED TRANSPARENCY

(03E6)

(0300)

(0306)

10308)

YES

ODD
(03d0)

ODD V SYNC
+ SETUP

KEY IRQ = 03F3

(03F3)

(03F7)

RTI

program for the KIM-1 and TVT 6%.

D O CURSOR
PROCESSING (1780)
SUBROUTINE

DETAILED IN
NEXT FLOWCHART

(03d5)

(Continued on next page)

1 1 9

120

Cursor Processing Flowchart:

(179F)

(17A3)

YES
(17A7)

117Ab)

DEFAULT = CURSOR ON

JSR (1780)

(1780)

(1790)

(1796)

NO

CLEAR SCREEN

(l7b6)

MOVE
CURSOR RIGHT

117C6l

MOVE
CURSOR LEFT

(!)di)

DO KEYBOARD
FORMAT

PROCESSING
(0100)

DETAILED IN
NEXT FLOWCHART

REPLACE
NEW CURSOR

RTS

Fig. 4-7. Cont'd. A music display

Keyboard Format Flowchart:

1ST

ENTER FROM
CURSOR PROCESSOR

0100

CORRECT
KEYCODE IF A-F

(OIOA)

ERASE KEY FLAG (OIOE)

RTS

(RETURNS TO
MAIN SCAN WITH

CURSOR OFF)

(0135)

(0139)

(013d)

NO

program for the KIM-1 and TVT 6% .

(0102)

2ND

10115)

YES

(012E)

(0142)

17C6

(RETURN TO CURSOR PROCESSING
TO MOVE AND PLACE CURSOR)

ENTER
ABOVE-STAFF
CHARACTER

121

terrupted. This is done by connecting the keypressed strobe of the
keyboard to the KIM's interrupt line, and pulling the IRQ line
briefly low when a new and valid key is down.

After the interrupt, the keyboard is read from the parallel input
port and stashed in 00EA. A zero hard-wired on the PA7 auto
matically Hags the "new key" information into OOEA. After some
careful timing equalization, the interrupt is then released.

Note that the key closure can happen at any random time with
respect to scan timing. This inten-upt program catches the key
closure "on the fly" and stashes its value until the beginning of the
next vertical blanking interval. By waiting until the vertical blank
ing time, you can gain transparency on your display. With a prop
erly designed cursor software sequence, only a slight bump will
be produced at the instant the key is pressed. For this interrupt to
work, the IRQ vector must branch to 03F3 on a key closure.

CURSOR PROCESSING-The visual cursor appears as a dotted box
on the screen, below the usual staff, and pointing to the location
to be modified. A pressed key could be one of a pair of key clo
sures that tell us what the next symbol is to be, following the code
of Fig. 4-4. The cursor disappears on the first keystroke and re
appears on the second, to prevent you from getting one keystroke
off. A pressed key could also be a single control command that
will move the cursor or erase the screen. The cursor processing
subroutine finds out whether the key is a control command or part
of an entry pair and then acts accordingly.

There are four page zero locations associated with the cursor
processing:

OOEA-holds the ASCII keyboard command until i t is used. The
MSB is a flag that is a 0 if the key needs to be acted on.

OOEb-holds the first keystroke in corrected hex form on the
lower four bits. The MSB is a Bag that is a O if the key is
the first of an entry pair.

OOEd-holds the cursor low needed for above staff entry. This
value ranges from hex 0A to 3F. The Y index is added to
00Ed for on-staff and below-staff locations.

00EE-holds the cursor high location on page 02.

The cursor processing subroutine is entered when the main scan
senses a key-down-but-unprocessed Hag (0) in OOEA. The cursor
location is then checked to be sure it is valid, and then the key
pressed Bag is reset. The valid cursor location is needed to prevent
plowing another program with a wayward cursor, while the key
pressed Bag needs to be reset so that the key gets processed only

122

once. After these two steps, the cursor is replaced with a blank in
step 1790.

We then read the key in step 1796 and test it to see if it is a
control key that will give us cursor motions or an alphanumeric
key that is part of a two-stroke symbol entry.

If we do NOT have a control code (ASCII AO or less) , we jump
to the upcoming keyboard format processing. If we do have a con
trol code, we test for codes to CLEAR SCREEN (98) , CURSOR
RIGHT (89) , CURSOR LEFT (88) , CURSOR OFF (SA) , or
CURSOR ON (any other CTRL code) . Cursor processing goes
like this:

* Clear screen-The cursor is set to the upper left of the page
(l 7b6) and blank 00 values are stored on the entire page,
using the Y index to step the blanks through the page space.
The cursor is then set extreme left.

* Cursor right-Cursor location flag 00Ed is incremented if the
cursor is not already at extreme right. This is also done after
symbol entry.

* Cursor left-Cursor location flag 00Ed is decremented if the
cursor is not already at the extreme left.

* Cursor off-The cursor subroutine returns to the scan pro
gram immediately without restoring the cursor symbol.

* Cursor on-The default option continues the cursor subrou
tine, replacing the cursor on screen without any motions.

After the cursor motion is complete, the cursor symbol is re
placed at its new location, and the subroutine returns to the main
scan program.

This particular subroutine has not been fully equalized. You
will want to add your own equalization to prevent any screen
tearing.

KEYBOARD FORMATTER-You enter the keyboard formatter
part of the cursor program by jumping to 0100. This jump takes
place if the pressed key was an alphanumeric rather than a con
trol command.

Two keystrokes are needed to enter a hex character, so this por
tion of the program behaves two different ways, depending on
whether it is the first or second keystroke needed for a symbol.
The keyboard formatter program always starts off the same way. It
gets the keystroke held in OOEA and converts the ASCII character
to its hex equivalent. ASCII numbers 0-9 stay as they are, while
ASCII A through F get converted to binary equivalents of decimal
10 through 15.

123

The keyboard formatter program checks to see if this key was
the first or the second needed by checking the most significant flag
bit of 00Eb. If the key is the first one, we store its hex-converted
value in 00Eb and set the entry pair flag to a 1. This "first-or-sec
ond" flag is the most significant bit in 00Eb and tells the software
that the next key to arrive is the second of a needed pair to pro
duce the hex word.

When the second key arrives, it starts the same way, getting cor
rected to a hex equivalent. The two keys are merged into one hex
word in 0127. This is done by shifting the first key value four to
the left and then oRing it with the new second key value. The net
result is that the two key closures get converted into a hex word
equal to the hex code of the wanted symbol.

This hex code is then tested to see if it is an above-staff or an
on-staff symbol. If it is an above-staff symbol, it gets entered di
rectly at the cursor location. The keyboard formatter then returns
to the cursor subroutine to move the cursor one to the right and
then returns to the main scan.

Things are slightly more complicated if the hex code corre
sponds to an on-staff symbol. First, the hex code gets stored in the
proper upper-staff location. Then the equivalent lower-staff sym
bol needed for the bottom half is calculated by adding hex 80 to
the top half symbol code, in step 0139. This new value is then
stored on the lower staff. The difference between upper staff and
lower staff storage is set by the Y register and a Y indexed storage
command. A value of Y=O puts things above staff. A value of
Y=40 puts them on the upper staff. A value of Y=80 goes lower
staff, while a value of Y=C0 goes below-staff in the visual cursor
position. After the symbol goes on-screen, the cursor is advanced,
and control returns to the main scan program.

TEST AND DEBUG

There are several hints for testing your music display software.
The most important of these is to get the scan portion of your dis
play working first. The software can be sequentially debugged by
following the notes in Fig. 4-7.

Once things are working, there is a quick and easy way to put a
bare staff on the screen. First, clear the screen. Then type a 10. This
should give you the left end of the staff. Then hold down a "l" and
use your keyboard repeat key or auto repeat. This will automatically
generate a bare staff across the screen. To finish, wait until the cursor
goes off. Then type a single "3." That should end the staff. Return
to the left with the cursor left and repeat commands. You are now
ready to write your music.

124

Your Turn:

Modify the clearing sequence so that you
clear automatical ly to an empty staff and
cursor left. Improve the cursor transpar
ency.
-then

Interface your music display to a music
keyboard, so that you enter notes on
screen by p laying them.
-then

Make your computer actual ly play the
notes that appear on the sc reen.

There are bound to be lots and lots of changes you'll want to make.
If you run out of character positions in your EPROM, note that
there are lots of redundant character bottoms and tops that can be
"patched around" with software. Typical examples are the blank
squares, three empty staff lines, and two empty staff lines. These are
stored in many EPROM locations, when, in theory, you need only
store them once. How many redundant characters are there in the
EPROM program as shown?

POLYPHONY

But, how can we show more than one note at a time on the staff?
Is there any simple way to let us show polyphonic music as well as
the single-notedness we have already picked up?

As usual, the answer is . . . yes, but. . . . Fig. 4-8 shows another
sledgehammer. This works but will cost you extra RAM and extra
software.

What you do is set up a typical cheap video brute-force high-res
graphics system, with its own display memory and a plain old Mod
ule "B'' graphics output plug-in. Now, put your new EPROM some
where else in the system, tied in just like any other ROM, EPROM,
or RAM to the microcomputer's address and data buses.

To change what goes on the screen, you use your EPROM and
some mapping software to reload and change the display memory.
You still have nonvolatile characters permanently stashed in your
machine. The not-so-obvious new feature you pick up is that you
can superimpose symbols in the display memory.

125

"' => co "' "'
u.J ""
Cl
Cl
<C

CPU

MONITOR.
SCAN, CURSOR

EPROM
CHARACTER
STORAGE

DISPLAY MEMORY -
UPSTREAM TAP

GRAPHICS ----0 VI TVT 6 5/8

"' =>
co
<C

!;;;;
Cl

DEO OUT

Fig. 4-8. "Sledgehammer" approach to complex graphics displays puts
character generator before the display memory to let you add new symbols

to ones already existing on the display.

For instance, to put a single note in the display memory, you pick
the note you want and decide where you want it to go. Then you use
some map software to read the EPROM and stash the results in the
main display memory. Eight to sixteen reads will be needed for a
single transfer. This is easily handled with a software subroutine.

Now, if the screen is empty or a blank staff, you put the new note
in, as before. But, if you want to add a second, a third, or any num
ber of new notes to an already existing one, just get the old note out
of the display memory, add or logically OR the stuff to be added from
the EPROM character store, and then put everything back into the
display memory. Your character set will probably be different than
the one we've looked at, but it will have a big advantage-far fewer
stored symbols are needed to generate a wide variety of composite
notes and chords. If you get into animation, this route can also get
you smoother results, since the symbols need only move one dot at
a time instead of a whole chunk.

126

All we are really doing here is using an EPROM the way every
body else does, and using a separate hi-res graphics display memory
for the final display. This takes much more in the way of RAM and
software than you need with cheap video and a custom EPROM
character generator, but it offers a powerful way to do elegant and
nonvolatile graphics displays of your choosing.

127

C H A P T ER 5

8080 Cheap Video -

Heath HS Hardware

You'll find things more challenging when you add cheap video to
an 8080 or Z80 system, compared to the easy 6500 conversions we
have looked at. There are several new hassles involved that can get
in your way.

In most cases, these hassles will take extra coding, a few more in
tegrated circuits, and very careful attention to your system timing.
The bottom line is this : Cheap video should be able to run on most
any 8080 or Z80 system, but it will take more effort, more code, and
more parts to get comparable results.

Let's see just what is involved. In this chapter, we'll look at the
basics of 8080 cheap video operation, ending up with schematics for
an adaptor you can put on a Heath HS computer memory card.
We'll also look at some simple hardware mods that ease front-panel
interaction and allow serial keyboard entry to your computer. In the
next chapter, we'll look at the scan and cursor software involved.

We'll assume your system is bus oriented and that your cheap
video system is to be a piggyback add-on to an existing RAM plug-in
card. We'll further assume the usual 2-MHz 8080 speed. We will
a,so stick with the earlier address-mapped techniques. The newer
scungy video ideas of earlier chapters can very much simplify and
improve what we are about to show you. But, first things first.

What we will show you has been tested only on the Heath 50-pin
bus. It looks like it will also go on an S-100 bus, but we simply
haven't tried it.

Our main 8080 hassles are these :

128

(1) The address bus has garbage on it at times.
(2) The program counter usually can change only once every

two microseconds. This is only half as fast as we need for a
reasonable number of characters or graphics chunks per line.

(3) Clocking and timing signals are totally different.
(4) Literal translation of scan programs will be far too slow.

In general, we will get around (1) by latching and holding both
address and upstream tap data lines using suitably spaced timing
signals. We can beat (2) by adding a "speed doubling" circuit that
creates the illusion of a once-per-microsecond program counter ad
vance. This illusion will appear only at the display memory and then
only during a TVT scan. Hassle (3) goes away when we solve (2) .
Finally, we can get scan software that is fast enough by using the
powerful register-to-register commands of the 8080 or by going to
brute-force (all ROM, nonmodifying) coding.

On to the fine print.

HARDWARE

Suppose we have a normal H8 up and running, executing a string
of no operations (NOP) from a plug-in RAM card. What will this
timing look like? How can we trick the H8 into using the same sort
of timing, with add-ons, to run a TVT 6%? Fig. 5-1 gives us some
clues.

A NOP takes two microseconds to do-actually slightly less than
this on the H8. There are four CPU States (Fig. 5-lA) involved,
taking around half a microsecond each. The object of these four
states is to put the program counter on the address bus, read an
addressed memory location, enter it into the CPU, and then act on
the command. When the CPU finds out the command is a NOP, it
will spend the tail end of the cycle essentially doing nothing.

Our first hassle appears in Fig. 5-lB. We see that the address bus
has the right information on it only three quarters of the time. The
remaining one quarter of the time, the address bus has invalid infor
mation on it. Now, if we address a memory with the wrong address,
we, of course, will get the wrong information out of the memory.
Worse still, since the memory has its own access time to contend
with, the amount of time that useful stuff comes out of the memory
is even shorter than the time the address bus is valid (Fig. 5-lC) .
So, the bad news is that both data and address have all kinds of
holes in them and don't seem directly useable.

There are some system-level signals that may help us out of this
bind. Signal DBIN in Fig. 5-lD determines the time when the CPU
must have valid data. But, this signal is not available on the system

129

bus and for a very good reason. Anyone who tries to use this signal
will be cutting into the CPU's own processing time and degrading
performance. Instead, two signals are derived for bus use. These sig
nals happen early enough that enables, decoding, settling times, and
so on are complete before the CPU needs valid data. These signals
are called Ml (Fig. 5-IE) , and MEMR (Fig. 5-lF) . Ml starts after

,------ 2µs -----..

4 I

I I
I I
I I

I
I

RIGHT

I ACCESS TIME
I

_______ nL.------.;------

A CPU STATES

B AD-DRESS BUS

C RAM

D DBIN

E Ml

F MEMR

G ,J,2 CLOCK

Fig. 5-1 . The HB is a typical 2-MHz system; these are the waveforms involved
in reading a NOP command out of RAM.

the address is valid but ends before DBIN. MEMR includes both
the Ml and DBIN times. Unfortunately, both Ml and MEMR start
before we are sure that the memory is outputting valid data. The
theory here is that output enables and bus access can be taking place
during the same time that the memory is still accessing itself, so
long as everything ends up stable by the sta.!!_ of DBIN time .

.A final waveform we will find useful is the <f,2 system clock shown
in Fig. 5-lG.

The absolute least thing we can get away with and still get cheap
video on an 8080 is latching the upper four address lines. If we don't
do this, all the commands out of our TVT instruction decoder
PROM, including the row commands and the sync pulses, will have
big holes chopped in them.

130

Fig. 5-2 shows a minimum 8080 to TVT 6% interface. In this cir
cuit, +5 volts, ground, blanking, the upstream tap, and the data bus
are connected in the usual way. Address lines Al2 through Al5 are
connected to a latch that catches the valid addresses. This is done
on the leading edge of the memory read command, MEMR.

FROM DISPLAY . a MEMORY ---j,----------------.....-4
UPSTllEAM TAP

Al2·Al5

MEMR

A0-A4
DO-D7

�
DECODER

74LSOO

CS DISPLAY
MEMORY

TVT 6 518

'SEE TEXT

Fig. 5-2. Minimum 8080A-TVT 6% interface is limited to 2-microsecond
character or chunk times.

Our chip select output, CSO, is shown going to an AND gate that
gives us an external negative logic OR combination of the old display
memory chip select and the one needed for TVT scanning. A foil
cut is involved here. The chip select input, CSI, is shown perma
nently enabled. Depending on your decode PROM, this can go to
a TVT enable switch, can do nothing, or can be used as an internal
chip select combiner, eliminating the external gate.

The TVT is allowed to gain data bus control only during a scan
and then only when the computer wants to read it. To do this, we
use the computer's memory read command, MEMR, and NAND it
with the decode enable, DEN, to get a suitable scan enable input,
SEI.

MEMR also goes to the clock input of the TVT 6%. But, since our
load command in the TVT is derived from the falling edge of VCL,
it is the trailing edge of MEMR that loads our video shift register.
The time difference of 750 nanoseconds or so gives our character
generator more than enough time to produce a valid output.

Now, this is a quick and dirty circuit that you may want to try
just to get some video out of your 8080 in a hurry. But, there are

131

several problems we still have to attack to get something good
enough for normal system use.

One minor hangup is that you may only have complements of
your data bus or address bus available. We'll soon see how to change
the coding in your Scan and Decode PROMs to get around this.
The coding, of course, has to be changed anyway, since the 8080
gets all bent out of shape when it receives 6502 commands. Inverters
or inverting gates can also be used to invert bus, clock, data, or con
trol lines as needed. If you go the scungy video route via a port, you
may be able to eliminate any need for high addresses.

Our big hassle is that the character or chunk times will be two
microseconds each, rather than just one. This means that, so far,
even a 32 character line won't run at normal horizontal scan fre
quencies. Beating this particular hassle soundly about the head and
ears is the key to practical cheap video on the 8080.

But how?

SPEED DOUBLING VIA A9 SWITCHING

We want to get our chunk and character times down to a decent
one microsecond. We can either (I) speed up the microprocessor,
or else (2) do something else that creates the illusion of a microproc
essor speedup at the display memory and in the adaptor circuits.

Speedup may be easy for you if you have a Z80, provided your
display memory is also fast enough to not use the READY command.
If you do run faster, you probably would like to latch the upstream
tap data to make sure you have enough processing time for your
character generator. While a simple speedup will work in some sys
tems, there is another way.

The other way is called A9 stoitching.
The object of A9 switching is to create the illusion of a once per

microsecond address advance at the display memory. Fig. 5-3 gives
details on how this works. We break our most signincant display
space address line and connect it to a carefully timed 500-kHz
square wave during a scan. For a 16 X 64 or a 12 X 80 alphanumeric
display, this will be address line A9.

Now, a 500-kHz square wave is low for one microsecond and high
for another one. While all the regular addresses below A9 are chang
ing at their usual two microsecond rate, A9 is busy addressing one
character or chunk location on the fJ.rst microsecond and another
location on the second. Thus, we get characters or chunks out of our
display memory at a one per microsecond clip.

But why on earth use A9? Wouldn't it be simpler to use AO in
stead? If we do this, we would have to add an address multiplexer
to all inputs of this display memory-a IO-pole, double-throw switch

132

or its three-state equivalent. This is obviously something we want
to avoid if we are piggy-backing video onto an existing memory
card. All A9 switching takes is a single foil cut and some add-on
wires to the memory card.

CALL

A9
A8
A7
AG DISPLAY

AS
MEMORY

A4
A3
A2
Al
AO

DURING A SCAN, ADDRESSES ADVANCE
ONLY ONCE EVERY TWO MICROSECONDS,
TOO SLOW TO OUTPUT CHARACTERS.

(A) Normal 8080 operation.

RET

q 1- l µs

CALL RET

.M.fL A9
500-kHz A8 SQUARE
WAVE A7

AG DISPLAY
MEMORY

AS
A4
A3
A2
Al
AO

DURING A SCAN. 500-kHz CLOCK ON A9 LINE
PRODUCES NEW ADDRESS EACH MICROSECOND:
CHARACTERS OUTPUT AT PROPER RATE.

(B) A9 switched 8080 operation.

Fig. 5-3. How to use A9 switching for speedup;

There is a catch. It is a yeahbut rather than a gotcha. The char
acters and chunks are 1W 'longer in the display memory in sequential
order if you use A9 switching. So, your cursor or conh·olling loader
software has to have a few words added to complement A9 each
successive location.

133

For instance, say your display memory starts at 000 000. The next
character or chunk will be at 002 000. Your characters will follow in
this order:

1st character 000 000
2nd character 002 000
3rd character 000 001
4th character 002 001
5th character 000 002
6th character 002 002

1022nd character 003 376
1023rd character 001 377
1024th character 003 377

Now, this sounds awful. But it works. And it is a rather simple way
to double the apparent memory access speed of an 8080 so that we
can get information out of RAM once per microsecond under block
access. And all it takes is some extra hardware between the com
puter and the TVT, a few software words, and one extra foil cut on
the memory.

The hardware involved is shown in Fig. 5-4. The timing details are
in Fig. 5-5.

Two new D Hip-flops are added to our interface. The first delays
and expands the MEMR signal to give us a controlled-phase 500-kHz
square wave we can use for the speed doubling A9 address switch
ing. The second divides the system clock by two and is used to latch
the video data and to provide a TVT clock.

Waveforms A, B, C, and D are as before. Waveform E is a �
clock, which has to be an inverted replica of the Heath bus cf>2
clock signal. Waveform F shows the 500-kHz square wave that re
sults when we clock MEMR. Since the clocking is delayed from the
MEMR leading edge, the flip-flop's output is wider than MEMR and
turns out almost a microsecond long. This results in a square wave
that is low for one microsecond and high for the next, locked to
(but following) MEMR.

This particular Hip-flop is allowed to run only during a scan. It
is held high by DEN otherwise. The uppermost two gates combine
the old A9 information with the speed-doubling new A9 signal, act-

134

ing as a single-pole, double-throw selector switch. During computer
times, the display memory A9 line is connected to the computer.
During scan microinstruction times, the display memory A9 line is
connected so that it is low for one microsecond and high for the next.

Waveform G shows the one-megahertz clock we get by dividing
down <f,2. This clock is used to sample and latch the display memo1y

BDBDA

A9 A91
SOURCE

X cuT FOIL

A9 TO DISPLAY !A9Xl
MEMORY

MEMR

EXTERNAL
INVERTER

o2

74LSOO

74LSOO

� �----------- DEN
CLEAR

Q 74LS74

Q t--+------,------ CLDCK

680 '7D

I50 pf

mm--H7-----10 Q l---------------•,-- m.Ais

L__LJ 74LSl74

UPi��EAM-�- ---------------� VDOVD7

LLJ 74LS273

FROM CS mum-·-:----��

.x °""°" :-I -------,,!.:_
======-- ::�

TO DISPLAY _ _ _ MEMORY �

Fig. 5-4. Speed-doubling 8080A-TVT 6% interface gives 1-microsecond
character or chunk times.

TVT
6 5/8

135

,------2 µs-----

4
I

2 3 4 A CPU STA TES
I I I I I ,

[WRONGJ! RIGHT lfil,\vrfoNGJj
I I
I I
I , I

.__ ___ _,___ __ _.r D MEMR

E c/J2 CLOCK

I A9 = 0 -___,,,---....,.... A9 = I A9 = 0 F QT

_J

t

LI

t t

LI U-
f-- 1 µs ---j

Fig. 5-5. Speed-doubling waveforms.

G Qil

H ADDRESS
LATCHING

VIDEO DATA
LATCHING

K TVT VIDEO SHIFT
REGISTER LOAD

L SET II

output immediately after the data is valid, and then latch again one
microsecond later, well after the A9 change has been accepted. The
first sample gives us an A9 = 0 data value, while the second handles
the A9 = I case. The TVT's video shift register is clocked on the
falling edge of this one-megahertz clock. Since there is a half micro
second delay between the leading and trailing clock edges, enough
time is available for the character generator or the data-to-video
converter to accept the latched video data and process it.

Our A9 generating Hip-flop automatically initializes itself on
MEMR since it is simply delaying this signal. But the clock dividing

136

flip-Hop could be in either state at the beginning of a scan microin
struction. Unless we somehow initialize this Hip-flop to the right
state, we'll get garbage out of the display memory caused by sam
pling at the wrong times.

We initialize this clock-dividing Hip-flop by inverting MEMR and
using the leading edge to SET the divide Hip-flop to the desired
state. This initialization is very important, since the usual CALL in-

��1-----1-.,,,-----------------� +5v 1 .1 .1 .1
20 10 + I I I

4·x o.os

13 12
14

Q 15
17 16

Q

CLRQ
19

74LS273
OCTAL LATCH

12

+sv A4 SELECT

+SV

c__+_s
__,,
v�AJ SELECT {SEE FIG 6 51

I -1

------'--

I I I I

I I

r +5 V TO ALL IC"S

Em�3-6
--+-------------------------,

Fig. 5-6. Schematic of 8080/cheap-video adaptor.

137

....
CD

ip' "'
�
'a

� ..
9.
CD
C
CD
C

DI

..
;·
;-
DI

0
::c
ffl
DI
5r
::c
CD

3
3

,:.!

+5V 16

DATA
BUS

(TVT 6 5/8 PLUGS INTO 8080 ADAPTOR)
8080 ADAPTOR "8/11 3" MEANS

� � m � � � � � � � � - � � - o � � � � � � � � �
PIN

- U") 0 - r.... P) - u-, y:, ,-... C - - o o c c 0 C O C :Z: + 0 C C O O C O O C:C C:C C:C C:C C:C C:C C:C � u U � C:C C:C � C:C C:C c:c c:c > > > > > > > > C,

8, IC113. ETC.

L, 36 35 34 33 31 31 30 19 18 17 26 15 24 13 11 11 10 19 18 17 16 15 14 13 11 11 10 9 8 7 6 5 4 3 2 1 r1
/103JJ

I

BUS 10
BUS l l -
BUS 12 -
BUS 13
BUS 14
BUS 1 5
BUS 16
BUS 1 7

16/101
14/101

LOW 11/101
ADDRESS 3/102

(TRUE) 5/101
7/101
9/102

Ji CLOCK BUS 11

'

FROM 8/105
iCSl

IQ PIN 10,
ALL MEMORY

I '

CUT FOIL-• -
1

CUT GROUND -x
{-

I
NC

CSI

cso

105 3

' I

A91

A9X

""' USE SPARE GATE
AS INVERTER FOR <1>1

' I IJ

L BUS

- 81113
- 61113

- 4/113
1/113

17/113
15/123
13/123
1 1/123

0 (GROUND)

UPSTREAM
TAP

13/103

} 14/103 HIGH AD
15/103 (COMPLE

DRESS
MENT)

BUS 42

BUS 18 MEMR

IBQ.M 7/101
• _. CUT FOIL IA9)
11 IQ PIN 1. ALL

MEMORY

struction preceding the scan microinstruction has an odd number
of clock cycles in it.

TVT scan enabling and the display memory chip selecting are
done the same way we did in the slower interface of Fig. 5-2. We
enable the TVT Scan Enable Input (SEI) only during MEMR time
to give us data for a scan microinstruction only when it is called for
and only when the computer will allow data bus access. The display
memory chip select is a negative logic OR of the computer's chip
select and the CSO that the TVT provides.

Our speed-doubling interface takes two foil cuts on the memory
board, one on the A9 address line and one on the chip select line.
All other connections are add-ons derived from signals available on
a typical plug-in memory card. Five low-cost integrated circuits are
involved.

A more detailed schematic of an H8 to TVT 6% interface is
shown in Fig. 5-6. This circuit can be built up any way you like. One
possibility is as a small plug-in card that goes between your H8 and
the TVT 6%. The TVT card plugs into the 8080 adaptor, and then
the 8080 adaptor plugs into a new connector that piggybacks onto
the H8-3 static RAM card. The video circuits can easily be mounted
on the back of the existing RAM card.

Fig. 5-7 shows a pictorial of the connections to your H8-3 RAM
card, while Fig. 5-8 gives details on how and where to make the

,,, ?J�1>: ·,:JOI I�
(A) Address l ine A9.

(B) Chip select l ine CE1 .

Fig. 5-8. Two foil cuts needed on the HB-3 memory card.

139

two foil cuts involved on the address A9 and memory Chip Select
(CS) lines.

Interconnection and mounting details will vary if you use one of
the newer or denser RAM cards, or if you work with another 8080,
8085, or Z80 system.

FRONT-PANEL INTERACTION

The H8 front panel works by interrupting a running program
once very two milliseconds. If we try to run scan software and the
front panel at the same time, the display will be badly tom up. So,
we can either turn the front panel off during display times or else
combine the front panel and the video scan into a single program.
Just turning the front panel off is far simpler and usually all you will
need.

The H8 front-panel monitor does have a "turn the display off'
software word. But this won't help us. While this command shortens
the interrupt and keeps it from lighting the display, the interrupt
still exists.

One hardware solution is shown in Fig. 5-9. A new switch added
to the front panel prevents timer-generated level 10 interrupts from
happening. This, in turn, keeps the panel display off and the video
display in one piece. This switch will be very handy during your ini
tial test and debugging of video displays. You should turn off the
front panel only after you have a video display, and turn it back on
before returning to other uses. The RST /0 command does bypass
this switch so that you can reset under any conditions.

This switch will most likely not be needed when your properly
designed and debugged scan software is up and running. You prob
ably can eliminate it from the final use circuitry.

The obvious question is how to use software instead. We have
a good old DI or "disable interrupts" command in the 8080 instruc
tion set. Can't we simply use this?

Unfortunately, there is one very noisy gotcha that may keep you
from doing this-unless you are careful.

If you try an immediate DI command in an H8 program, the
speaker will latch on and stay on. That little beep you get when you
hit the GO key-or any other key-needs two more interrupts a�er
your program starts. No interrupts, no stopping. The two interrupts
time out a four-millisecond tick for the horn circuit.

So, a rule :

The H8 front-panel monitor needs a few milliseconds after it
is exited before you can disable any interrupts. If you disable
an interrupt too soon, you will lock the speaker on.

140

(HB FRONT PANEL)

3 DISABLE
INT 10

'K(D
0 @ 443-54 NC

10 CUT FDIL 470{) ADD
12 9 SWITCH

DS Q VF n_ @ ADD
IC102 RESISTOR

CLK I I
443-6 160 µs

13

(A) Schematic.

(HB FRONT PANEL)
LED LED LED

I I
LED

101 102 I 103 104

(8) Pictoria l .

Fig. 5-9. A switch for temporarily defeating the HB front-panel display is
useful for TVT debug and checkout.

You can use the DI command to turn off the front panel. But you
must delay at least five milliseconds a�er your program starts, or the
speaker won't quit. Thus, one properly placed software word is all
you need to get full front-panel and video-display compatibility.

A KEYBOARD SERIAL ADAPTOR

If you have an H8-2 parallel interface card, it should be fairly easy
to attach most any old ASCII keyboard and encoder. You can do

141

this in much the same way we did on the parallel KIM inputs in
The Cheap Video Cookbook.

But, the H8-2 card is an expensive option, and you might not al
ready have one on hand. More likely, you will be using the H8-5
serial interface card instead, since you need this one for the usual
cassette and remote terminal uses.

Most ASCII keyboards and encoders provide only a parallel (all
the bits at once) output. To enter a serial port, we have to convert
this parallel word into a serial (one bit at a time) sequence. A sim
ple keyboard serial adaptor is shown in Fig. 5-10.

The circuit can use the transmitter half of most any old UART.
UART stands for Universal Asynchronous Receiver Transmitter. We
first looked at these way back in Chapter 7 of the TV Typewriter
Cookbook. You'll find this circuit easiest and cheapest when you use
a modern, single-supply CMOS chip such as an lntersil IM6402 or
IM6403.

The keyboard serial adaptor works by borrowing power from the
H8-5 serial interface and feeding +5 volts and optionally -12 volts
to your existing keyboard. The parallel outputs and a normally high
keypressed strobe are routed to the inputs on the transmitter side of
the UART in the adaptor. The same UART borrows a 16x baud
clock from the H8-3.

As many as five leads will be needed between your adaptor and
the H8-5. One is ground, one or two are for power, one is for the 16X
baud rate clock from computer to adaptor, and the final lead is the
serial output that comes from adaptor to computer.

Fig. 5-11 shows how to connect your adaptor to your H8-5, both
pictorially and schematically. You can either hard-wire connections
or add a new connector of your own.

On your H8-5 board, integrated circuit IC122 is removed and re
placed with two jumpers inserted in the socket as shown. The pin
11 to pin 13 jumper gives you direct access to the serial input in the
computer's circuitry. The pin 6 to pin 7 jumper lets you use the key
board in a polled mode. This polled operation gives you a transpar
ent scan program and frees the interrupts for other uses.

The H8 has to be software programmed to use your new adaptor.
A simple test sequence that will enter the last pressed key into the
accumulator and display it for you is shown in Fig. 5-12.

The H8-5 is first initialized with a mode instruction. You can use
312 and output it to port 373. This picks two stop bits, ignores parity,
uses a seven-bit word, and runs with a 16X clock. Next, you continue
to initialize the H8-5 by giving a command instruction to the same
port. This time, use 004 and once again output it to port 373. This
command instruction will enable only the receiver in the H8-5 inter
face.

142

"j

Fig. 5-10. Adaptor for connecting a keyboard lo a serial computer input.

143

144

FROM
KEYBOARD

SERIAL
ADAPTOR

-18 V---------------- BUS PIN 2

GND ---------------1-- BUS PIN 0.1

OUT I 13 ,.-...
..2J p __ .,

IC122D
(REMOVED)

PIN 3 IC124
(UART RECEIVER

INPUT)

BAUD ---------------- PIN 9 IC 1 16
(16X. 600 BAUD)

+5 V ----------------- +5 VOLT SOURCE
(PIN 14 IC!33)

FROM
KEYBOARD
SERIAL
ADAPTOR

+s v
IN-SOCKET JUMPER

/

�-.. �J --5 I n,.;----n' 'c--- INTERRUPT LINE
� .. _., GATING IC129

IC 122B
(REMOVED)

INT C
Off

(A) Schematic.

w o106
,. ,10,

I I • • •
• • • • • • • • • • • • so • •

600 • •
300 • • •

85-2026

(B) Pictorial.

�
HB-5 SERIAL 1/0 CARD

Fig. 5-1 1 . Connecting keyboard serial adaptor to an HB-5 interface.

After the mode instruction and the command instruction are
routed to the interface, you are free to read characters. You do this
by inputting from port 372. The final loop in the test program does
this continuously.

As you press a key, its ASCII value will appear in the left three
digits of the "AF" Register display. For instance, a lower case "b"
will read as 142, while an upper case "B" will read as 102.

µP-8080A
System-HS+ HB-5

�040 1 00
040 1 02
040 1 04
040 106

Notes:

1 1 0
1 1 2

Start-JMP 040 1 00
End-RST/0

MVIA 076 3 12
OUT 323 373
MVIA 076 004
OUT 323 373

Program Space
040 1 00 to 040 1 1 3

(1 3 words)

In itial ize mode instruction
continued

Initialize command instruction
continued

IN 333 372 Read keyboard
JMP 303 (1 1 0)(040) Loop

This test program displays a pressed key received via the Keyboard Serial
Adaptor. To run the program, use:

RST /O-REG-PC-ALTER-0-4-0-
1 -0-0-ALTER-REG-AF-GO.

ASCII characters should appear as the three leftmost dig its on the display.
For instance, "A" = 1 0 1 , "a" = 1 4 1 , "6" = 066, and "CR" = 015.

() Denotes an absolute address that is relocation sensitive.

Fig. 5-12. Keyboard serial adaptor test program.

There are a few gotchas in this simple test program, so you'll want
to improve it for actual use as part of a cursor. Note that this simple
program continuously re-reads characters over and over again in
stead of just once per character.

To beat this, there is a "character ready" (R X RDY) flag avail
able that is set when the character first arrives and is reset as soon
as the computer uses the character for the first time.

To use a character only once, input from port 373, AND what you
get with 002, and test the result. A nonzero result means you have
a new character ready to enter. A zero result says you have already
used the character on hand and should ignore it.

The UART doing the transmitting (in the adaptor) and the one
doing the receiving (in the H8-5) must agree on the baud rate and

145

the baud clock factor. Usually, the H8-5 will be set on 600 baud and
16X clocks with internal jumpers. If not, or if you are on a different
system, be sure that the transmitting UART and the receiving UART
are on speaking terms with each other.

Note that your initialization of the rrwde and command words
should be done only once after reset and before any input/ output
activity. If you don't initialize, you'll get no characters at all, and if
you continuously reinitialize, characters wi.ll -get dumped before you
can use them.

Your keyboard serial adaptor is very flexible. For instance, go over
the data sheets, and you'll find a whole UART receiver unused on
the low number pins. The -12 volt supply is an option. You can
eliminate it if you already have -12 volts on hand or use a keyboard
that doesn't need it. You can also use the old style UARTs that need
-12 volts by removing the connections on pin 2 and jumpering to
-12 volts.

Should you use the IM6403, you can eliminate the 16X baud rate
line by connecting a 3.58 MHz color tv crystal between pins 17 and
40 while grounding pin 3. This will output characters for you at
llO baud. Your computer's serial input will also have to be jumpered
or programmed to use this new data rate.

As shown, the keyboard serial adaptor is programmed to provide
a permanent one in the transmitted ASCII bit number 8, is continu
ously enabled, has no parity, uses two stop bits, and has an eight-bit
word length. You can change any or all of this by reprogramming
the connections on pins 33 through 39 of the UART. Our circuit
assumes the keyboard outputs positive logic and uses a narrow
goes-to-ground-from-positive-high strobe that is low only when data
is valid. The output is a simple TTL logic level. There is no need
to convert to RS232 or Teletype current loops for a short interface
connection.

146

Your Turn:

Show how to use your keyboard serial
adaptor with only two wires between com
puter and keyboard, including all power
supply connections. (HINT: Use the IM6403
with a crystal and a CMOS encoded key
board. Change the current when you want
to send a zero, and sense this current at
the computer end.)

Or, if you really want to get sneaky, you could try to figure out
a way to have zero connections between your keyboard and your
computer. One way you might do this would be to use ultrasonic
or infrared transducers.

147

C HAPTER 6

8080 Cheap Video -

Heath HS Software

We now have some workable hardware for 8080 cheap video op
eration. Let's turn to the software we will need to get our scan pro
grams and cursor controllers.

In this chapter, we'll stick to the older cheap video techniques of
address mapping and subroutine scanning. We will also use an obvi
ous but inefficient brute-force program method to give us nonvola
tile scan programs that do not self-modify. Once you have scan pro
grams that work, it's a simple matter to go on to the newer scungy
video ideas, to minimize address space use, to improve transparency,
and to write short and efficient self-modifying programs. The strong
input/ output commands in the 80.�0A, along with its 16-bit-wide
register pairs, offer all sorts of new software opportunities for short
and efficient cheap video software.

If we use the old address mapping of The Cheap Video Cookbook,
a typical computer memory map is shown in Fig. 6-1. A block of
addresses from 6K to 60K is reserved for TVT use when the TVT is
enabled. On the HS, this leaves the bottom 8K for the PAM monitor
and operating system, and 16K for enough RAM for both a display
memory and Extended BASIC. The uppermost 4K of addresses are
also available as needed.

Later on, we can dramatically minimize the address space needs
by using the new scungy video ideas of Chapters 1 and 2.

A quick look at the H8-3 memory board shows that only some of
the address and data lines are available in their true form. Most of
them are inverted. The data out buffer on this memory card must be
disabled for the upstream tap needed by cheap video. This means

148

that the output of our Scan Microinstruction PROM (if we use one)
has to drive the system data bus directly and thus must output in
verted (negative logic) data. We also see that address lines Al3,
Al4, and Al5 aren't available except as complements. The s implest
way out of this situation is to code our Decode PROM to respond
directly to complemented addresses.

377 377

340 000

300 000

240 000

200 000

140 000

100 000

040 000

000 000

('' i�RJSYN'c '\

f scAN. Rovi/t� � ,,.. -·· . :. · :(SCAN. ROW 6 .f
,.:.: · . , . -, . . ,· . . _'. ;

} SCAN ROW 5 :J � � · .. · .. ; ' . ,- ,

J(scA� �:0�' 4 '.]

ff���N R9� Li: :;: -SCAN ROW 2 .. .
·-· . .. - ·. ,·•

\scAN ROW 1 :: · :- . : . , : . · · ·.

AVAILABLE FOR NORMAL USE

• • • • • • •

• • • • • • • • • • • • •

AVAILABLE FOR NORMAL USE

Fig. 6-1. HS address map for older cheap video system.

Fig. 6-2 shows the H8 Decode PROM truth table, 658-HDS. We
input lines Al2, Al3, Al 4, and Al5, along with a TVT enable using
the old CSI line. This PROM outputs code to the row commands of
the character generator, or else routes blanking and selection com
mands to a graphics data-to-video converter. The Decode PROM
also outputs system controlling signals DEN, SEO, CSO, and the
vertical sync VRF pulses.

Since we are using complemented address inputs, this PROM
runs "backwards" from the earlier PRO Ms. The net result of a "front
wards" PROM with true address inputs or a "backwards" PROM
with inverted address inputs is the same.

149

INPUTS

WHAT DOES THIS
WORD DO?

0 ""
�
0 NORMAL
I VERTICAL SYNC
2 LINE 7 SCAN
3 LINE 6 SCAN
4 LINE 5 SCAN

0 5 LINE 4 SCAN
� 6 LINE 3 SCAN

LINE 2 SCAN z 7 u, 8 LINE I SCAN >
9 BLANK SCAN

10 NORMAL
I I NORMAL
12 NORMAL
13 NORMAL
14 NORMAL
1 5 NORMAL
16 NORMAL
1 7 NORMAL
18 NORMAL
19 NO�MAL
20 NORMAL

�
21 NORMAL

0:, 22 NORMAL
� 23 NORMAL ci
..... 24 NORMAL > 25 NORMAL

26 NORMAL
27 NORMAL
28 NORMAL
29 NORMAL
30 NORMAL
31 NORMAL

OUTPUTS
Q8 Q7 Q6 Q5 Q4 Q3 Q2 Qi

u,
-' c..,

u, u, 0:,
-' "" ;;; 0:, z 2 "" u, -' "'

ci.. � u, "" ;:;:;- u, u, u,
0 :::, 0 c.., "" z z z

0 z 2 ;::: "" :::; :::; � "' � u, :'5 � '-" '-" 8 :c c.., 0 > c.., c..,

co - - CJ CJ CJ CJ CJ CJ
dO - - CJ - CJ CJ CJ CJ
27 CJ CJ - CJ CJ _ _ _
26 CJ o • o o • • o
25 CJ o • o o • o •
24 CJ o • o o • o o
23 o o • o o o • •
22 o o • o o o • o
21 o o • o o o o •
20 0 0 • 0 0 0 0 0
co • • 0 0 0 0 0 0
co - - CJ CJ CJ CJ CJ CJ
co • • CJ o o o o o
co • • o o o o o o
co - - CJ CJ CJ CJ CJ CJ
co • • o o o o o o
co • • 0 0 0 0 0 0
co • • 0 0 0 0 0 0
co • • 0 0 0 0 0 0
co - - CJ CJ CJ CJ CJ CJ
co • • 0 0 0 0 0 0
co • • 0 0 0 0 0 0
co • • 0 0 0 0 0 0
co - - CJ O CJ CJ CJ O
co • • o CJ CJ CJ CJ CJ
co • • 0 0 0 0 0 0
co - - O O O CJ CJ O
co • • 0 0 0 0 0 0
co - - CJ CJ CJ CJ CJ CJ
co • • 0 0 0 0 0 0

co • • 0 0 0 0 0 0
co • • 0 0 0 0 0 0

i658-HD8!
PROM NUMBER

CJ = "0"
• = "I "

!POSITIVE LOGIC)

Use for TVT 6 5/8 on
an 8080 system with
inverted Al 2. Ai"J. Al4 .
Af5 lines.

CG line 2 is used as
graphics blanking
output.

CG line 4 is used as
graphics upper- lower
chunk select output.

Fig. 6-2. Truth table for optional 8080 Decode PROM having inverted address
inputs (used on Heath HS).

150

Holding the CSI line positive disables the TVT and frees most all
addresses for other uses. Grounding CSI enables the TVT scanning
and reserves the needed address blocks for TVT use. This particular
PROM coding needs an external AND gate for chip selection and
combination.

There are two types of Scan PROM coding we might like to use,
depending on whether we are using "binary" line lengths or are re
packing "nonbinary" line lengths for maximum memory efficiency.
Fig. 6-3 shows a Scan PROM coding intended for 64 character lines,
but useable for 32 character lines, most graphics, and other lengths
without memory repacking. This is numbered 658-HS64. We use a
NOP to advance the program counter in the computer and a RET
coding to return from the called scan microinstruction. Since we are
outputting complemented data, these outputs are inverted. On the
HS, address lines AO through A6 are available in true form, so we
do not have to complement the address inputs. Thus, our scan
PROMs run "frontwards" but output complemented code.

We can use the 658-HSS0 Scan PROM truth table of Fig. 6-4 for
memory repacked scans of 80 characters per line, three lines per
page. Once again, this PROM coding is driven by true addresses
and outputs complementary data directly to the HS data bus.

Our address lines are connected differently on an 8080 system than
on a 6502. Remember that we used every second address change on
the 6502 to advance our Scan PROM one count. On an 8080 we use
every address change to advance the Scan PROM one count, but
we use A9 switching to get two characters out of memory per one
Scan PROM count advance. Either way, the Scan PROM responds
to an input address change once every two microseconds, and every
thing comes out even.

This means that, in general on an 8080 system, the Scan PROM's
inputs are usually connected to one address line less than usual for
a 6502 system. Fig. 6-5 shows our address line management for an
8080 adaptor. It also shows how two new switches can be added
along with a gate to let you use either a 658-HS64 or a 658-HSS0
Scan PROM on an 8080 system without needing any rewiring. Sev
eral examples will show how this address management works:

* For 32 character lines using speed doubling, use PROM 658-
HS64 and set your switches as follows: A4 = "+," A5 = "+,"
and "32."

* For 64 character lines using speed doubling, use PROM 658-
HS64 and set your switches to A4 = "A4," A5 = "+," and "32."

* For 80 character lines using speed doubling and memory re
packing, use PROM 658-HSS0 and set your switches to A4 =
"A4," A5 = "A5," and "64."

151

INPUTS

WHAT DOES THIS
WORD 007

0

0
;;:,

0 NOP
I
2
3 "

4 "

5
6
7
8
9 "

IO
1 1
12
13 "

14 "

1 5
16 "

1 7
1 8 "

19 "

2G
21 "

22
23
24 "

25
26
27 "

28 "

29 "

30 "

31 RET

OUTPUTS

QB Q7 Q6 Q5 Q4 Q3 Q2 QI

'-'-'
0

i':'i � <D = = = N a, =
a, a, a, a, a, a, a, :c 0 0 0 0 0 0 0 0

FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - • • - ·
FF • - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF _ _ _ _ _ _ _ _
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF • - • • • • • •
FF • • • - - - - -
FF _ _ _ _ _ _ _ _ _
FF - - - - - - - -
FF - - - - - - --
FF - - - - - - - -
FF • • • • • • • •
FF • • • • • • • •
36 o o • • o • • o

i658-HS64\
PROM NUMBER

CJ = "O"
- = "l "

(POSITIVE LOGIC)

Use for TVT 6 518 on
an 8080 system with
true AO-A7 lines and
inverted data bus.
No repacking.

Fig. 6-3. Truth table for optional 8080 Scan PROM having no repacking, true
address inputs, and inverted data outputs.

152

INPUTS

WHAT DOES THIS
WORD 00'

0
:;:

0 NOP
I
2
3 "

4
5
6
7
8
9

10
1 1 RET
12 NOP
13
14
1 5
1 6
1 7 "

1 8
19
20
21 RET
22 NOP
23
24
25 "

26
27
28
29
30
31 RET

OUTPUTS

Q8 Q) Q6 Q5 Q4 Q3 Q2 QI

u.,
Cl

0

� ::;; = = ..,. .., � a, 0 "' "' "' "' "' "'
::,:: Cl Cl Cl Cl Cl Cl Cl Cl

FF • • • • • • • •
FF • • • • • • • •
FF • • • • • • • •
FF • • • • • • • •
FF • • • • • • • •
FF • • • • • • • •
FF • • • • • • • •
FF • • • • • • • •
FF _ _ _ _ _ _ _ _
FF - - - - - - - -
FF - - - - - - - -
36 o o • • o • • o
FF • • • • • • • •
FF - - - - - - - -
FF • • • • • • • •
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF • • • • • • • •
FF • • • • • • • •
FF - - - - - - - -
36 o o • • o • • o
FF • • • • • • • •
FF • • • • • • • •
FF • • • • • • • •
FF • • • • • • • •
FF - - - - - - - -
FF - - - - - - - -
FF • • • • • • • •
FF - - - - - - - -
FF - - - - - - - -
36 D D - - D - - D

i 658-HS80i
PROM NUMBER

CJ = "O"
- = "l "

(POSITIVE LOGIC)

Use only for 80 character
repacked lines on an 8080
system with true AO-A7
lines and inverted data bus.

Fig. 6-4. Truth table for optional SO-character 8080 Scan PROM. (True address
inputs; inverted data outputs.)

153

In our first example, the upper half of a Scan PROM is cycled
through in 16 counts lasting 32 microseconds. In the second example,
the entire Scan PROM is cycled through in 32 counts lasting 64 mi
croseconds. In the final example, if we wanted to, the entire Scan
PROM could be scanned in 32 counts lasting 256 microseconds. But
with memory repacking and A9 switching, we only use slightly under

ADDRESS
LINES + (32)

AG
(AS)

(64)
+ (A4)

AS
AS SCAN + (A3) PROM

A4
A4

(A2)
A3

A2
(Al)

Al) = OLD TVT 6 5/8 CALLOUT.
NOT MEANINGFUL IN
8080 SYSTEM USE.

AO

ADAPTOR TVT 6 5/8

Fig. 6-5. The Scan PROM address inputs on the TVT 6% have to be redefined
for 8080 use. The gate and switches let you run ordinary or repacked memory

PROMs without wiring changes.

a third of the 80 line Scan PROM per scan, ending up with 10 counts
per scan lasting 80 microseconds.

Your Turn:

Show the Scan PROM truth table and
switch settings for an HS scan of 40 re
packed characters per l ine.

Note that the Decode PROM can be eliminated by going the
scungy video route of using a port to set the character generator row
and sync lines. The Scan PROM can also be eliminated by selecting

1 54

one of the alternate routes to a scungy video display map outlined
in Fig. 1-6.

Let's stay with the old way for our software examples.

TEST SOFTWARE

Two useful test routines are shown in Fig. 6-6. Fig. 6-6A checks
Scan PROM access and operation. If this test fails, you are either
incorrectly picking up scan microinstructions or are missing them
entirely. Erratic switching between 311 (return) and 000 (no opera
tion) means you have speed-doubling problems. All 000's means you
are never activating the Scan PROM, while all 3ll's means you are

A. To Verify That the Scan Microinstruction Is Alive and Well

Read

300 376 for 000 (NOP)
300 377 for 31 1 (RET)
301 000 for 000 (NOP)

Either the HS64 or the HS80 Scon PROM may be used.
The address switches may be in any position.

B. To Pass Control to and From the Scan Microinstruction at a TV Horizontal Rate

For Scan PROM HS64

Se1 swi1ches 1o "32," A5 = " + ," and A4 = "A4."

START-,-040 1 00 CALL 3 15 010 320
Lo40 103 JMP 303 100 040

Scan seventh dot row
Repeat

For Scan PROM HSBO

Set switches to "64," A5 = "A5," A4 = "A4."

START--.-040 100
Lo40 1 03

CALL 3 1 5 030 320
JMP 303 100 040

Scan seventh dot row
Repeat

This wi l l display continuous vertical stripes that correspond to the seventh dot
row of a random character load. The front panel should be swi1ch disabled
during viewing times.

H8 scan time is 63 microseconds for a horizontal scan frequency of 1 5.898 kHz.
There is no vertical sync in this test program.

Fig. 6-6. Two test routines useful in 8080/TVT debugging.

155

permanently trying to return from a scan microinstruction call. This
particular test works with either HS64 or HS80 Scan PROMs and
can have the address switches in any position.

Your Turn:

Why?

Don't ever try going beyond this test if the test faffs. If you cannot
read the proper return from a scan microinstruction, no way will it
execute, and anything else you add in the way of software or time
or effort will only compound the hassle.

The test sequence in Fig. 6-6B lets you transfer control of the H8
from computer to TVT scanning and back again. Note that the test
coding differs for each Scan PROM and that each Scan PROM has
to have the address switches set as shown.

The scanning process is adjusted to output a tv horizontal scan
at normal scan frequencies. In a completely working system with a
disabled front panel, you'll get a continuous series of vertical stripes.
This corresponds to the seventh dot row of a random character load.
A wildly wrong horizontal scan frequency usually means the wrong
switch settings or the wrong Scan PROM. Vertical stripes that have
teeth in them may be caused by erratic data latching or improper
speed-doubling operation.

While these two tests appear trivially simple, don't overlook them
as major debug aids. If these two won't go, no other software will
run, either.

SELF-MODIFYING VERSUS BRUTE-FORCE SCANS

The obvious next thing to do is take the old 6502 scan software
programs and literally translate them, replacing a CALL for a JSR
and so on. But we really get into trouble in a hurry if we try this.
First off, some commands will be longer or shorter than their 6502
counterparts, messing up the critical horizontal-edge to horizontal
edge timing. But, worse yet, the execution time of an 8080 working
with literally translated 6502 commands is p-i-t-i-f-u-1-1-y s-1-o-w.

So slow that the critical timing loop may take over 30 microsec
onds, compared to the 21 used in the 6502. Which makes the long
horizontal lines so long we don't want to even think about using
them.

One solution is to make the 8080 into an 8080 rather than an imi
tation 6502. You can do this using the fast register-to-register trans-

156

fer commands and get your loop times down only slightly longer
than those in the 6502 programs.

But is this really what we want in an 8080 system? Remember
that on a bare-bones KIM-1 our back was to the wall in finding room
for a scan program. We had to get by with the absolute minimum
length scan programs-in order to get any video at all. One apparent
result of this restriction was that our early scan code was self-modi
fying. This meant that the scan program computed its next set of
memory locations rather than looking them up. Which, in turn,
meant that these early scan programs had to be in RAM during final
operation, at least on a KIM.

Usually our 8080 systems have enough RAM and PROM available
that we needn't worry too much about minimizing code. So, why
not use brute-force coding that calls each scan address as it is
needed? We can store the whole scan program in ROM or PROM
this way and never have to load it again. Or worry about it bombing
when something bad happens in RAM.

Brute-force coding will also be much faster. It will be much easier
to write, modify, and debug. But, as usual, there is a price. Brute
force coding can be much longer than self-modifying coding. On a
one-line display, this turns out to be a no-hassle 43 words versus the
30 words we needed on a KIM with self-modifying code. But, on a
long and involved program such as a 24 X 80 double stuffed scan,
it could take 600 or more words of code to get us by. Still, that's
only a little over a quarter of a 2716 EPROM and no real big deal
these days.

Let's use this somewhat primitive brute-force approach to gener
ate a simple one-line display and then apply it to a 12 X 80 scan
program.

1 x 56 SCAN PROGRAM

Fig. 6-7 shows a brute-force scan program for a I-line, 56 charac
ter, no-interlace 8080/TVT 6% display. Each successive dot row is
called by a scan subroutine as it is needed. We start in 040 100 with
a short blank scan to get us off on the right foot. Then we sequen
tially call dot rows 1 through 7 of the characters to be displayed.
This live scanning is followed by a vertical sync pulse. After this, a
word is loaded in the accumulator (365) that sets the number of
blank scans. As many blank scans as needed are generated in turn,
Each time a blank scan is completed, the accumulator word is dec
remented until the word hits zero. At that time, the program jumps
to the top line blank scan and repeats for the next field.

Unlike a 6502, an 8080 can take an even or an odd number of half
microseconds to complete an instruction. In most scan programs,

157

some equalization will be needed to make up for this half-micro
second .jitter. The command MOV AA or "move the accumulator to
itself" takes 2.5 microseconds and is a benign instruction. This lets
us shift timing by half a microsecond if used once and by one micro
second if used twice. This is the purpose of those strange "177" in
structions in the program.

In step 040 147, we disable the interrupts. This turns off our front
panel but does so late enough that we will not lock the speaker on.

Since this code is not self-modifying, you can put it in your choice
of RAM, ROM, PROM, EPROM, or E2PROM. Naturally, you'll
want to check things out in RAM first before committing yourself
to permanent code.

Your Turn:

Show the coding needed for 1 x 32, 1 x 64,
and 1 x 80 scans

As a hint that will save you lots of trial and error or bunches of
calculations, keep your blank initial scan nine counts short of the
live scans, and keep the retrace blank scans five counts short of your
live scans. A stationary or near-stationary hum bar is picked up
by adjusting 040 134 as needed. A more obvious route to shorter
scans is to simply use the 1 X 56 and load blanks as needed in unused
character locations.

TV RETRACE HASSLES

Calling and returning from a subroutine takes around 13.5 micro
seconds on a typical 8080. Two of these microseconds are spent on
the live scan, leaving us with a retrace time of 11.5 microseconds.
Since the H8 is slightly faster than this, our available retrace time
is something like 11.2 microseconds.

Naturally, we would like to keep our retrace time.s as short as pos
sible. This lets us put more characters on the line for standard hori
zontal rates, or lets us run long character lines with more nearly nor
mal horizontal frequencies.

But eleven microseconds may not be enough time for your monitor
or tv set to get cleanly from the end of one line to the beginning of
the next. For most monitors and some tv sets, this eleven microsec
onds will be just barely enough.

If you are having trouble displaying all the characters, here are
some options that may help you:

158

µP---80B0A Stort-JMP 040 100 Displayed 340 004 to 340 037
System-HB End-RST/0 342 004 to 342 037

Program Spece 040 1 00 to 040 1 52
(43 words)

START- 040 1 00 CALL 3 15 0 17 1 40 Do short blank scan
040 1 03 CALL 3 15 004 1 60 Scan dot row # 1
040 1 06 CALL 3 1 5 004 200 Scan dot row #2
040 1 1 1 CALL 3 1 5 004 220 Scan dot row #3

040 1 1 4 CALL 3 15 004 240 Scan dot row #4
040 1 1 7 CALL 3 15 004 260 Scan dot row #5
040 1 22 CALL 3 15 004 300 Scan dot row #6
040 1 25 CALL 3 15 004 320 Scan dot row #7

040 1 30 LDA 072 000 340 Output vertical sync pulse
040 1 33 MVIA 076 365 Load # of blank scans

�

1 35 CALL 3 1 5 01 1 1 40 Do blank scan
40 1 40 DCRA 075 One less scan

40 1 41 MOVAA 1 77 Equalize 2.5 m icroseconds
040 1 42 JNZ 302 (1 35) (040) One more blank scan?
040 1 45 MOVAA 1 77 Equalize 5.0 microseconds
040 1 46 MOVAA 177 continued

040 1 47 DI 363 Shut off horn
040 1 50 JMP 303 (1 00) (040) Go to l ive scans

Notes:

TVT 65/a must be connected vie on BOBO adopter, end both the 65B-HDB end 65B-
HS64 PROMs must be in circuit for program to run.

Horizontal frequency 15 . 1 74 kHz; vertical frequency 59.97 Hz. 2500 second
hum bar.

Address switches must be in "32," A5 = " + ," end A4 = "A4" positions.

Character sequence goes 340 004; 342 004; 340 005; 342 005; 340 006; 342 006;
340 007 . . .

() denotes on absolute address that is program location sensitive.

This program is not self-modifying and may be placed in PROM or ROM.

Mods;

To relocate display space, use program j umpers on memory cord, or else change
starting address of dot scans.

To put both halves of display space c loser together, use A4 switch ing rather then
A9 switching.

(Continued on next page)
Fig. 6-7. Program for a 1 -line, 56-character, no-interlace raster scan.

159

* Your simplest out is to adjust the display centering so that the
first character is always legible. Always stop short of the maxi
mum display length as much as needed. * Use a longer than needed character line and put permanent
blanks where they are called for.

* Add equalization to lengthen each CALL sequence. While this
is the obvious and cleanest route, it can add many words to a
brute-force scan program.

MORE CHARACTERS

Our 1 X 56 scan has several obvious limitations. From this starting
point, we'll want to add interlace, double stuffing, and lots more
characters.

The optimum number of characters or chunks per line seems to
be 56 for an H8 system using A9 switching for speed doubling. This

For double-heigh1 characters, repeat scan of each dot row twice.

Flowchart:

START (040 100)

(040 100 - 040 127)

(040 130 · 040 134)

(040 135 · 040 141)

YES NO
(040 141 · 040 153)

Fig. 6-7. Cont'd. Program for a 1-line, 56-character, no-interlace raster scan.

160

56 character length lets you use a standard horizontal frequency.
You can display on either a color or a black-and-white set.

But, there seems to be something magic about 80 character lines
that appeals to people, despite the fact that this many characters are
hard to read and are rarely, if ever, needed. So, to prove it can be
done, we're going to show you how to do 80 character lines on your
H8 and then put those lines on a tv with unmodified video band
width or over an rf modulator. But, remember that we'll have to run
at a reduced horizontal rate, which will take width and hold modifi
cations to your small-screen, transformer-operated, PHOTOFACT-avail
able, black-and-white set. Further, your wrong choice of set could
sing objectionably.

12 LINES OF 80 CHARACTERS

A brute-force, interlaced, double-stuffed 12 X 80 scan program
appears in Fig. 6-8. You can easily modify it for 24 X 80 or even
36 X 80 displays if you like. With the double stuffing, the 12 X 80
display uses slightly less than one-third of the H8 throughput time.
By going to suitable transparency techniques, you can save ½ of the
computer time to transparently run other programs such as Extended
BASIC.

We've shown you this scan program with its memory space at 340
010 to 343 377. This assumes you have at least two RAM cards in
your H8 and have put this particular one "out on top" with the
"56K" jumper on the memory card. You may want to relocate things
later, but this is a handy place to- start.

The TVT does place certain use restrictions on the 340 000 to 360
000 computer address space, since any activity here also gives you
a vertical sync pulse that might disrupt an enabled display. You can
use this space for a display memory RAM. You should not use this
area for the scan program or the computer stack. If you do use this
page for display memory RAM, you will have to watch your cursor
program carefully if transparent character entry is important to you.

You'll find the 12 X 80 program shown in two separate fields. We
have an even field that puts down the even dot rows of all the char
acters and an odd field that puts down the odd dot rows of all the
characters. When they are combined, you end up with an interlaced
and double-stuffed frame. Having the two fields separate is handy
for debug. By jumping a field back on itself, you can display all-even
or all-odd fields to fix coding errors or make format changes.

The scan program runs just about the same way the earlier 1 X 56
one did. We do a short blank scan. Then we put down the even dot
rows of all the characters. Then we equalize and do a late vertical
sync pulse, at the same time taking up one entire extra horizontal

161

µP-BOB0A Start-RUN 040 1 00 Displayed-340 0 1 0 lo 343 377
System-HB End-RST/0 Program Space-040 1 00 lo 042 007

(455 words)

Even Field:

START -,-040 1 00 CALL 3 15 023 1 40 Do short blank scan

040 1 03 CALL 3 15 010 1 40 Scan dot row 0, character l ine l
040 106 CALL 3 15 0 10 200 Scan dot row 2, character l ine 1
040 1 1 1 CALL 3 15 010 240 Scan dot row 4, character l ine 1
040 1 1 4 CALL 3 15 0 10 300 Scan dot row 6, character l ine 1
040 1 1 7 CALL 3 15 010 140 Do blank scan

040 1 22 CALL 3 15 060 140 Scan dot row 0, character l ine 2
040 1 25 CALL 3 15 060 200 Scan dot row 2, character l i ne 2
040 1 30 CALL 3 15 060 240 Scan dot row 4, character l i ne 2
040 1 33 CALL 3 15 060 300 Scan dot row 6, character l ine 2
040 1 36 CALL 3 1 5 060 1 40 Do blank scan

040 1 4 1 CALL 3 1 5 1 30 1 40 Scan dot row 0, character l i ne 3
040 1 44 CALL 3 15 1 30 200 Scan dot row 2, character l ine 3
040 1 47 CALL 3 15 1 30 240 Scan dot row 4, character l ine 3
040 1 52 CALL 3 15 1 30 300 Scan dot row 6, character l ine 3
040 1 55 CALL 3 15 1 30 1 40 Do blank scan

040 160 CALL 3 15 2 10 1 40 Scan dot row 0, character l ine 4
040 1 63 CALL 3 15 2 10 200 Scan dot row 2, character l ine 4
040 1 66 CALL 3 15 2 10 240 Scan dot row 4, character l i ne 4
040 1 7 1 CALL 3 1 5 2 1 0 300 Scan dot row 6, character l i ne 4
040 1 74 CALL 3 1 5 2 1 0 1 40 Do bla'nk scan

040 1 77 CALL 3 15 260 1 40 Scan dot row 0, character l ine 5
040 202 CALL 3 15 260 200 Scan dot row 2, character l ine 5
040 205 CALL 3 15 260 240 Scan dot row 4, character l ine 5
040 210 CALL 3 15 260 300 Scan dot row 6, character l ine 5
040 2 13 CALL 3 15 260 1 40 Do blank scon

040 2 1 6 CALL 3 15 330 1 40 Scan dot row 0, character l ine 6
040 22 1 CALL 3 15 330 200 Scan dot row 2, character l ine 6
040 224 CALL 3 15 330 240 Scan dot row 4, character l ine 6
040 227 CALL 3 15 330 300 Scan dot row 6, character l ine 6
040 232 CALL 3 15 330 1 40 Do blank scan

040 235 CALL 3 15 01 0 14 1 Scan dot row 0 , character l i ne 7
040 240 CALL 3 15 0 10 201 Scan dot row 2, character l ine 7
040 243 CALL 3 15 010 241 Scan dot row 4, character line 7
040 246 CALL 3 15 010 301 Scan dot row 6, character l i ne 7
040 251 CALL 3 15 01 0 14 1 Do blank scan

040 254 CALL 3 15 060 141 Scan dot row 0, character l ine B
040 257 CALL 3 15 060 201 Scan dot _row 2, character l ine B
040 262 CALL 3 15 060 241 Scan dot row 4, character l ine B
040 265 CALL 3 15 060 301 Scan dot row 6, character l ine B
040 270 CALL 3 15 060 141 Do blank scan

Fig. 6-8. Program for a 12-line, SO-character-per-line,

162

040 273 CALL 3 15 1 30 1 41 Scan dot row 0, character l ine 9
040 276 CALL 3 15 1 30 201 Scan dot row 2, character l ine 9
040 301 CALL 3 15 130 241 Scan dot row 4, character l ine 9
040 304 CALL 3 15 1 30 301 Scan dot row 6, character l ine 9
040 307 CALL 3 15 130 141 Do blank scan

040 3 1 2 CALL 315 2 IO 1 4 1 Scan dot row 0 , character line 1 0
040 315 CALL 31 5 2 10 201 Scan dot row 2, character l ine 1 0
040 320 CALL 315 2 10 241 Scan dot row 4, character l ine JO
040 323 CALL 315 2 10 301 Scan dot row 6, character l ine 10
040 326 CALL 3 15 2 10 14 1 Do blank scan

040 331 CALL 315 260 1 41 Scan dot row 0, character l ine 1 1
040 334 CALL 315 260 201 Scan dot row 2, character line l I
040 337 CALL 3 15 260 241 Scan dot row 4, character l ine 1 1
040 342 CALL 3 15 260 301 Scan dot row 6, character l ine 1 1
040 345 CALL 3 15 260 1 41 Do blank scan

040 350 CALL 3 15 330 1 4 1 Scan dot row 0 , character line 1 2
040 353 CALL 3 15 330 201 Scan dot row 2, character l ine 1 2
040 356 CALL 3 15 330 241 Scan dot row 4, character line 1 2
040 361 CALL 315 330 301 Scan dot row 6, character l i ne 1 2
040 364 CALL 315 330 1 41 Do blonk scan

040 367 MVIA 076 006 Delay 48.5 microseconds

[
040 371 DCRA 075 continued

040 372 JNZ 302 (371)(040) continued

040 375 LDA 072 000 340 Output //VERTICAL SYNC// pulse
041 000 CALL 3 15 363 140 Do short blank scan

041 003 LDA 072 000 000 Deloy 6.5 microseconds

041 006 MVIA 076 1 75 load # of vertical blank scans

[
041 010 CALL 3 15 015 1 40 Do //BLANK VERTICAL SCANS//
041 013 DCRA 075 One less blank scan

041 0 14 MOVAA 1 77 Equalize 2.5 microseconds

041 015 JNZ 302 (010)S04 1) Repeal blank scans if not done

041 020 MOVAA 1 77 Equalize 5 microsl'conds

041 021 MOVAA 1 77 conti nued
041 022 DI 363 Shut off horn

[
041 023 JMP 303 (100)(041 } Jump to odd field
(041 026 to 041 077 ore spores}

Odd field;

041 100 CALL 315 023 140 Do short blank scan

041 103 CALL 3 15 010 160 Scan dot row 1 , character l ine 1
041 106 CALL 315 010 220 Scan dot row 3, character l ine I
041 1 1 1 CALL 3 15 010 260 Scan dot row 5, character l ine 1
041 1 1 4 CALL 315 010 320 Scan dot row 7, character l ine 1
041 1 1 7 CALL 3 15 0 10 1 40 Do blank scan

041 1 22 CALL 3 15 060 160 Scan dot row 1 , character l ine 2
041 1 25 CALL 3 15 060 220 Scan dot row 3, character line 2
041 1 30 CALL 315 060 260 Scan dot row 5, character line 2
041 1 33 CALL 3 15 060 320 Scan dot row 7, character l ine 2
041 1 36 CALL 315 060 140 Do blank scan

(Continued on next page)
full-interlace, double-stuffed TVT 6% raster scan.

163

041 14 1 CALL 3 15 1 30 160 Scan dot raw 1 , character l ine 3
041 1 44 CALL 315 1 30 220 Scan dot row 3, character l i ne 3
041 1 47 CALL 315 1 30 260 Scan dot raw 5, character l ine 3
041 1 52 CALL 3 15 1 30 320 Scan dot raw 7, character l ine 3
041 1 55 CALL 315 1 30 1 40 Do blank scan

041 1 60 CALL 3 15 2 10 1 60 Scan dot raw 1 , character l ine 4
041 1 63 CALL 315 2 10 220 Scan dot raw 3, character l ine 4
041 1 66 CALL 3 15 2 10 260 Scan dot raw 5, character l ine 4
041 1 71 CALL 3 15 2 10 320 Scan dot row 7, character l ine 4
041 174 CALL 3 15 2 1 0 1 40 Do blonk scan

041 1 77 CALL 3 15 260 1 60 Scan dot row 1 , character l ine 5
041 202 CALL 3 15 260 220 Scan dot row 3, character l ine 5
041 205 CALL 3 15 260 260 Scan dot row 5, character l ine 5
041 2 10 CALL 3 15 260 320 Scan dot row 7, character l i ne 5
041 2 13 CALL 3 15 260 1 40 Do blank scan

041 2 16 CALL 3 15 330 160 Scan dot row 1 , character l i ne 6
041 221 CALL 3 15 330 220 Scan dot row 3, character l ine 6
041 224 CALL 3 15 330 260 Scan dot row 5, character l i ne 6
041 227 CALL 315 330 320 Scan dot row 7, character l ine 6
041 232 CALL 3 15 330 1 40 Do blank scan

041 235 CALL 3 1 5 0 1 0 1 61 Scan dot row 1 , character l ine 7
041 240 CALL 3 1 5 0 1 0 221 Scan dot row 3, character l ine 7
041 243 CALL 3 1 5 010 261 Scan dot row 5, character l ine 7
041 246 CALL 3 15 0 10 321 Scan dot row 7, character l ine 7
041 251 CALL 3 15 0 10 14 1 Do blank scan

041 254 CALL 3 1 5 060 1 61 Scan dot row 1 , character l ine 8
041 257 CALL 3 15 060 221 Scan dot row 3, character l i ne 8
041 262 CALL 3 15 060 261 Scan dot row 5, character l ine 8
041 265 CALL 3 15 060 321 Scan dot row 7, character l ine 8
041 270 CALL 3 15 060 14 1 Do blank scan

041 273 CALL 3 15 1 30 1 61 Scan dot row 1 , character l ine 9
041 276 CALL 3 15 1 30 221 Scan dot row 3, character l ine 9
041 301 CALL 3 15 1 30 261 Scan dot row 5, character l ine 9
041 304 CALL 3 1 5 1 30 321 Scan dot row 7, character l ine 9
041 307 CALL 3 1 5 1 30 1 41 Do blank scan

041 3 1 2 CALL 3 15 2 10 1 61 Scan dot row 1 , character l ine 1 0
041 3 1 5 CALL 3 15 2 10 221 Scan dot row 3, character line 1 0
041 320 CALL 3 15 2 10 261 Scan dot row 5, character l ine 1 0
041 323 CALL 3 15 2 10 321 Scan dot row 7, character line 1 0
041 326 CALL 3 15 2 10 1 4 1 Do blank scan

041 331 CALL 3 15 260 1 61 Scan dot row 1 , character l ine 1 1
041 334 CALL 3 15 260 221 Scan dot row 3, character l ine 1 1
041 337 CALL 3 15 260 261 Scan dot row 5, character l ine 1 1
041 342 CALL 3 1 5 260 321 Scan do1 row 7, character l ine 1 1
041 345 CALL 3 15 260 1 4 1 Do blank scan

041 350 CALL 3 15 330 16 1 Sean dot row 1 , character I i ne 12
041 353 CALL 3 15 330 221 Scan dot row 3, character l ine 1 2
041 356 CALL 3 15 330 261 Scan dot raw 5, character l ine 1 2
041 361 CALL 3 1 5 330 321 Scan dot raw 7, character l ine 1 2
041 364 CALL 3 1 5 330 14 1 Do blank scan

Fig. 6-8. Cont'd. Program for a 12-line, BO-character-per-

164

041 367 LDA 072 000 340 Output //VERTICAL SYNC// pulse
041 372 MVIA 076 1 75 Load # of vertical blank scans

C'
374 CALL 3 15 0 15 1 40 Do I /BLANK VERTICAL SCANS//

041 377 DCRA 075 One less blank scan
042 000 MOVAA 1 77 Equalize 2.5 microseconds
042 001 JNZ 302 (374)(041) Repeal blank scans if not done

042 004 MOVAA 1 77 Equalize 5 microseconds
042 005 MOVAA 1 77 continued
042 006 DI 363 Shut off horn
042 007 JMP 303 (1 00) (040)

Notes:

TVT 65/s must be connected via an 8080 adaptor, and bolh lhe 658-HDB and 658-
HSB0 PROMs must be in circuit for the program lo run.

Address switches must be i n "64," A5 = "AS," and A4 = "A4" positions.

Horizontal frequency = 1 1 . 1 91 kHz. Vertical frequency = 60.006 Hz. 1 66 second
hum bar.

This program is not self-modifying ond may be placed in PROM or ROM.

Characler sequence goes 340 000; 350 000; 340 001 ; 350 001 ; 340 002;
350 002; 340 003

) denotes a n absolute address that i s program location sensitive.

Flowchart:

040 100

040 100·
040 J66

040 367-
041 007

041 010-
041 014

041 015-
041 015

START

DD 0.1.4.6
LIVE SCANS

EVEN FIELD DOD FIELD

line, full-interlace, double-stuffed TVT 6% raster scan.

041 100·
04 1 J66

041 J67-
041 373

041 374-
041 000

041001-
041011

165

scan time. Then we do the usual blank vertical scans, completing the
field.

When the field is finished, we jump to the odd field, do a short
blank scan, and then put down all the odd dot rows of all the char
acters. After this, we do an early vertical sync pulse and then go on
to the usual number of vertical blank scans. The scan sequence re
peats by then jumping to the start of an even field.

The early and late vertical sync pulses differ by half a horizontal
line. When you combine this half a line with the extra horizontal
line picked up only in the even scan, you end up with an interlaced
scan of 373 whole lines taking one 30-hertz frame. This 30-hertz
frame consists of two 60-hertz fields of 186.5 lines each.

The 658-HS80 Scan PROM lets you repack the 80 character lines
so you can use your display memory space efficiently. Fig. 6-9 shows
how the characters are arranged in RAM. While this looks like a
royal mess, a few extra cursor words are all we need to straighten
things out. This is more than a reasonable tradeoff for letting us do
long lines with an 8080 in the first place and freeing up 600 or so
words of system RAM for other uses.

Your Turn:

* Show the coding for 24 x 80, 32 x 80,
1 6 x 56, 32 x 56, 1 6 x 64, and 32 x 64
scan programs.

* Show ways of very much shortening the
1 2 x 80 scan program while staying
PROM compatible. Try:
-Using only one verti cal blanking se

quence, and minimizing blank se
quences and unused code words.

-Using indi rect JSR commands.
-Using 1/0 commands to free address

space.
-Using interrupt mapping.

Note that you will use the HS64 PROM for 64 and shorter char
acter lines and most graphics. The HS80 PROM is usually reserved
for 80 character lines. You can do 40 character lines with the HS64
without any repacking, or else you can go to a specially coded HS40
PROM that uses repacking. Or, you can ultimately go the scrungy
video route and eliminate all the PROMS altogether.

1 66

g �
0 0

340 t <I

341 i <I

342 1 uj

la 2a

la 8a

lb 2b

3a j:d 4a Sa 6a

9a jy:j 10a lla 12a

3b l <l 4b Sb 6b

343 ..,l .,.d.___1_b_....,_ __ sb_....,_ __ 9b _ _,j ... :..,d __ 1_ob_.......__1_1b ____ 1_2b _ _.

ONE CHARACTER LINE UNUSED

CHARACTER SEQUENCE IS ababab . .

Fig. 6-9. Display memory map for 12 X 80 scan.

8080 CURSOR SOFTWARE

Many of the ideas we have already used for our previous cursors
will carry over the 8080 cursor design. One new hassle we'll pick up
is the straightening-out process needed to undo the A9 speed dou
bling. But, this is more than offset by the easier and simpler code
you get by using all the available 8080 registers, particularly the 16-
bit-wide HL register that is ideal for cursor location storage.

Let's look at a simple cursor that ties the keyboard input to an
8080 display. We'll use the I X 56 display to keep things simple.
You'll find the program shown as Fig. 6-10.

For convenience, we've left this program in several pieces, omitted
a visible cursor, and have done only "good enough" equalization.
While you can use this program for a one-line point-of-sale terminal,
as a deaf communicator, or in a prompting environment, chances are
that you'll want to pick up these bits and pieces and then combine
them with the best of the earlier cursors to do your own thing.

Our main scan sequence is pretty much the same as the old I X 56
scan program of Fig. 6-7. We've added some words at the start that
initialize our H8-5 serial interface so that it will accept a keyboard
input by way of the keyboard serial adaptor. Our brute-force scans
are called for next, as needed to give us a line of characters.

After the characters are down, we test to see if a new key has been
pressed. If not, we go on and output a vertical sync pulse, do the
blank vertical retrace scans, and then jump up and repeat everything
for the next field. Note that we do NOT re-initialize the serial inter
face each time. Instead, we simply loop back to the start of the next
field.

167

µP-8080A Start-JMP 040 l 00 Displayed 340 004 ta 340 037
System-HS End-RST/0 I 342 004 to 342 037

Program Space 040 1 00 to 040 341
Registers Used - B, H, L

Main Scan Sequence:

� 040 1 00 MVIA 076 3 1 2 In itialize MODE for HB-3
040 1 02 OUT 323 373 continued
040 1 04 MVIA 076 004 Initial ize COMMAND for HB-3
040 1 06 OUT 323 373 continued

040 1 1 0 CALL 3 1 5 0 17 1 40 Do short BLANK SCAN
040 1 1 3 CALL 3 1 5 004 1 60 Scan Dot row # 1
040 1 1 6 CALL 3 1 5 004 200 Scan Doi row #2
040 1 2 1 CALL 3 1 5 004 220 Scan Dot row #3

040 1 24 CALL 3 1 5 004 240 Scan Dot row #4
040 1 27 CALL 3 1 5 004 260 Scan Dot row #5
040 1 32 CALL 3 1 5 004 300 Scan Dot row #6
040 1 35 CALL 3 1 5 004 320 Scan Dot row #7

040 1 40 MVIB 006 364 Load number of blank scans in B
040 1 42 IN 333 373 Is a new key pressed?
040 1 44 ANI 346 002 Mask keypressed bi!

'°40 1 46 JZ 3 1 2 (1 54) (040) No, continue scan

I 040 2201---040 1 5 1 CALL 3 1 5 (220)(040) Yes, go to cursor
040 1 54 CALL 3 1 5 01 5 1 40 Do equal izing BLANK SCAN I 040 1 57 LDA 072 000 340 Output vertical sync pulse

/ 040 1 62 MOVBA 1 70 1 70 Get number of blank scans back

[

040 1 64 CALL 3 1 5 01 1 1 40 Do BLAI\JK SCAN
040 1 67 DCRA 075 One less scan
040 1 70 MOVAA 1 77 Equalize 2.5 microseconds
040 1 71 JNZ 302 (1 64) (040) Do another blank scan?
040 1 74 MOVAA 1 77 1 77 Equal ize 5 microseconds

040 1 76 DI 363 Shut off horn
:40 1 77 JMP 303 (1 10) (040) Go to new field

Cursor
Return

Cursor Processing Subroutine:

=--040 220 MOVAH 1 74 Get upper cursor address
040 221 AN I 346 375 Mask A9 out
040 223 CPI 376 340 Is upper page address valid?

�
40 225 JZ 3 1 2 (233) (040) Yes, OK lo continue

40 230 CALL 3 1 5 (260) (040) No, clear screen via subroutine
Lo40 233 MOVAL 1 75 Get lower cursor address

040 234 ANI 346 037 Pu! it on the screen
040 236 MOVLA 1 57 Replace lower cursor

Fig .6-10. Program for a 1 -line, 56-character TVT 6%

168

040 237 IN 333 372 Get character
040 241 CPI 376 01 5 Is it Carriage Return (Erase)?
040 243 JZ 3 1 2 (260) (040) Yes, clear screen via subroutine

1040 �00 l-040 246 CALL 3 1 5 (300) (040) No, enter character via subroutine

040 251 RET 31 1 Return to scan program

(040 251 through 040 257 ore spores; not used)

�40 260 CALL 3 1 5 (320) (040) Go to clear screen subroutine
040 263 MVIB 006 331 Equalize # of blank scans

I 040 1 541--040 265 RET
remaining

3 1 1 Return to process ing
(EXIT)

Enter Character and Increment Subroutine:

� 040 300 MOVMA 1 67 Store character at cursor location
040
040
040

040
('[XIT 1 I- 040

040

lmII!- 040

301
302
304

305
307
3 1 0

3 1 1

MOVAH 1 74
XRI 356
MOVHA 1 47

ANI 346
RNZ 300
INXH 043

RET 3 1 1

Clear Screen Subroutine:

[ffi@---- 040 320 LXIH 041

[�
323 MVIA 076

040 325 CALL 3 1 5
040 330 MVIA 076

040 332 CMPL 275
040 333 JNC 302
040 336 LXIH 041

(EXIT l--040 341 RET 31 1

Notes:

Get upper cursor word
002 Change address A9

Replace upper cursor word

002 Is address A9 now zero?
No, return
Yes, increment HL

(cursor address)
Return to processing

(004) (340) Home cursor
040 Load space
(300) (040) Enter space via ECI subroutine
040 Is it the end of the screen?

continued . . .
(323) (040) No, odd more spaces
(004) (340) Yes, home cursor

Return to processing

M 65/s must be connected v ia on 8080 adaptor, and both the 658-HD8 and 658-
HS64 PROMs must be in circuit for program to run. Character entry via a keyboard,
a keyboard serial adaptor, and the H8-3 serial interface cord.

Al l characters and al l control commands ore entered on the screen, except for
carriage return (CR), which c lears the screen.

Horizontal frequency is 1 5. 1 74 kHz; vertical frequency is 59.976 Hz. 2500 second
hum bar.

Address swi tches must be in "32," A5 = " + , " and A4 = "A4" positions.

Character sequence goes 340 004; 342 004; 340 005; 342 005; 340 006; 342 006;
340 007

8080 raster scan wilh integrated minimum cursor.

169

Now, if a key has been pressed, we jump to the new Cursor Proc
essing subroutine at 040 220 through 040 251. This cursor processing
subroutine first checks to make sure the HL register is holding a
valid cursor location. If it isn't, the screen is erased and the cursor
fixed before anything ungood is allowed to happen to other programs
in the machine.

\,Ve then get a character and test it to see if it is a CR, or carriage
return. If it is a CR, we erase the screen and home the cursor. CR
was chosen over CAN in this example as it seems more appropriate
for a one-line display. You can, of course, use any decoding you like.

This program is not self-modifying ond may be placed in PROM or ROM.
Register "B" is used for temporary storage; registers "HL" are used to hold the
cursor address.

To shorten number of characters displayed for a Iv with l imited width, use
040 337 val ue of 005 or higher.

() denotes an absolute address that is program location sensitive.

Flowchart:

MAIN SCAN

START

(100·106)

)142,146)

1157·161)

(164,167)

(300·311)

CURSOR PROCESSING

ALL LOCATIONS
PREFIXED 040·XXX

1320·341)

CLEAR SCREEN
&

HOME CURSOR

1260·265)

Fig. 6-10. Cont'd. Program for a 1-line, 56-character TVT 65/s 8080
raster scan with integrated minimum cursor.

170

If any key but the carriage return was pressed, the character gets
entered. This is done by way of an enter-character-and-increment or
ECI Subroutine. This ECI subroutine is somewhat fancier than the
ones we used before, since we have the A9 switching to contend
with. Some new rules and a few extra code words take care of this
for us.

Remember that the A9 switching was used to let us get characters
out of the 8080 fast enough to be useful. To do this, the display char
acters are out of order. Specifically, for our 1 X 56 display, the char
acter sequence goes like this :

1st character
2nd character
3rd character
4th character

55th character
56th character

340 004
342 004
340 005
342 005

340 037
342 037

Now, every time we enter a character, we want to go on to the
next one. So, we first change A9. To do this, we use an Exclusive OR
002 of the H register. This will automatically make A9 a one for a
particular character, a zero for the next character, and a one for yet
the next character, and so on.

If A9 goes from a zero to a one, we need do nothing further. But,
if A9 goes from a one to a zero, we need to move onto the next pair
of character slots in memory. To do this, we increment the HL regis
ter which contains the cursor.

So, we change A9 every new character but increment our HL
cursor only every second character. And, all the A9 switching mess
gets magically eliminated with nothing but eight or so program
words.

Your Turn:

Show an a l l-the-bel ls-and-whistles cursor
for a 24 x 80 display, i nc luding a vis ible
cursor, fu l l equal ization and transparency,
al l cursor motions, and the usual good ies.

As with the 6502 systems, there is virtually no limit to how fancy
your cursor programs can get. All it takes are extra words of machine
language code to do most anything you can dream up.

171

CHAPT ER 7

Lower-Case Hardware

For Your Apple I I

With a few simple modifications and some new software, you can
plug a TVT 6% Lower Case Module "A" into an Apple II.

These simple changes turn your Apple II into a combined upper
and lower-case computer and can cost you as little as $10. Your new
lower-case ability frees up your Apple to do things like word proc
essing, text editing, typesetting, generating mailing lists, writing
form letters, and so on. The modifications take two extra integrated
circuits added to the "breadboard" area already on the Apple. If you
like, you can get by with only add-on wires and no foil cuts.

The change-only-the-character-generator approach doesn't tie up
or restrict blocks of ROM, RAM, or graphics display memory. What
we are about to show you is also totally invisible-your Apple II
stays an upper-case machine until you specifically ask for some
lower-case output. Software does the switchover at any time, and the
regular Apple II keyboard is used for both upper and lower case.

There are two minor limitations to this conversion. If you still
want to be able to reverse video, you may have to add a changeover
switch that gives you a choice of reverse video or lower case. You'll
also find that lower-case characters will be more attractively flashed
with software rather than hardware. The method we'll show you
should work on many other terminals and computers, if they use a
new style 2513 character generator and have a full 8-bit-wide dis
play memory.

172

SOME DETAILS

Just adding lower case to any old computer or terminal sounds
simple enough. Plug in an upper- and lower-case combined charac
ter generator, and you are home free, right?

Well, not really. First and foremost, you have to want to do some
thing useful with your new lower-case characters. While they are
nice to look at for displays and some games, unless you have a
printer or other output that needs and uses lower case, you really
haven't gained very much. If you want the new characters, make
sure you have some way to get them out of the machine. So, an im
portant rule is to make sure you have some use for lower case before
you go to the trouble of providing it.

An obvious problem that immediately crops up is the keyboard
and its encoder electronics. The Apple II has an upper-case-only
keyboard. They used an old National chip for the encoder. This chip
is strictly upper case only, compared to the usual 2376 with its choice
of coding options. The Apple keycaps, particularly those on the "M"'

and the "P," will also limit how you can use the existing keyboard.
And there are no spare keys to speak of.

We'll show you how to use software to trick the existing Apple II
keyboard into giving us lower case when and where we want it. The
software secret is to use the Escape key as a shift lock for lower case.
More on this later.

Another problem is created by the firmware in the Apple II. The
operating systems and monitor are needed for machine language,
the miniassembler, for Integer BASIC, and for APPLESOFT.

All four of these languages demand upper case only. And the firm
ware is happy to provide it. In fact, most of the sequences go to a
lot of trouble to make sure that everything is upper case. Put in
lower case, and the sequences will convert it back for you. Even the
winking cursor forces an upper-case-only output. So, even if you
force feed your Apple from a new lower-case keyboard, the internal
:firmware will try to change it all back to upper case anyway.

The way around all this is to use some new software that bypasses
the firmware when and if we need lower case. This is a key to full
alphanumerics. We have to make sure that everything we do stays
fully invisible and appears to be upper case only, unless we specifi
cally call for the new characters.

Our modifications meet these goals :

* The existing keyboard is used without any changes.
* Apple hardware changes consist of two new integrated circuits

in the breadboard area, and a plug-in module. No foil cuts are
needed.

1 73

* Lower case is completely invisible until it is called with soft
ware. * No hi-res graphics or large blocks of ROM or RAM are tied up.

Let's see just how we can go about all this. Fig. 7-1 shows the old
and the new bit assignments for the Apple II display memory, or
"DL" bus. The lower six bits (DLO--DL5) are used for the ASCII
character code, arranged in the usual order. The next bit is DL6.
It's used to flash the screen. Screen flashing is most often used for
the cursor, but it is also handy for alarm or error messages.

The final bit is DL7. It was originally used to reverse the screen
display. This gives you black characters on a white background, and
is n6rmally used for emphasis.

Lines DL6 and DL7 are not independent. You cannot flash a white
screen. You can only flash a black screen. The truth table (before
modification) for these two lines looks like this :

DL7
0
0
1
1

DL6
0
1
0
1

Screen
Black characters, white background
Flashing character, black background
White character, black background
White character, black background

If it weren't for the interaction between these two bits, some capi
tal letters would always flash with the existing Apple II firmware.

The obvious thing to do is make DL7 equal to the seventh ASCII
line needed for your new character generator. But there doesn't seem

FLASH SCREEN

DL7

REVERSE SCREEN
(0 = REVERSE)

DL6

FLASH SCREEN

DL7

LOWER CASE
FLAG

(0 = LOWER CASE)

DL6

DL5 DL4 DL3 DL2

ASC I I CHARACTER
BITS 80-85

(A) Before adding lower case.

DL5 DL4 DL3 DL2

ASCII CHARACTER
BITS 80-85

(B) After adding lower case.

Dl l

Dll

Fig. 7-1. Bit definitions of Apple II character "DL" bus.

174

DLO

DLO

to be any reasonable way to do this and still have invisible operation
when you don't want lower case. Instead, we use DL 7 as a lower
case flag. If DL7 is a O AND if DL6 is a 0, then we want lower case
out of our character generator. Otherwise, we want everything to
stay just the way it was. Our new truth table looks like this :

DL7 DL6 Screen
0 0 White lower-case characters
0 1 Flashing characters
1 0 White upper-case characters
1 1 White upper-case characters

Once again, the reason we do this in a nonobvious and seemingly
complicated way is to keep compatibility with everything that is
already working in your Apple II.

The hardware modifications involved are simple and cheap, but
you should not attempt them if you aren't good at adding wires to
a printed circuit board, reading socket pins, and so on. There are
three things involved in the hardware changes :

* The character generator is replaced with one that also generates
lower case.

* A new integrated-circuit gate is added to decode lower case
for the character generator.

* A new integrated-circuit gate is added to prevent lower-case
characters from appearing as black on white.

The first change is done using a TVT 6% Module "A." This con
sists of an $8 upper-and-lower-case Motorola MCM6674 character
generator mounted on a small adaptor card that plugs into the exist
ing 2513 character-generator socket. The second two changes involve
15r integrated circuits added on new sockets in the Apple bread
board area. One direct IC-to-IC wire is used to eliminate the need
for any foil cuts.

The schematic of the lower-case modification for the Apple II is
shown in Fig. 7-2. Character generator A5 is unplugged and replaced
with a TVT Module "A" that carries a new upper-and-lower-case
MCM6674P character generator. A new wire routed to pin 23 of A5
carries the new seventh ASCII bit, A6, needed for the dual-case
operation.

The logic rules for this new lead tell us to make A6 the comple
ment of A5 for upper case, numerals, and punctuation, but to make
A6 a 'T' for lower case. This lower-case condition happens when
DL6 and DL 7 are both zeros.

A new 74LS02 quad NOR gate integrated circuit is put in the
breadboard area at All to do this A6 logic conversion for us. The

1 75

VA ------;;,.:,;�
vB ----
vc ------=�-

DLO -----;-
DL1 ----
DL2 ---�
DLJ ------;��
DL4 ----;�,;;;;;,i
DL5 -----;-;;;,;;;,i

DL6
FLASH
DL7

+5V

TOPSIDE
PIN-TO-PIN
JUMPER

ASCII BIT 6
A l l = 74LS02

ADDED TO
BREADBOARD

AREA

B i l . 813 = EXISTING IC'S

+5 V - PIN 14 ¾- - PIN 7

@Al3 = i4LSOO
ADDED TO

BREADBOARD
AREA

Fig. 7-2. Schematic of Apple II lower-case modifications.

gate outputs a "l" if DL6 and DL 7 are both "O," and otherwise out
puts the complement of DL5. The reasons behind this logic are ap
parent if you study the ASCII coding involved.

If we simply changed the character generator and added a quad
NOR gate, we would get invisible normal operation and lower case
when we called for it. The only hassle involved is that the lower case
would appear as reverse video, with black characters on a white
background. To beat this final problem, we add a second integrated
circuit in the breadboard area. Al3 outputs a signal for us that is

176

DO NOT PLUG AN UNMODIFIED TVT
MODULE "A" INTO AN UNMODIFIED

•
.___

A
_

P
_
P
_
L
_
E

_
II
_
I

________ __,

INSTEAD . . .
• Leave pins 1 and 1 2 off Module "A" during assembly

. . . or . . .

• Bend pins 1 and 1 2 of Module "A" u p and out of the road

. . . or . . .

):I
V

* Cut pins 1 and 1 2 of Module "A" flush with its circuit board

. . . or . . .

* Use a PC layout for Module "A" that floats pins 1 and 1 2

. . . o r . . .

• Cut the foi l o n the dead-end supply l ines going lo pins 1 and 1 2 of character
generator A5 on your Apple I I .

Fig. 7-3. Several routes to module "A" compatibility with Apple II.

low only when the flashing condition of DL6 = 1 and DL 7 = 0 takes
place. Otherwise, a 'T' is output and forces the normal white-on
black screen display.

Note that the original DL 7 connection going to pin 6 of Bl3 has
to somehow be broken. This can be done by cutting foil, but a safer
and more reversible way is to bend pin 6 of Bl3 out of its socket, and
make a direct topside wire connection.

There is one final detail we must attend to in the modification for
lower case. The Apple II still applies unused negative voltages to
pins 1 and 12 of the character generator. This probably dates from
the days when some 2513's needed these supply voltages, or else it
is a hedge should a different part be needed. At any rate, an unmod
ified TVT Module "A" will short out the power supplies if it is
plugged into an unmodified Apple II! Fig. 7-3 shows several ways
out of this bind. Anything that keeps a short off the -5-volt and
-12-volt lines will work.

HARDWARE CHANGES

As with just about anything in the new computer world, there's
both hardware and software involved. If you make only the hard
ware changes we are about to look at, your Apple II will still behave
just like it did before, with the only exception being the loss of

1 77

screen reversal. To actually use lower case, we have to add new soft
ware as well.

Our new software examples will be in the form of short integer
BASIC programs and sequences. Once you decide what you really
want to do with your lower-case Apple, you can use these sequences
as they are, can integrate them into your working programs, or can
convert them up to APPLESOFT or down to machine language.
We'll be giving you more than enough software to get you started.

Fig. 7-4 repeats the details of the TVT Module "A" from The
Cheap Video Cookbook (Sams Catalog No. 21524). We have
changed the callouts around to match the Apple's and have elimi
nated pins 1 and 12 from the module to eliminate the supply short
ing problem.

Assembly of your Module "A" goes like this :

Carefully inspect the circuit board for opens, solder bridges,
etc. Try tinning one of the runs on the board. If there is any
problem with easy solder adhesion, carefully clean all the
areas to be soldered with an ordinary pink eraser. A void
handling the board, as it will make soldering more difficult.
Set your PC board bare side up with the notch in the upper
left-hand corner. Insert a 0.1 -µ,F disc ceramic capacitor in
the two middle, left-most holes. Solder the capacitor in
place. Clip and save the excess leads.
Use one of the leads left over from the previous step to
provide a jumper in the two middle, right-most holes.
Use the other remaining lead to provide a jumper immedi
ately to the left of the one you just installed. Solder both
jumpers in place.
Add an 18-pin integrated circuit to the remaining middle
holes. If the socket has orientation marks or notches on it,
point these toward the capacitor.
Shorten one of the 12-pin strips so that it is only 10 pins
long. Center this strip above the socket. The long end of the
pins and the spacer go on the bare side; the short pin side
goes to the foil. Solder in place after making sure that the
strip is flat and that one hole remains unused at each end
of the strip.

(. Add a 12-pin strip to the remaining 12 holes at the bottom.

178

Be sure this strip is flat before soldering and that it points
the same direction as the previous strip.
Carefully study Fig. 7-4D, and add the following four wire
pencil connections to the FOIL SIDE :

() IC pin 12 to module pin 4
() IC pin 13 to module pin 5

() IC pin 15 to module pin 7
() IC pin 16 to module pin 8

NOTE: Be sure you understand the pin numbering before
you start. On the foil side, the connector pins run counter
clockwise. The pins on the 18-pin IC socket run clocktoise.
The end jumper and capacitor holes are not counted. There
are no module pins at locations 1 and 12.
Check the previous step. Your four connections should form
a "cross within a cross" that reverses the sequence of five
side-by-side pad pairs.

() Insert a Motorola MCM6674P character generator into the
module, putting the notch at the capacitor end. You may
have to gently force the pins slightly together by rotating
the IC against a table top or bench.

(Store your completed module in protective foam.

This completes assembly of your Module "A."

Chart 7-1 . What You WIii Need to Add Lower Case
to an Apple I I

Parts:
1 - TVT Module "A" lower case plug-in with floating pins 1 and 12

(Fig. 7-4)
2 - 14-pin Integrated-circuit sockets
1 -74LS02 quad low-power Schottky TTL NOR gate
1 - 74LSOO quad low-power Schottky TTL NAND gate
1 - Length of #24 solid, insulated wire, around two feet long
1 - Length of electronic solder suitable for PC board use, around two

feet long

Tools:
Phi l l ips screwdriver
¼" nutdriver (optional)
Needle-nose pliers
Diagonal cutting pl iers
Wire stripper
Small soldering iron

Chart 7-1 gives a list of the tools and parts you will need for your
Apple II modifications. If you know how to solder on a printed
circuit board, and are familiar with PC socket numbering, the
changes should be cheap and easy to do. If you aren't into this sort
of thing, or if chopping and channelling a $1000 computer is against
your religious convictions, have somebody else do the work for you.

Your conversion can go like this:

(Turn your Apple II off and remove supply power. Remove
all video cables the line cord, and all cassette cables.

179

180

Upper- and Lower-Case

Parts List

l -MCM667 4 Character Generator (Motorola)
1 -1 8-pin low-profile IC socket
1 -0. 1 -µF disc ceramic capacitor
2-1 2-pin strips (AMP 1 -640098-2)
1 -circuit board "A"
2-jumpers made from capacitor leads
4-jumpers made with wiring pencil

-solder

'cc
A6

AS

A4 QI 11

Al Q1

A1 QJ

Al Q4

AO QS

RSJ

cs

6674

--

1 9116"

14CMI

CHARACTER GENERATOR NOTCH AS SHOWN

(A) Schematic. (B) Foi l pattern.

Fig. 7-4. Construction

A
Alphanumeric Module

24 •
•
•
•
•
•
• •
•
•
•

How It Works

ASCI I code is input on pins AO through A6. R l , R2,
and R4 row commands are input from Apple VA, VB,
and VC timing. Dot matrix code is output to video shift
register at Ql through Q5. Chip select is permanently
enabled. Cursor winking is external and done by soft
ware or reversing video after serial conversion.

IJ- -12

�

,- -::9 _ _ _ 10-- - �

I

•
•
•

6674 •
•
•

9 10
•
•
• 1 1 24- -]

1 3 • 0 1
J UMPERS (2) > (21

(C) Pin side. (D) Foil side.
details of module "A."

WIRE PENC IL
JUMPER 141

181

r

() Lift the lid of the Apple II. You do this by pulling sharply
up first left of rear center and then right of rear center to
snap the Hedlok fasteners. Set the lid aside.
Carefully unplug any remaining rf modulator cables, game
paddles, other I/O connections, and any plug-in cards,
making a careful note of where they go and how they are
oriented.

() Place the Apple II upside down on a bench that is covered
with a rug or a foam pad.

() Remove the four semirecessed Phillips-head screws at the
bottom front (Fig. 7-5) . Set them aside in a safe place.

NOTE TAB
'__

9 (:B IL..._ ___ ...c::::;;;i._ ________ _____.l (:B 10

DO NDT ALLDW TOP AND BOTTOM
OF APPLE II TO PHYSICALLY
SEPARATE UNTIL KEYBOARD
CONNECTOR IS UNPLUGGED

1 7
L J

<:B (t)
5 7

�----------------------------- ------

l 2 4

'- @ @)

@)

Fig .. 7-5. To disassemble your Apple II, remove only the screws shown here.

182

(Remove only the six outermost Phillips-head screws from
the bottom (Fig. 7-5) . There should be two at extreme left,
two at extreme right, and two at extreme rear. Set these
screws aside. Do not remove any other screws! The out
side six screws may be a slightly different color than the
others.

(While you are carefully holding the top and bottom of the
computer tightly together, turn the computer over so that
it is right side up.
Gently lift up the front of the computer only far enough
that you can see inside. Note the keyboard connector that
plugs into location A7. Gently remove this connector from
the main computer board end.

(Check the rear of the main circuit board by the VIDEO
jack. If an rf modulator or something else is plugged into
the four-pin connector at Kl4, carefully remove it.

(At this point there should be nothing preventing you from
removing the top of the case. Remove the cover and set it
aside.

AlO

L _ _ J
10

, - 7 , - - 7 EXISTING B13

(B1 1) (B12) 0 r 7
I I

I L _J

L _ _ J L _ _J
0

r.1
0 r, 1 . 1 SPEAKER

I I L J
L _J

0
0 0 0 0 0 0

0
0 ;;

L_J
0

0

1 1 1 2 13 14

Fig. 7-6. Topside pictorial o1 lower-case modi1ications. Jumper shown
eliminates need 1or 1oil cut.

183

()

)

(

()
()

()

()

(

()

(

)

()

(

184

Important Note: The pins on the keyboard connector and
the unprotected speaker cone are easily damaged. Be
gentle!

Note how the integrated ·circuits are numbered by column
and alphabetized by row. Verify that

() There is a 2513 character generator at A5
' () There is a breadboard area at All through Al4
\ () All integrated circuits have code notches and dots

that line up pin 1 with white dots on the board.
Unplug the power supply connector. Pry gently against the
plastic clips on either end of the socket to release them.
Remove the 6-32 nut and washer in the center of the main
computer board near FS.
Unplug the speaker connector.
Note there are six white nylon board supports. Be sure to
note the one at J9.
Gently squeeze the support at Al with your needle-nose
pliers until the barb releases the board. Lift the board up
only far enough to free it from the barb.
Release the other barbs, one at a time, starting with Al4,
followed by J9, Kl4, K9, and finally Kl.
Remove the circuit board from the computer. Set all the
computer parts aside except for the circuit board.
Study Fig. 7-6. Add a 14-pin integrated-circuit socket to
All, so that it straddles the uppermost breadboard row,
starts in the third hole from the left (two holes show at
socket left) and has any notches or dots oriented to the left.
Tack the IC socket in place at pins 1 and 8. Then remelt
these pins while pushing down on the socket to make sure
it is solidly seated. Solder all 14 pins from the foil side.
Skip two holes and add a second 14-pin integrated-circuit
socket immediately to the right of the first one. It should
also straddle the upper two rows and should have seven
holes visible on the right and two holes visible between
the sockets.
Plug a 74LS02 into the left-most socket at All, making sure
the code dot and notch go to the left as shown.
Take a 74LSOO and carefully bend pin 8 that so it sticks
straight out. Now plug this 74LS00 into location Al3, mak-
ing sure the code dot and notch go to the left as shown.
Carefully remove the 74LS02 in socket Bl3. Then bend pin
6 of this integrated circuit straight out. Replace this inte-
grated circuit in its socket, making sure the code notch and

dot point down toward you, just like all the others in that
row.
Prepare a 1 ¼-inch (32 mm) wire by stripping ¼ inch (3
mm) of insulation from each end. This should be a solid
wire, preferably #24.
Solder this wire between the two "flying" pins, pin 8 of Al3
and pin 6 of Bl3.
Turn the board upside down and provide the following
connections, each time picking a reasonable length of wire
and stripping ¼ inch (3 mm) from each end. When solder
ing to existing pads, butt the wire against the pad after tin
ning it. Do not place the wire beside the pad where it can
contact the next pad over. Note that integrated-circuit pins
count clockwise from the foil side. See Fig. 7-7.

() Ground wire 7 / All to 7 / Al3 to ground at green
capacitor Al4. Do not connect to the wide foil.
Connect only to the capacitor lead.
+5-V supply wire 14/ All to 14/ Al3 to +5 at green
capacitor Al4. Do connect to wide foil.

() ASCII bit 6 output wire 23/ A5 to 1/ All.
() Short bare jumper 2/ All to 3/ All to 4/ All.
() Short bare jumper 5/ All to 13/ All.
() Short bare jumper 6/ All to 10/ All.
() DL5 input wire from 22/ A5 to 11/ All and 12/ All.
() DL6 from 5/BB to 9/ All to 9/ Al3. Be very careful

(FOIL SIDE)

finding 5/BB. Note the square foil pad on all pin
#l's of the integrated circuits.

DL 7 from 7 /BS to 8/ All to 13/ Al3 and 12/ Al3.

0

ASC I I BIT 6 :

0 · 0 · 0

0 0
DL5

. :)it24 : 13 21/ :
(AS) • • • ••• • •••ea o

12 I
APPLE II

Fig. 7-7. Bottom-side pictorial of lower-case modifications.

185

(
(

(
(

186

() Short bare jumper 10/ Al3 to ll/ Al3.
Inspect all the previous connections for possible shorts
against adjacent pins.
Remove character generator A5 from the computer and store
it in protective foam. If you have no other foam, use the
other side of the foam holding module "A."
Plug module "A" into A5 so that the notched corner is lo
cated at A4. See Fig. 7-8.

(APPLE I I)

KEYBOARD

17 17 17 "'
1 74166 1 (\ \9- �;;4- -7 I I 174LS251 u (_ _____ _J

LJ . • L_J. L_J •
3 4 5 6 8

Fig. 7-8. Correct positioning of module "A."

Vigorously shake the board to make sure no wire ends re
main on the board. This completes the actual modifications.
Gently place the board back onto the nylon supports on the
computer bottom. Press down until each barb grabs its por
tion of the circuit board.
Replace the 6-32 washer and nut in the center of the board.
Plug the power supply connector and the speaker back into
their respective sockets.

) Set the top back onto the computer.
) Gently lift the top and plug in the keyboard connector at

location A 7, KEYBOARD. Make sure that pin I aligns with
the white dot and that no pins are bent, and that no pins
stick out either end of the socket. Check the keyboard end
of this ribbon cable to make sure it is also firmly seated.
Reconnect the rf modulator to the 4-pin VIDEO connector
if you have one.
While you are firmly holding the top and bottom of your
computer together, carefully turn it upside down onto the
rug or foam pad on your bench.
There is a metal hook at the back of the computer. Make
sure this hook goes into its matching slot in the plastic top
(Fig. 7-5) .

() Replace the rearmost two Phillips screws. Do not tighten
completely. Note that these are flathead screws without
washers.
Replace the center front two Phillips screws. Do not tighten
completely. Note that these are binder head screws with
lock washers.

() Replace the remaining two binder head screws at the front.
() Replace the remaining four flathead screws, two on each

side.
() Tighten all screws.
() Replace the game paddles, rf output leads, 1/0 cards, and

1/0 connectors, exactly as you found them.
Replace the cover. Tuck the front end under the top of the
computer and then carefully align the cover. Then press
firmly down with the heel of your hand, first at left rear,
then at right rear, until the Hedlock fasteners snap into
place.
Replace the video and cassette connectors and line cord.

This completes the modification of your Apple II to lower case.

INITIAL CHECKOUT

Here's how to check your modification to make sure it is working:

() Switch the computer to off and then plug it in.
() Very briefly switch the computer on and then back off again.

The power supply should click only once, and the POWER
light should come on. If the power supply continuously
clicks or if the POWER light doesn't come on, you have a short
somewhere. Backtrack and find out where.

(Now switch the computer on only long enough to press the
RESET key. The speaker should beep. If the speaker does not
beep, STOP and find out why.
Check out your display with an integer BASIC program of
some sort. You should have a completely normal display, all
upper case and white on a black background. Some of the
punctuation may be slightly different, such as larger periods
and commas.

() Look ahead and load the integer BASIC program of Fig.
8-4. RUN this program. All the letters should appear as
lower case on the lower line, repeating over and over again.
Numerals and punctuation should appear normally. As this
is a simple test program used for debugging, don't worry
about things like the missing cursor and the lack of scrolling.

187

(Type a CTRL "A." You should get a capital letter A. Type
a CTRL "B." You should get a capital B.
Type a CTRL "C." What happens? Why?

Your Turn:

Why doesn't the App le l i ke to display a
capital "C" when you hit CTRL-C?

This completes your checkout. Should you have problems, isolate
the trouble to the likely area. For instance, if you can't light the
POWER lamp or if the power supply continuously clicks, look for
shorts caused by not floating pins 1 and 12 of module "A," solder
blobs or two-pad shorts, or integrated circuits plugged in wrong.
Note that an unconnected power supply will also continuously click.

Your module "A" generates the characters for you. It receives its
lower-case control signal from All. The screen-reversal inhibiting is
done by Al3. Should anything in the way of hassles show up, isolate
things to the source.

If you want to get back to upper case only, just put the old char
acter generator back, remove All, Al3, and Bl3, and then put the
new 74LS02 back in slot Bl3. If you are an old pro at PC work,
you can put the topside wire on the bottom by cutting the foil going
to pin 6 of Bl3. This is not recommended until .after you have de
bugged your lower case.

Later, we'll see how you can add a switch to give you a choice of
reverse screen or lower case.

If you are going to do anything useful with your lower case, you'll
have to add some software that calls for the lower case when it is
needed. Let's turn to the software development next.

188

C H AP T ER 8

Lower-Case Software

For Your Apple I I

Your Apple II hardware mods of the last chapter will do nothing
for you until you add some lower-case software to activate the new
hardware. How much you need in the way of software depends on
what you want to do with your new lower-case ability. If you are
only going to use lower case for annotation of a game here or there,
very little new will be needed. Most likely, your lower-case software
will have to interact with any floppy discs or printers you have on
line, and you'll want an extensive editing capability. So, let's look
at three different levels of software involvement. First, we'll use the
absolute minimum we need to get anything lower case at all on the
screen. Then, we'll show you something that lets you fill the screen
with mixed upper and lower case and provides a working carriage
return, scroll, and so on. Finally, we'll check into a heavyweight full
lower-case editing program that lets you put any character you want
anywhere on the screen, without the prompts and with full and easy
editing. From here on, you'll be on your own to interact with what
you really want to do with your new lower-case ability.

We will use Integer BASIC for our software. This is easy but
risky. Cursor and entry programs are best written in machine lan
guage, since they can be very fast and very efficient when done this
way. Integer BASIC may end up too slow for some things, particu
larly for repeatedly inserting and deleting characters. But Integer
BASIC is very flexible and very easy to use. It's also very easy to

189

change. So, we'll use the Integer BASIC route. If things turn out a
bit slow, we can pull some of the stunts in the green Apple book to
speed things up. Or, once you know exactly what you want, you can
go the machine language route.

We will note in passing that there are simple and elegant machine
language cursor and entry manipulations already in the Apple moni
tor. These are available for call to an Integer BASIC program. But,
many of these sequences demand upper case only and are restrictive
in how you access them. So, we will avoid using what is already on
hand-unless these sequences clearly and simply speed things up for
us without creating more hassles than they solve.

Lower Case:

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

\ a b C d e f g h i i k I m n 0

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

r s t u V w X y z { I
} "' p q I . . .
CURSOR �

Upper Case:

1 28 1 29 1 30 1 3 1 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 141 1 42 1 43

@ A B C D E F G H I J K L M N 0

1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 5 1 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59

p Q R s T u V w X y z [\ l t -

Numerals:

1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 70 17 1 1 72 1 73 1 74 1 75

I ,, # $ % & ()
.

+
' I spc '

1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87 1 88 1 89 1 90 191

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

Use software only to flash lower case.
To flash upper case or numerals, subtract 64 from decimai va lue or use software.

Decimal numbers not shown are redundant.

190

Fig. 8-1. The decimal character codes needed for direct POKEing into
display memory.

DIRECT ENTRY

The minimum software route to displaying lower case is to simply
POKE the value of the character into the place you want it to go on
the screen. This is very limited if you want to put down more than
a few ·characters at once.

We'll shortly see what the decimal memory locations of every
point on the display are. For instance, we'll find out that the bottom
line of the screen goes from decimal 2000 at the left to decimal 2039
at the right.

Fig. 8-1 shows the correct character codes for all the characters
as they are to be stored in memory. For instance, say you want to
put a character on the bottom line, third from the left. For an upper
case "A," use POKE 2002, 129. For a lower-case "a," use POKE 2002,
33, and so on.

The missing numbers in Fig. 8-1 are repeats of the characters al
ready shown. A POKE in the range of 64 to 127 will Hash an upper
case character or letter. I haven't found a good hardware way to Hash
lower case, so we will use software for flashing or winking cursors.
More on this later.

FOUR UTILITY SEQUENCES

It's far more desirable to get your characters from the keyboard
than to extract them from memory or use POKE commands. Before
we look at the lower-case keyboard entry stuff, let's pick up some
Integer BASIC utility sequences that may be very handy for us. Four
of these sequences are shown in Fig. 8-2.

First, and most important, we have to be able to read the keyboard
without using a carriage return for every character. Fig. 8-2A shows
how to do this. The Apple II keyboard is located at decimal -16384.
If a key is pressed, the number at this location will exceed decimal
127, and the value will correspond to the selected key.

We'll call the look at the keyboard CHAR, short for character. We
keep looking at the keyboard with the PEEK command. If we ever
get a CHAR that is more than 127, this means a key has been
pressed, so we save the value of CHAR. Then we reset the keyboard
strobe with the PO KE (-16368) , 0 command shown. Be sure to
always reset the keyboard after you read it. Your value for CHAR
is the decimal equivalent of the pressed key. It can be used in the
next step of your program or saved until needed. After you are done
with this particular key, jump to 200 to await a new closure.

You can print the decimal values of all the keys simply by adding
a PRINT CHAR command (Fig. 8-2B) . This will display the value
of each key as it is pressed. The results of this for all the keys are

191

A. TO READ THE KEYBOARD:

200 CHAR = PEEK (-1 6384): IF CHAR < 1 27 THEN 200:
POKE (-1 6368),0·

This sequence stays at 200 until a key is pressed. Key value before strobe
reset appears as CHAR.

B. TO PRINT THE DECIMAL VALUE OF A PRESSED KEY:

200 CHAR = PEEK (-1 6384): IF CHAR < 1 27 THEN 200:
POKE (-1 6368),0: PRINT CHAR: GOTO 200

This sequence stays at 200 until a key is pressed. Key decimal value is
displayed for each new key pressed. CTRL C slops the action.

C. TO STOP A PROGRAM WITHOUT SCROLLING OR PROMPTING:

600 GOTO 600

This trap holds the screen and prevents scrol l ing or prompting. To get
out of the trap, use CTRL C.

D. TO MEASURE THE SPEED OF AN INTEGER BASIC SEQUENCE:

100 FOR N = 1 TO 1 0000
200 (((((SEQUENCE GOES HERE)))))
300 NEXT N

The execution time in milliseconds equals one-tenth the number of
seconds from RUN until the speaker beeps, m inus the time (about 1
mi l l isecond) to run with no step 200.

Fig. 8-2. Some Integer BASIC utility sequences for the Apple II.

shown you in Fig. 8-3. You'll find this chart handy to decode the
various control functions. We see that the Apple II keyboard has no
apparent way to provide lower-case characters, as well as the upper
case "- and [. Control characters NUL, FS, GS, RS, and US are also
not immediately available. Upper case] is hidden as a shifted M
and is used as the APPLESOFT prompt.

One of the more infuriating things that happens when you are
building a display editing program is that you put something some
where, and then the BASIC throws in a scroll and a prompt, moving
everything up screen. To temporarily defeat the return to BASIC,
just use a trap like the 600 GOTO 600 shown in Fig. 8-2C. Your pro
gram will stick in the trap until you release it. This gives you the
chance to watch part of a program to make sure it is doing what you
want it to. To release your trap, use CTRL C. You must, of course,
eliminate all traps from your final program.

192

NORMAL SHIFT CTRL NORMAL
1 (177) ! (161) 1 (177) A (193)
2 (178) • (162) 2 (178) S (21 I)
3 (179) # (163) 3 (179) D (196)
4 (180) $ (164) 4 (180) F (198)
5 (181) % (165) 5 (181) G (199)
6 (182) & (166) 6 (182) H (200)
7 (183) ' (167) 7 (183) J (202)
8 (184) ((168) 8 (184) K (203)
9 (185)) (169) 9 (185) L (204)
0 (176) 0 (176) 0 (176) ; (187)
: (186) : (186) �,�:H�ii)�

W'+m.4!il��
Z (218)
X (216)

W (215) W (215) C (195)
E (197) E (197) V (214)
R (210) R (210) B (194)
T (212) T (212) N (206)
y (217) Y (217) M (205)
U (213) U (213) , (172)
I (201) 1 (201) • (174)
0 (207) 0 (207) I (175)

SPACE (160)

REPEAT, SHIFT & CTRL ACT ONLY ON OTHER KEYS.
RESET IS oiRECT ACTING. m'.@,i:@.ej = CONTROL COMMAND.

SHIFT CTRL
A (193) •sp�'1\i!if1
S (211));QQ3'.(147Jt
D (196) i(EOT/13}r/
F (198) !iAt�ii}4i;
G (199) ,\'BEl'-(135)!':
H (200) l\z;Bt\136.f
J (202) :�i'.LFi(f38l)
K (203) tf?:Y!.(IJ9lt
L (204) J¾',ffFJlAQ)�

+ (171) ; (187)
�IJs -(J36t� �2'B}{1��1'.:
�NAR (149l;ti ;fl�Kj149ft

Z (218) '.:!iUB/(154)
X (216) ·, CA.NJ152l
C (195) � :ETX'i,l}}),
V (214) f;;,sv

f
i)1so1,

B (194) �STX?,J13Qi°
t (222) !t{SO (142)'f
] (221) �i�R.J141.f'
< (188) ' (172)
> (190) • (174)
? (191) I (191)

SPACE (160) SPACE (160)

VALUES SHOWN ARE BEFORE STROBE RESET. FOR ASCII EQUIVALENT, SUBTRACT
DECIMAL 128.

--

Fig. 8-3. Decimal codes for the Apple II keyboard.

Suppose something we do turns out too slow. How can we find
out how fast our BASIC is working for us? Fig. 8-2D shows the way
to measure the execution time of any BASIC sequence. What you do
is repeat the sequence over and over for 10,000 times in a loop. The
number of tens of seconds it takes to execute the sequence will equal
the number of milliseconds the sequence actually took. This is easily
timed with a kitchen clock or a stopwatch. Be sure to subtract out
the millisecond it takes for the timer loop to cycle with nothing in
side the loop.

Hopefully, you will never need this speed measurer. But, if ever
you have characters getting ignored or have things taking far too

193

long in your particular program, this how-fast-is-it program can
often show you what is holding up the works.

A LOWER-CASE TESTER

Fig. 8-4 shows a simple program that reads the keyboard and puts
lower-case characters on the bottom line of the display for us. The
program has only one feature-it is short. This makes it handy for
initial tests. But since it lacks a cursor and a way to print upper case,
and it prints all machine commands on the screen, we'll really need
better stuff for anything but checkout.

1 00 FOR CURS = 2000 TO 2039
1 1 0 CHAR = PEEK (-1 6384): IF CHAR < 1 27 THEN 1 1 0
1 20 POKE (-1 6368),0
1 30 IF CHAR > 1 92 THEN CHAR = CHAR - 1 60
140 POKE CURS.CHAR
1 50 NEXT CURS
160 GOTO 1 00

This s imple program puts lower-case characters o n the bollom display
l i ne. Numerals ond punctuation appear normally. Use this program
only for hardware checkout. CTRL-C restores normal BASIC operation.

Fig. 8-4. A lower-case test program.

The program is a simple loop that progresses across the bottom
line addresses 2000 to 2039. We read the keyboard in llO, until a
key is pressed. Then we reset the keyboard. If the character has a
value greater than decimal 192, we subtract 160 from it to convert
it to lower case. For instance, an upper case "A" will have a CHAR
value of 193, per Fig. 8-3. Subtract 160 from this to get 33, the lower
case "a" needed in Fig. 8-1. We then load the character onto the dis
play in the cursed position. Incrementing the loop with the NEXT
CURS instruction in 150 moves us across the screen, while the
GOTO 100 in line 160 resets us to the beginning of the line.

A USEFUL DISPLAY PROGRAM

. Let's add some stuff to the program in Fig. 8-4 that will make it
more useful. \Ve can scroll at the end of the line to move things pro
gressively up on the display. We can decode a RETURN to do the
same thing. And, if we can only figure out some way to get both
upper- and lower-case characters out of an upper-case keyboard, we
are home free toward a simple way to get continuous upper- and
lower-case messages displayed.

1 94

To trick the keyboard into being something it is not, we'll use the
ESCAPE key. We'll set the program up so that under "normal" con
ditions, you get all lower-case characters. If you hit ESCAPE once,
only the next character will be capitalized. This is just like hitting
SHIFT momentarily on a regular typewriter.

If you hit ESCAPE twice in a row, the keyboard will lock into an
upper-case-only mode. This is just like using the LOCK on a regular
typewriter. If you are LOCKed into upper case, hitting ESCAPE
one more time gets you into lower case once again, just like hitting
SHIFT after LOCK on an ordinary typewriter puts you back into
lower case. Since we are using software, our ESCAPE commands
apply only to the alphabet-everything else stays the same.

This may sound complicated, but it's really simple to use. When
and if your Apple II is to have mixed upper and lower case, just use
ESCAPE instead of SHIFT to shift the alphabet. Everything else
stays the same.

The software behind this is simple enough. We have a variable
called SHIFT and a variable called LOCK. Every time a character is
entered, it attempts to reset SHIFT to zero and is allowed to do so
if LOCK is also a zero. The ESCAPE logic goes like this :

When an ESCAPE key is sensed . . .
1. First you check to see if LOCK was a "l." If LOCK was a "l,"

this means you want to relea�e all caps, so you simply make
LOCK a "O" and SHIFT a "O'' and go on to the next key.

2. Then you check to see if the previous key was also an ESCAPE.
If it was, SHIFT must be a "l," since no intervening character
had a chance to reset SHIFT back to "O." We then make LOCK
a 'T' and go on to the next key.

3. If you got this far, SHIFT and LOCK must both be "O." This
means you either want to capitalize only one letter, or else that
another ESCAPE will follow to lock. So, make SHIFT a "l"
and then go on to the next key.

The new, improved program is shown in Fig. 8-5. This enters full
alphabet characters sequentially on the bottom line for us, with
full scrolling and carriage return. SHIFT is used for everything al
ready on the keycaps, while ESCAPE is used to pick upper, lower,
or mixed cases. Once again, one ESCAPE capitalizes only the next
character. Two ESCAPEs capitalize everything until a third ES
CAPE resets back to lower case.

The program works the same way the one in Fig. 8-4 does. Line
100 indexes us across the bottom of the screen, while 110 reads the
keyboard for us.

Line 120 tests for carriage RETURN and calls for a scroll if one
is needed. Line 130 tests for ESCAPE and then does the shift lock

195

10 REM THIS APPLE INTEGER BASIC PROGRAM DISPLAYS LOWER CASE\
CHARACTERS. USE ESC TW)CE FOR SHIFT LOCK. USE ESC ONCE FOR
SHIFT OR RELEASE.

100 FOR CURS = 2000 TO 2039
1 10 CHAR = PEEK (-1 6384): IF CHAR < 1 27 THEN 1 1 0: POKE (-1 6368),0
1 20 IF CHAR = 1 41 THEN 1 80 : REM CR
1 30 IF CHAR = 1 55 THEN 190 : REM ESC
1 40 IF CHAR > 1 92 AND SHIFT = 0 THEN CHAR = CHAR - 192
1 50 POKE CURS, CHAR
1 60 I F LOCK = 0 THEN SHIFT = 0
1 70 NEXT CURS
1 80 CALL -91 2: GOTO 1 00: REM SCROLL
190 IF LOCK = 0 THEN 200: LOCK = 0: SHIFT = 0: GOTO 1 1 0: REM RELEASE

LOCK
200 IF SHIFT = 0 THEN 210: LOCK = 1 : GOTO 1 1 0: REM SET LOCK ESC #2
210 SHIFT = 1 : GOTO 1 10: REM SHIFT ON ESC #1

This program may be used to fi l l the screen with combined upper- and
lower-i::ase text via bottom-line entry. SCROLL and RETURN work. There is
no visible cursor and no upper screen access.

Fig 8-5. A lower-case display program.

processing in lines 190-210. If shift is not locked, line 140 converts
to lower case. Line 150 enters the characters on the screen.

Your Turn:

What does l i ne 1 60 do i n Fig. 8-5? Why is
it needed?

Line 170 tells us to pick the next character location to the right.
If this happens to be off the screen to the right, we drop out of the
loop, do a scroll, and start over.

A FULL-PERFORMANCE LOWER-CASE EDITOR

The previous Gee-Whiz programs are handy to put lower case on
an-Apple II. But, what we really may want is some full editing sys
tem that lets us

* Put any character anywhere on the screen
* Move around anywhere we like
* Insert and delete characters and lines * Justify ragged or flush right

1 96

* Have lines longer than 40 characters
* Be able to transfer into and out of floppy * Be able to provide hard copy output
* Have an attractive cursor for all characters
* Have no BASIC prompts or unwanted

scrolls messing up the screen.

Let's look at some of the bits and pieces that will be helpful to
build an editor and display system. Then we'll show you a medium
complexity display editor that lets you wander around the screen
with a vengeance. From there, you should be able to pick up just
about as fancy a text editor as you care to.

Apple Display Memory Locations

The Apple people were among the first to recognize the incredible
power and economy of using main memory also as a display mem
ory. They do this by sharing each clock cycle so that the computer
gets the memory for half a microsecond and the dedicated system
timing gets the memory for display uses on the other half.

As you find out pretty fast when you try to stuff things onto the
screen, the memory locations are not sequential, and they are not all
in one piece. How can we find what goes where?

The Apple II has two display pages, one residing at decimal 1024
to 2047 and a second page immediately above. Only the first page is
normally used. Fig. 8-6 shows a hex map of the Apple II display
memory locations. Their mapping is somewhat similar to the memory
repacking done on the KIM systems in The Cheap Video Cookbook.
Apple chose to stuff three lines per each half of a 6502' s page of 256
words.

Apple uses a 40-character horizontal line numbered left to right
from O to 39. They use a 24 row vertical field numbered top to bot
tom from O to 23.

Fig. 8-6 is fine for all us machine-language freaks. But integer
BASIC works in decimal numbers, and it's not at all obvious what
goes where. So, Fig. 8-7 is a remapping of the Apple II screen show
ing what portion of the memory goes where on the screen, in decimal
numbers. For instance, decimal character location 1706 is the third
character from the left on the fourteenth line down from the top.

These sure are strange numbers! They were picked to simplify the
internal Apple II system timing. As you can see, if you just try to
sequentially put stuff on the screen, you'll put down the top line,
then the ninth line down, then the seventeenth. Then you'll lose
eight characters down the drain somewhere. Then onto the second,
tenth, and eighteenth lines. Then iose eight more characters. Messy,
yes. But a great hardware simplification.

197

$00 28 50

I LO I u I

l2 LIO

l4 ll2

! L6 i ll4

,/'
c ___ _ _

78 80 AS
m (ti u 1

L18 U!J L3

L20 i@I LS

l22 l7

/ ---
... (..;H.:.:.0---JIL......:H.:.:.1 ___.Q ... ,J�(i-i/1if1 H38 ,- �;9-J

LEFT SCREEN RIGHT SCREEN

L9

Lil

Ll3

dO F8 FF
! ll7 II PAGE 04

Ll9 Ed PAGE 05

L21 mu PAGE 06

ll5 L23 Jm PAGE 07

UNUSED LOCATIONS

LO IS � LINE
L23 IS ll.QI!Q.!! LINE

Fig. 8-6. Display memory locations ot Apple II shown as hex map.

So, as a general rule, if you can't use hardware to simplify soft
ware, then you use software to simplify hardware. One or the other
works every time.

VO

V2

V4

V6

vs

VlO

Vl2

Vl4

Vl6

·via

V20

V22

HO H39
1024 . 1063

1 152 1 19 1

1 280 1319

1408 1447

1536 1575

1 664 1703

1792 1831

1920 1959

1064 1 103

ll92 1231

1320 1359

1448 1487

1 576 1615

1704 1743

1832 1871

1960 1999

1 104 1 143

1232 1271

1360 1399

1488 1527

1616 1655

1 744 1783

1872 1 9 1 1

2000 2039

LOCATIONS NOT
ON SCRHN -
1 144 1 1 51

1272 · 1 279

1400 · 1407

1528 · 1 535

1656 - 1663

1784 - 1791

1912 1919
2040 · 2047

EACH HORIZONTAL
ROW IS NUMBERED
SEQUENTIALLY FROM
LEFT TO RIGHT.

Fig. 8-7. Display memory locations of Apple II shown as decimal locations.

198

A programmer would like to have a variable H for the horizontal
position with a O to 39 range and a variable V for the vertical posi
tion ranging from O to 23. Obviously, we need a way to get from the
H and V locations to the magic display memory addresses.

The Apple II monitor does this in the firmware with a disgustingly
elegant sequence starting at hex $FBC1 and called BASCALC.
BASCALC takes the H value in $24 and the V value in $25 and puts
the result BASL in $28 and BASH in $29. Thus, the programmer
uses H and V, while the machine hardware gets to use BASL and
BASH, and everybody is happy.

Unfortunately, quite a bit of PEEKing, POKEing, pushing, and
shoving is involved to call this sequence from Integer BASIC. In
stead, let's find a BASIC way to generate the right addresses.

Fig. 8-8 shows the math needed to find a particular address on the
screen. The formulas are in three parts, depending on what third of
the screen you happen to be on. To find a screen location, just use
one of these formulas, and the results should agree with Fig. 8-7.

You can, of course, program these formulas into Integer BASIC.
And it's a fun thing to do. But we need something faster and simpler.
Fig. 8-9 shows a table-lookup way to do the same thing. What we
do is store the leftmost address for the 24 lines as an array of values
called B (V) , meaning "Base address for line #V." To this, we add
the horizontal value and get a result CURS that has the correct dis
play address for a given H and V.

Note that there are two ways to enter the program. The first time
you enter, you have to set up the B (V) array and initialize all the
values. It's recommended you do this every time you clear the screen
to make sure this table is intact. After you are sure the table is prop-

For Lines 0-7:

H = Horizontal Position O (Left) to 39 (Right)
V = Vertical Position O (Top) to 23 (Bottom)

Address = 1 024 + (1 28* V) + H

For Lines 8-1 5:

Address = 1 064 + (1 28*(V - 8)) + H

For Lines 1 6-23:

Address = 1 1 04 + (1 28*(V - 1 6)) + H

Fig. 8-8. One method of calculating Apple II display addresses.

199

Initial
enter - 1 000

1 0 1 0

1 020

1 030

Usual
enter - 2000

201 0
2020

DIM B(64)
B(0) = 1 024: B(1) = 1 1 52: B(2) = 1 280: _B(3) = 1 408:
B(4) = 1 536: B(5) = 1664: 8(6) = 1 792: B(7) = 1 920
B(8) = 1064: B(9) = 1 1 92: B(10) = 1 320: 8(1 1) = 1 448:
B(12) = 1 576: B(13) = 1 704: B(1 4) = 1 832: B(1 5) = 1 960
B(1 6) = 1 1 04: B(17) = 1 232: B(1 8) = 1 360: B(19) = 1 488:
B(20) = 1 6 1 6: B(2 1) = 1 744 : 8(22) = 1 872: 8(23) = 2000

IF V > 23 THEN V = 23: IF V < 0 THEN V = 0
IF H > 39 THEN H = 39: IF H < 0 THEN H = 0
CURS = 8(V) + H

For cold start, enter and i n it ial ize sequence at 1 000.

To find a location after i n it ialization, enter at 2000.

CURS wi l l carry the correct display location to the instruction following 2020.

Fig. 8-9. An integer BASIC sequence to find Apple II display memory locations.

erly stashed, you can enter at 2000 and do the simple one-line CURS
calculation shown at 2020. It is very important to be sure that the
V and H values are in fact on the screen. Otherwise, you might end
up POKEing a character into memory somewhere off the screen,
plowing up a program or some operating system. This is why you
should check H and V (lines 2000 and 2010) immediately before
you use them.

A Software Cursor

There doesn't seem to be an obvious way to keep Apple II com
patibility and be able to use the hardware cursor to wink lower
case. So, a software cursor can be used instead. Fig. 8-10 shows how
to combine your keyboard scanning with a cursor routine that winks
any character on the screen by replacing the character with a solid
box, repeating a few times a second.

A single loop is used to both provide a cursor and test for pressed
keys. If no key is pressed, the loop continues.

On the first trip through the loop, the cursed character is tempo
rarily saved and is then replaced with a box cursor. On the 12th trip
through the loop, the box cursor is removed and replaced with the
saved character. On the 24th trip through the loop, the sequence
repeats.

So long as no key is pressed, a winking cursor appears on the
screen. When a key finally gets hit, the cursor is immediately erased
and replaced with the correct character. If things happen to be on
the second half of the loop, the character simply replaces itself. At

200

NO

DISPLAY
CHARACTER

FOR
N LOOPS

DISPLAY
CURSOR FOR

N LOOPS: SAVE
CHARACTER

TEST
KEYBOARD

YES

ENTER
CHARACTER

NO

RESTORE
SAVED

CHARACTER

LOCATE
NEW

CURSOR

YES

DO CTRL
ACTION

Fig. 8-10. Flowchart for an editing display that combines a winking software
cursor within the keyboard testing loop.

any rate, when we are sure we have a pressed key, we make sure
the cursor goes away.

The key is then tested to see if it is a character or a machine com
mand. If it's a character, it gets entered. If it's a machine command,
the command gets acted on if it is valid and ignored if not.

The new cursor location is found only after character entry or
machine command actions are complete. The program then jumps
back to the main loop, testing for pressed keys and winking the
cursor. Cursor winking speed is software adjustable.

One interesting feature of the combined cursor and keycheck loop
is that the cursor always goes ON the instant after a new location
appears. This is much cleaner looking and easier to follow than the

201

aliasing that sometimes takes place with rapid motions of a hard
ware-blinked, asynchronous cursor.

A FULL DUAL-CASE EDITING SYSTEM

Fig. 8-11 shows a medium-complexity full editing system that puts
upper- and lower-case characters anywhere you want on the screen,
with full cursor motions. Features included are upper and lower
case, clearing, normal entry, cursor right-left-up-down, carriage re
turn, scrolling, erase to end of line, erase to end of paragraph, lower
case shift, and shift lock. Four hooks are provided to interact with
your disc or hard-copy system, or to add other features. It's a simple
matter to add all the bells and whistles you want.

In 100 through 200, we set up the base address file for our screen
address finder. These values are rechecked every time the screen is
erased. Step 140 gives us a clear screen on startup and when called

202

10 REM EDITING DUAL CASE DISPLAY SYSTEM FOR APPLE I I
20 REM CLEAR = CTRL X CURSOR RIGHT = RIGHT ARROW

SHIFT = ESCAPE CURSOR LEFT = LEFT ARROW
LOCK = ESCAPE X2 CURSOR UP = CTRL A

30 REM UNLOCK = ESCAPE CURSOR DOWN = CTRL B
RETURN = RETURN ERASE EOL = CTRL D
HOOKS = CTRL Q,R,S,T ERASE EOP = CTRL W

100 DIM 8(64): REM SET UP BASE ADDRESS TABLE
1 1 0 B(O) = 1 024: B(1) = 1 1 52: B(2) = 1 280: 8(3) = 1 408:

B(4) = 1536: 8(5) = 1664: 8(6) = 1792: B(7) = 1920
8(8) = 1 064: B(9) = 1 192: B(10) = 1 320: B(l l) = 1 448

120 B(12) = 1 576: B(1 3) = 1704: B(14) = 1 832: B(15) = 1960
8(1 6) = 1 1 04: B(17) = 1 232: B(18) = 1 360: 8(1 9) = 1 488
B(20) = 16 16: B(2 1) = 1 744: 8(22) = 1 872: B(23) = 2000

1 40 CALL -936: H = 0: V = 0: REM CLEAR SCREEN; HOME CURSOR

1 60 IF V > 23 THEN V = 23: IF V < 0 THEN V = 0
170 IF H > 39 THEN H = 39: IF H < 0 THEN H = 0
180 CURS = B(V) + H: REM FIND CURS ADDRESS AFTER VALID V,H

200 CCNT = 0
2 10 CCNT = CCNT + 1
220 IF CCNT > 1 THEN 240: CSTR = PEEK (CURS)
230 POKE (CURS), 63: REM SAVE CHAR; WRITE CURSOR

. 240 IF CCNT = 12 THEN POKE CURS,CSTR
250 IF CCNT > 23 THEN CCNT = 0: REM UNWINK CURSOR

260 CHAR = PEEK (-1 6384): IF CHAR < 1 27 THEN 2 10
270 POKE (-1 6368),0: POKE CURS,CSTR
280 IF CHAR < 1 60 THEN 1 000: REM CTRL KEY TEST

Fig. 8-11 . A full lower-case Apple II

for. It uses the clearing sequence already in the monitor. Steps 160
through 180 find valid cursor locations for us, starting with H and
V positions.

Our combination cursor loop and keyboard test appears in 200
through 280. A cursor counting variable, CCNT, counts from O to 24
for us. On count 1, the character being cursed is stored temporarily
as CSTR. The cursor box (an ASCII 63, DEL) is loaded in its place.
On CCNT count 12, the original character is replaced. On CCNT
count 24, the cycle repeats. Meanwhile, the keyboard has been
checked for a pressed key 24 times. You can think of CCNT as a
divide-by-24 counter that is clocked by the keyboard testing. By
changing the numbers, you can change the winking rate and the
ratio of cursor to character time.

Once a key is pressed, we reset the keyboard strobe and make
sure the cursed character has been put back where it belongs. Step
270 does this for us. Then, in 280, we test for CTRL keys.

300 IF (CHAR > 192 AND SHIFT = 0) THEN CHAR = CHAR - 1 60: REM
LOWER CASE ONLY IF UNSHIFTED CAPITAL LETTER

3 10 IF LOCK = 0 THEN SHIFT = 0: REM RETURN TO LOWER CASE IF UNLOCKED

400 POKE CURS, CHAR: REM ENTER CHAR
410 H = H + I : IF H < 40 THEN 160: H = 0: REM ADJ H POS
420 V = V + I : IF V > 23 THEN CALL -912 : GOTO 1 60: REM

ADJ V POS; SCROLL IF OFF SCREEN

1 000 POKE 36,H: POKE 37,V: REM TRANSFER HV TO MONITOR FOR EOS
10 10 IF CHAR = 1 52 THEN 100: REM CLEAR AND HOME ON CTRL X
1020 IF CHAR # 1 41 THEN 1 030: H = 0: V = V + I : IF V > 23 THEN CALL -91 2:

REM CARRIAGE RETURN. SCROLL IF OFF SCREEN.
1030 IF CHAR = 1 36 THEN H = H - I : REM BACKSPACE ON ARROW
1040 IF CHAR = 1 39 THEN H = H + I : REM ADVANCE ON ARROW
1 050 IF CHAR = 1 29 THEN V = V - I : REM CURSOR UP ON CTRL A
I 060 IF CHAR = 1 30 THEN V = V + I : REM CURSOR DOWN ON CTRL B
1 070 IF CHAR = 1 55 THEN 2000: REM ESCAPE SH IFT SEQUENCE
1080 IF CHAR # 1 32 THEN 1090: FOR HI = H TO 39: POKE (B(V) + H),63:

NEXT H I : REM ERASE TO END OF LINE ON CTRL D
1090 IF CHAR = 15 1 THEN CALL -958: REM MONITOR ERASE EOS ON CTRL W
1 1 00 IF CHAR = 1 45 THEN 160: REM SPARE HOOK ON CTRL Q DCI
1 1 1 0 IF CHAR = 1 46 THEN 1 60: REM SPARE HOOK ON CTRL R DC2
1 1 20 IF CHAR = 147 THEN 160: REM SPARE HOOK ON CTRL S DC3
I 1 30 IF CHAR = 1 48 THEN 160: REM SPARE HOOK ON CTRL T DC4
I 140 GOTO 160: REM RESUME KEYBOARD SCAN ON UNUSED CTRL COMMAND

2000 IF LOCK = 0 THEN 2010: LOCK = 0: SHIFT = 0: GOTO 1 60: REM RELEASE LOO
201 0 IF SHIFT = 0 THEN 2020: LOCK = I : GOTO 1 60: REM SET LOCK ON

SECOND ESCAPE
2020 SHIFT = 1 : GOTO 160: REM SHIFT ON FIRST ESCAPE

editing display system.

203

If the pressed key happens to be a character, step 300 decides
whether lower or upper case is to be displayed. Step 310 releases
shift after a capital letter unless_ the shift is locked.

Actual character entry takes place in 400, while the cursor is ad
justed in 410 and 420. If we go off-screen to the right, H is reset to
0 and V is incremented down-screen by one. If V goes off-screen,
we call for a scroll, using the firmware scroll sequence in the moni
tor. After repositioning the cursor, the program returns to the main
cursor and keycheck loop by jumping to 160. At this time, the cursor
starts winking in the new location.

CTRL keys are processed in steps 1000 to 1040. Most are obvious.
Step 1000 is needed so you can use the firmware erase-to-end-of
screen in the monitor; this step transfers the BASIC H and V values
to the slots in the monitor where they are needed. Unfortunately,
the monitor's erase-to-end-of-line firmware sequence doesn't seem
to be as useful (it doesn't calculate its own base address) , so this
shorter erase sequence is done on our own in step 1080.

The spare hooks are shown in llO0 through ll30. Simply replace
160 (return-to-keyboard-loop) with the location you need for access
to your disc, printer, or other program. Around a dozen other hooks
can be added, just by picking new CTRL commands from Fig. 8-3.
Remember that CTRL-C is excluded, as this gets you back to the
Integer BASIC operating system.

Should no valid CTRL key be found, the jump in ll 40 puts us
back into the keyboard checking business.

Steps 2000 through 2020 do the now familiar ESCAPE processing
for the lower-case shift lock. As before, a single ESCAPE gives one
capital letter. Two in a row locks us into capitals only. Should we
be locked into capitals only, the next ESCAPE unlocks back to lower
case.

Some Bells and Whistles

You can add just about anything you like to this editor program.
For easy editing, you might like to add an additional keypad that
generates all the motion commands with a single keystroke each.
This heavyweight modification would be handy for word processing,
typesetting, and so on.

It's fairly obvious how you would add things like diagonal and
cursor home motions, cursor OFF-ON, tabs, etc. To get into really
fancy editing, you have to be able to add and delete characters. How
you do this depends on the rules you choose to set up for your par
ticular system. Several full editors are available as software packages
that may be of help to you.

A simple example of a delete-character subroutine is shown in
Fig. 8-12. Starting at the cursor plus one, every character on the line

204

4000 FOR H l = H to 38
401 0 CURM = B(V) + H l
4020 POKE CURM, PEEK (CURM +1): REM MOVE ONE LEFT
4030 NEXT H l
4040 POKE (B(V)+39), 160; REM BLANK END CHAR
4050 RETURN

The subroutine starts at the cursed location and moves everything on its
own l i ne left one character. The lost character is erased.

Fig. 8·12. A BASIC subroutine to delete a single character on the
Apple II display.

is moved one to the left. When this is finished, the last character will
be repeated twice. The duplicate end character is then erased. The
repeated moves take place in the 4000 to 4030 loop, while the end
character erasure happens in step 4040. This particular delete-char
acter sequence operates only on a single line. Lines farther down the
screen are not affected.

Inserting extra characters is a harder problem, since everything
has to be shoved around the screen to make enough room. Once
again, you have to pick the shoving rules you want to use for your
particular editing needs.

One possible insert-a-character subroutine is shown in Fig. 8-13.
This uses a rule that says it will keep bumping characters until it
finds a line whose last character is a space. Usually, this will be the
line you are working on, but if not, characters will keep getting
bumped until a space at the end of a line is found. Then the bump
ing stops and the rest of the screen stays the way it was.

Here are the steps involved in this insert-a-character sequence :
1. A check is made to find out how many lines are involved until

one is found with a space at the end (steps 3000 to 3040).
2. Everything on the bottom-most line to be bumped is shoved

one to the right. Remember that at least the rightmost charac
ter is a space on this line.

3. There will be a double character at the left of the line, pro
vided it's not the one that had the cursor on it. This double
character is replaced with the last character on the previous
line (3160, 3170).

4. The process repeats as often as needed for all but the top line
to be bumped. The loop is done with step 3100.

5. The line with the cursor on it gets characters bumped only from
the cursor to the end of the line and has no need to borrow a
character from a previous line. The change in policy for the
cursed line is handled by step 3110.

6. Finally, everything will be bumped, but a duplicate character

205

will remain at the cursed location. This dupe is erased in step
3190.

This is a fairly simple inserter that works fairly well and reason
ably fast. If you don't like its rules, change them to suit yourself.
The sequence is rather slow if you use it over and over again as you
might while justifying a whole page of text. You should be able to
speed it up bunches if you get into this sort of thing. The rule se
lected does have one possible bug in it-repeated insertions can
swallow end spaces and run words together, as the next line bump
ing takes place with a character in the last slot and does not if a space
is there. Requiring two spaces at line end may help. There are all
sorts of other options, depending on what you want your particular
editor to do.

Your Turn:

Add the fo l lowing bells and whistles to
your ed it ing program :

* Ragged justify right-in which whole
words are never broken on the ri ght
side of the screen and you can continu
ously type without carriage returns.

* Flush justify right-in which everything
ends up square on the right side of the
screen as needed for typesetting. What
hyphenation and short-l ine rules wi l l
you use for this?

* Variable character lines-in which you
can go as long as 80 characters for text
and form-letter editing.

As a hint to longer lines, just select pairs of lines when they are
needed, and act on these line pairs. Thus you should be able to out
put up to 80 characters for a business letter or a manuscript to your
hard copy, while still viewing the results on a normal 40-character
Apple screen. We'll leave the details up to you since the results are
application specific. Have fun.

206

3000 V2 = 0: H2 = 0
3010 FOR Vl = V TO 23: REM FIND FIRST END SPACE
3020 CEND = PEEK (B(Vl + 39))
3030 IF CEND = 160 THEN 3100
3040 V2 = V2 + 1 : NEXT Vl
3 100 FOR Vl = (V2 +V) TO V STEP -1 : REM: NEXT LINE
31 1 0 I F Vl = V THEN H 2 = H
3120 FOR H l = 38 TO H2 STEP - 1 : REM SHIFT A LINE
3 1 30 CURM = B(Vl) + H l
3 140 POKE (CURM + l), PEEK (CURM)
3 150 NEXT H l
3 160 IF Vl = V THEN 3 1 80: REM MOVE (Vl - l) , 39 TO Vl ,0
3 170 POKE B(Vl), PEEK (B(Vl - l) + 39)
3 180 NEXT Vl
3 190 POKE (B(V) + H), 160: REM: DELETE CHARACTER
3200 RETURN

The subroutine starts al the cursed location. II finds the first available l ine
with a space al the end, and then moves al l intervening characters as
needed. The cursed character is then erased.

Fig. 8-13. A BASIC subroutine lo insert a single character on lhe
Apple II display.

FURTHER HARDWARE MODS

Some of the more popular Apple II software uses the screen re
versal feature. This software may not be reasonably displayed with
the hardware mods we've shown you so far. The checkbook program
is one example, where deposits are shown reversed as black-on-white
numerals. Is there some way we can still run these programs and
have lower case?

One obvious way is to use a switch to select either screen reversal
or lower case. Fig. 8-14 shows where this switch goes. Only an spst
switch and a resistor need be added to the existing modifications.
This switch can be mounted along the right side of the circuit board
far enough to the rear that it is easily reached. A miniature slide
switch held in place with double-stick foam should do the trick.

The switchover works by providing a DL6 signal to All and Al3
for upper case, and a logic "I" for screen reversal. If we provide
DL6, we get lower case since All forces the lower case ASCII bit 6
output, and Al3 inhibits screen reversal. If we provide a logic "I,"
lower case is inhibited, and reversal is allowed when it is called for.

You put the switch in the REVERSE position for programs that
need reverse video continuously displayed. You put the switch in
the LOWER CASE position when you must display lower case.

207

5/B8

t
DL6

"LOWER CASE"

NEW SWITCH

"REVERSE " 0
NEW PULLUP
RESISTOR
I

.......,v..,...--o +5 V (14/Al l)
4.7K

DL5

DL7

ASC I I
BIT 6

o------- 7/813
SCREEN
REVERSE

Fig. 8-14. A changeover switch and pullup resistor may be added to give
choice of lower case or reverse video displays.

Your Turn:

The character generator in Module "A"
also wi l l d isplay CTRL characters if you
make DLS and ASCI I bit 6 both zeros.

When would you want to display control
characters? How can you do this? Can you
el iminate the changeover switch and re
p lace it with a series of software flags that
gives you everyth ing at once-reversal
ful l case b l i nking-lower case--CTRL dis
p layed on command-and-invisibi l ity on
existing software?

Note that you can also use other character generators by suitably
changing the pins around. There's also a lower-case 2513 you can
piggyback onto the existing upper-case one.

208

You can also use your own character generator by burning your
own 2716 EPROM like we did for the music display a few chapters
back. This will take a different adaptor.

Your Turn:

Show how the EPROM Modu le "E" can be
used on an Apple I I .

The advantages of the EPROM are that you can get any character
and lots of graphics symbols that you like on a hardware basis. For
instance, instead of the awkward treatment of the descenders on the
lower-case "g," "p," and so on, you could use 5 X 7 upper case for
caps and 5 X 5 upper case for lower case. This can be both legible
and attractive.

There is one limitation to the 2716 when you use it with an only
slightly modified Apple II. With the Apple II, only five output lines
are used, with the remaining three being permanent blanks. Unless
you rework the output video, your 2716 would be more suited to new
characters than to graphics symbols that have to butt against each
other.

Apple II conversion kits, TVT 6% Module "A" 's,
Cheap Video Cookbooks, and other cheap video stuff
are available from:

PAIA Electronics
1020 West Whilshire
Box 14359
Oklahoma City, OK 73114

(405) 842-5480

209

210

A P P E N D I X A

More Character

Generator Details

EPROM MEMORY (2K X 8)

PROGRAMMING VOLTAGE

..------ OUTPUT ENABLE
CHIP ENABLE

271 6
(Intel)

TOP VIEW

24 PIN DIP

This single-supply, nonvolatile memory of 2048 words of eight bits each may
be electrically programmed or reprogrammed, and may be erased with
strong ultraviolet light.

To read, apply +s volts ground to supply pins and +s volts to the program
ming input VPP. Bring output enable OE and chip enable CE low. Binary
addressing of address lines AO through Al 0 selects one of the words. The
selected word appears as data on outputs Q0 through Q7.

To erase, apply short-wavelength ultraviolet light through the top quartz
window, using a special lamp. Eye damage can result from uv light.

To begin programming, bring OE high and CE low. Raise VPP to +25 volts
from a source current limited to 40 milliamperes. Always apply VPP after
supply power. Always remove VPP before supply power.

To continue programming, apply the desired address to AO through Al 0.
Apply the word to be programmed to Q0 through Q7 using these outputs
as programming data inputs. Then, with data and address stable, bring CE
high and then low again. The CE high time must be exactly 50 milliseconds.

Chip Enable CE should be held low except for the SO-mil lisecond high pro
gramming time, once per address. Do NOT hold CE high. DO return VPP
low at the end of programming.

I n the read mode only, CE may be brought high to float outputs for tri-state
access.

Access time is 400 nanoseconds. Supply current (read) is 60 milliamperes.

Note that the Texas Instruments 271 6 is not a standard 2716. The Tl TMS
2516 is equivalent to the industry standard 2716.

(USED IN TVT MODULE "E")

211

6674
(Motorolo)

CHARACTER GENERATOR
(5 X 7, Row Scan, Upper & Lower Case)

TOP VIEW
18 PIN DIP

This circuit provides the dot patterns needed for raster scan display of char
acters_ It gives a 5 X 7 dot matrix of the full 1 28 character ASCII set. It is
intended for normal tv row scanning.

In usual operation, +5 volts and ground are applied to the supply pins,
and the EN input is grounded. ASCI I code is input to pins l through 7. Row
timing is applied to pins 8, 1 0, and 1 1 . A 000 row timing input outputs an
all blank top row_ 001 outputs the top dot row, 0 10 the second, down to 1 1 l
that outputs the bottom, or seventh dot row.

Outputs are usually routed to a video shift register for serial conversion.
The outputs are arranged so that the leftmost dot Q5 is nearest the output
of the serial shift register.

The character set includes 32 upper case, 32 numerics, 32 lower case, and
32 machine command symbols. The lower case g, j, p, q, and y appear
higher than the others so they will fit in the matrix. Machine command
symbols usually are an arrow, a pair of small upper-case characters, or
something similar.

If the EN input is made high, the outputs are floated. A cursor may be pro
vided by using the stored cursor symbol DEL or by pulling the outputs high
and raising EN. A blank output is provided by using the ASCI I blank symbol
· or by forcing the Rl, R2, and R4 line timing inputs to all zeros.

Access time is 500 nanoseconds after all inputs are stable. Note that at least
500 nanoseconds of delay must be provided before output information is
accepted following any input change.

Supply current is 1 30 milliamperes.
(USED IN TVT MODULE "A")

212

APPE N D I X B

Pinouts of Selected ICs

213

214

QUAD NAND GAU, TTL
(14-PIN DIP. TOP VIEW)

7405
OPEN·CDLLECTOR HEX INVERTER, TTL

1.lHIN DIP. TOP VIEW)

TRIPLE AND GATE, TTL
114-PIN DIP. TOP VIEW)

215

216

74LS74
DUAL D FLIP-FLOP, TTL
(14-PIN DIP. TOP VIEW)

I
PARALLEL INPUTS

\

ENABLES
EITHER LOW
ACTIVATES

OCTAL LATCH, TTL
(20-PIN NARROW OIP. TOP VIEW)

74LS541
OCTAL BUFFER, TTL

(20-PIN NARROW OIP. TOP VIEW)

79L12
-12-VOLT REGULATOR, LINEAR

(T0-92. FRONT VIEW)

217

218

2513
CHARACTER GENERATOR, NMOS

(14-PIN DIP. TDP VIEW)

2716
EPROM, NMOS

114-PIN DIP. TDP VIEW!

I

OUTPUTS �-

\

+3 TO +15V

+ 3 T0 +1 5V

ENABLE A4 A3 A2 Al AO

INPUT ADDRESS

/
OUTPUTS

32 X 8 BIPOLAR PROM
(16-PIN DIP, TOP VIEW)

Q8

219

TIIIINSll!TIEII PAAAllEl INPUT

6402
UART, CMOS

140-PIN DIP. TOP VIEW)

Pllt 37

0 •
I

I

"" "
'
l '
I

BITSX:HAA

s ' ' '

JRAMSMITTIR
SElilAL OATA

OUTPUJ

Otn'PUTS

6674
CHARACTER GENERATOR, NMOS

(16-PIN DIP. TOP VIEW)

A P P E N D I X C

Printed Circuit Patterns

221

12. 7CMI
1_ 1 1116"�

,

I 9/16"
MCMI

NOTCH AS SHOWN

Fig. C-1 . Module A (Alphanumeric) foil pattern.

Fig. C-2. Module E (EPROM) foil pattern.

223

Son Of
Cheap
Video

Son of Cheap Video is a sequel to The Cheap Video Cookbook. Here
you'll find brand new and greatly improved circuits to get alphanumeric
and graphics video out of a microcomputer and onto an ordinary tele
vision set.

Inside, you'll find details on a $7 complete video display system called
"scungy video," and a $ 1 super-simple full transparency concept called
"the snuffler." These new ideas are vastly simpler than the earlier cheap
video circuits and much easier to adapt to many different micros. They
also use far less address space and can eliminate the custom PROMs
used in cheap video.

Also inside · are complete details on do-it-yourself custom EPROM char
acter generaters, using a sophisticated, yet simple, music staff display as
a detailed design example. We haven't forgotten the 8080/280 people
this time;either. There are two chapters on 8080/280 operation, along
with a cheap video system for the Heathkit H-8, and a versatile key
board serial adapter.

Lower case for your Apple II using the existing keyboard and a cheap
video module rounds out this assortment of hands-on hardware projects .

Don Lancaster heads Synergetics, an electronics design and consulting firm. He has
written many articles on electronic and computer applications, both for tech journals
and hobby magazines. His nonelectronic interests include ecological studies, firefighting,
cave exploration, tinaja questing, and bicycling. Don's other SAMS books include Active
Filter Cookbook, The Cheap Video Cookbook, CMOS Cookbook, The Big CMOS Wall
chart (poster) , The Incredible Secret Money Machine, RTL Cookbook, TTL Cookbook,
User's Guide to TTL (poster), and TV Typewriter Cookbook.

Howard W. - Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

$8.95/21723 ISBN: 0-672-21723-6

'cc
A6

A5

"
Al

A1

Al

AO

AIO

"
..

"

82

Custom Programmed

Parts List

1-271 6 EPROM, programmed as wanted
1 -24 pin DIP socket
1-24 pin DIP carrier
1 -Circuit board "E"
2-jumpers, bare, #24 solid wire
3-jumpers, insulated, #24 solid wire

-solder
-flux remover
-protective foam

,., � SERIAL

QO
I 1

A

QI 10

I ' '
01

II

03
lJ I 4

C

04
14 I

05
15 I

Q6
16 I

07
17 I

GHO 12

cl
18

OE
20

@ NC
2716

(A) Schematic. (B) Foil pattern.

Fig. 3-10. Module "E"

E
EPROM Module

How I t Works

8-bit character or chunk code is input on pins VD0
through VD7. Corresponding 8-bit dot code appears
on outputs A through H. Row inputs Rl , R2, and R4
select dot row. · Input VD7 can act as cursor, font
select, or upper /lower chunk select as desired.
CURSOR input is grounded to provide display, made
high to float outputs and output all-white box.

. . - •
• •
• •
� !::l �
•

0,
•

� �
• •
' '
� �

I
• •
• •

BARE WIRE/
JUMPERS (2)

(C) Bare side. (D) Foi l side before mounting
DIP carrier.

Normal Settings: Cursor OFF; FAST clock; WIDTH set to EIGHT pulses

construction details.

83

180

A
Upper- and Lower-Case Alphanumeric Module

Parts List

l -MCM667 4 Character Generator (Motorola)
1 -1 8-pin low-profile IC socket
1 -0. 1 -µF disc ceramic capacitor
2- 1 2-pin strips (AMP 1 -640098-2)
1-circuit board "A"
2-jumpers made from capacitor leads
4-jumpers made with wiring pencil

-solder

'cc
A6

AS

A4 QI 11

Al Q1

A1 QJ

Al Q4

AO QS

cs

6674

1 9116"

14CMI

CHARACTER GENERATOR NOTCH AS SHOWN

(A) Schematic. (Bl Foil pattern.

24 • •
•
•
•
•
• •
•
•

How It Works

ASCI I code is input on pins AO through A6. R l , R2,
and R4 row commands are input from Apple VA, VB,
and VC timing. Dot matrix code is output to video shift
register at Ql through Q5. Chip select is permanently
enabled. Cursor winking is external and done by soft
ware or reversing video after serial conversion.

6674

9 10

•
•
•
•
•
•
•
•
•

IJ- -12

,- -::9 _ _ _ 10- - - �

• ---- • 1 1 24- -]

1 3 . ---- 0

J UMPERS (2) > (12)

(C) Pin side. (D) Foil side.
Fig. 7-4. Construction details of module "A."

WIRE PENC IL
JUMPER 141

181

