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Preface 

Son of Cheap Video is the sequel volume to The Cheap Video 
Cookbook. Together, these two books show you very low cost ways 
of getting alphanumeric and graphics video out of a microcomputer 
and onto an ordinary television set. 

In this book, you will find some major improvements, simplifica
tions, and new ideas in cheap video. This new material will give 
you interesting and useful video projects and will deepen your 
understanding of low cost video display techniques. 

In Chapter 1, we look at a video display system that you can build 
for your micro at a total cost as low as $7! This brand new, cheaper
than-cheap idea is called "scungy video." Among its other tricks, 
scungy video eliminates one or both of the custom PROMs used in 
cheap video, and it needs far less address space. Scungy video is 
also easier to interface to different micros and is much simpler and 
more versatile. 

A super sneaky ( and admittedly crude) way to pick up transpar
ency shows up in Chapter 2. This is called "the snufHer" and lets you 
run video dispiays and compute at the same time without apparent 
interaction. The snuffier can be built for under one dollar. Its key 
part is a long piece of wire. With the snuffier, you can run a 16 X 64 
or a 12 X 80 display transparently and still keep over 50% through
put for your regular computer programs. 

Custom characters and graphics chunks are the subject of Chapter 
3. Here we look at a do-it-yourself EPROM character generator, 
along with a plug-in module to let it fit your cheap video system. 
A music display that gives a detailed example of what you can do 
with custom graphics appears in Chapter 4. This music display sys-



tern is useful for teaching beginning band and individual student in
struments. It's also a good add-on to most any micro involved with 
music synthesis. 

One of the most often asked questions about cheap video was, 
"How do I run on an 8080 or Z80?" A few answers appear in Chap
ters 5 and 6, where we show you how to run cheap video on these 
systems. We also show you schematics for an add-on circuit to put 
your TVT 6% on a Heathkit H8 memory card. A companion key
board serial adaptor, useful on many micros, is also shown. 

Many of today's larger microcomputer systems lack lower case, 
and another natural question is how to provide a full alphabet dis
play. Such dual case displays are essential for word processing and 
general business uses. We show you one answer in Chapters 7 and 8, 
when we plug a TVT Module A into an APPLE II to give you full 
case with simple mods and use of the existing keyboard. Total cost 
can be under $9. 

As with the earlier book, we end up with an appendix containing 
details on the integrated circuits needed and some full-size PC 
patterns. 

One important note before you go on. This is a you-build-it hard
ware book for hardware freaks. If you don't like hardware and 
don't want to involve yourself in video displays at the gut level, or 
aren't interested in super low cost above all else-then use one of the 
more expensive "mainstream" alternatives to cheap video, such as 
a crt controller system, a plug-in video card, or a ready-to-go ter
minal. 

If you are not one of us, go away. 
DoN LANCASTER 

Cheap video PC boards, kits, assembled units, 
and program tapes are available commercially from: 

P AIA Electronics 
1020 West Wilshire Blvd. 
Box 14359 
Oklahoma City, OK 73114 
( 405 ) 842-5480 

A catalog and price list will be sent on request. Dealer 
inquiries are invited. 

This book is dedicated to the Encounter 
of the Long Count Keeper. 
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CHAPTER 1 

Scungy Video 

The video display techniques we showed you in The Cheap Video 
Cookbook ( Sams catalog number 21524) gave you all sorts of brand 
new ways to get words and graphics out of a microcomputer and 
onto an ordinary tv set. The cheap video ideas use a minimum of 
hardware and need a minimum of modifications to either the micro
computer or tv set. So, cheap video will be a very hard act to follow. 

But, the earlier cheap video techniques were just a starting point. 
These ideas can be further simplified, made much more attractive 
and flexible, and made much easier to use. Since we'll need a name 
for these fourth-generation cheaper-than-cheap video developments, 
we'll call them scungy video. 

What can scungy video do for us? For openers-

* You can now ;(dd a complete video display system to your 
KIM-1 or other "minimum" microcomputer for a total cost of 
$7 and using only five cheapie integrated circuits. 

* You can free up practically all of the address space on your 
microcomputer, eliminating most of the address restrictions 
that cheap video seemed to put on your micro. 

* There is far less interaction between computer and video cir
cuitry. The video stuff now behaves as an add-on, rather than 
strongly interacting with your computer architecture. 

* One or both of the custom PROM memories used in cheap 
video can be eliminated. * The scungy video ideas are much easier to adapt to non-KIM 

and non-6502 systems. 
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* Nonmodifying scan coding can be used that is far simpler to 
debug and use and can be put permanently in PROM or 
EPROM. 

* Full transparency with high throughput is now very easy to 
pick up. 

As always, there are some tradeoffs involved. Scungy video may 
use the computer's interrupt structure, so managing other interrupts 
might get somewhat harder. And scungy video leans heavily on some 
other things inside your micro, particularly four parallel port lines 
and possibly an interval timer. But these are minor hassles and easy 
to live with. 

The bottom line is this: You can now put video on practically any 
microcomputer system at essentially negligible cost! 

Let's take a closer look at scungy video and see what it can do 
for us. First, we will look at the new secrets behind scungy video. 
Then, in Chapter 2, we'll look at a sneaky new trick in the way of 
transparency. Finally, we'll combine scungy video and the new trans
parency stunt into a transparent, super-simple, and very low cost 
video display system for you. 

Much of what we will do with scungy video can be done by 
removing or ignoring parts already present on your TVT 6%, so very 
little will be needed in the way of new hardware. 

HOW SCUNGY VIDEO WORKS 

Scungy video is an improvement on cheap video. We still use the 
basic concept of putting a minimum amount of hardware between 
a largely unmodified computer and a tv set. We do this by letting 
the microcomputer itself provide almost all of the needed video tim
ing signals. Our two key secrets of cheap video-the software scan 
microinstruction and the hardware upstream tap remain to give us 
an extremely simple video system architecture. 

Scungy video removes parts from this in order to add two new 
secrets: 

1. Scungy video may use interrupt or break mapping for the scan 
microinstruction, instead of the subroutine address space map
ping used in cheap video. 

2. Scungy video uses already available computer parallel 1/0 
ports to simplify further the amount of special hardware 
needed. An interval timer may also be borrowed. 

The typical cheap video architecture, as used on the TVT 6%, is 
shown in Fig. 1-1. Cheap video circuitry usually consists of seven or 
eight !Cs on a small interface hardware card. The interface hard-

s 
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ware card goes between the microcomputer and the tv set or video 
monitor. A small Decode PROM on the card decides when the com
puter wants to output a line of video dots. The Decode PROM in 
turn activates the Scan Microinstruction PROM, which takes over 
control of the computer long enough to output one line of video. 

The Scan Microinstruction PROM causes the computer program 
counter to advance once per microsecond for the number of micro
seconds needed for a row of characters. During this time, the pro
gram counter is connected to the address bus, so all memory in the 
computer is also having its addresses advanced at the once-per
microsecond rate. This includes the display memory. Now, only the 
Scan Microinstruction PROM has access to the computer data bus, 
since this PROM is temporarily in command. But, the display mem
ory is enabled as far as its upstream tap. This means that characters 
or chunks can go out the upstream tap while the scan microinstruc
tion is taking place. As the characters or chunks go out the upstream 
tap, they are converted to alphanumeric or graphics symbols. For 
a more detailed explanation see The Cheap Video Cookbook. 

Cheap video eliminates any need for a separate display memory 
or for complex stand-alone system timing. It does this by letting your 
microcomputer do all the work, time-shared with your existing pro
grams. Cheap video also makes the display memory available to the 
computer at any time for any reason. This gives you a very fast inter
action with on-screen information. 

The two simplifications we need to pick up scungy video are 
shown as a block diagram in Fig. 1-2. Instead of the Instruction 
Decoder PROM, we use software and an existing parallel port on 
the computer. The parallel port directly outputs row and sync in
formation for us, eliminating the need for a separate Decode PROM. 

A small area in the computer address space is set aside as a dis
play map. This display map is filled with scan microinstructions. 
These scan microinstructions are called by a suitable jump to the 
display map address space. As the computer is controlled by the 
scan microinstructions on the display map, the separate display 
memory is busy outputting characters or chunks through its up
stream tap. Far less address space is needed by scungy video. 

The display map can be a small PROM, identical or similar to the 
Scan PROM in cheap video. But, your display map can now be any 
old way to get the scan microinstruction code into your address 
space. You can use system RAM, ROM, PROM, EPROM, or direct 
hardware generation with a few LSTTL gates. 

Scungy video's elimination of one or both PROMs dramatically 
simplifies our video circuitry, as we'll see in the upcoming examples. 
Besides making video displays even cheaper-than-cheap-video, 
scungy video is much easier to interface to non-KIM and non-6502 
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systems. It's also much easier to make fully transparent, as we will 
see shortly. 

Break Mapping 

Cheap video calls its scan microinstruction by a JSR or jump-to
subroutine command. While you can also do this in scungy video, 
let's look instead at a new approach and see what it can do for us. 
This other approach is called break mapping. Fig. 1-3 shows the 
differences between subroutine mapping and break mapping. 

In Fig. l-3A, we have the subroutine mapping we used on cheap 
video. On a 6502, the scan microinstruction is entered from the scan 
program by a subroutine jump. The microinstruction code consists 
of a bunch of LDY AO or "load the Y register with the value AO" 
commands, ending up with a return-from-subroutine, or RTS, com
mand. 

ENTER 
VIA JSR 

RTS TO SCAN 
PROGRAM 

L AO - AO - AO - AO - • • • · · · · · • · · • · · · · • • • • - AO - 60 _j 
(LDY) (RTS) 

(6502 CODING SHOWN) 

(A) Cheap video uses subroutine. 

ENTER RTI TO SCAN 
VIA BRK PROGRAM 

L AO - AO - AO - AO - • · · • · • · · • · · · • • • • • • • • • - AO - 40 _j 
(LOY) (RTI) 

(6502 CODING SHOWN) 

(B) Scungy video can use interrupt. 

Fig. 1-3. The scan microinstruction can be a break-mapped interrupt in scungy 
video. Scan microinstruction sets number of characters or chunks per line. 

The LDY AO command causes the microcomputer program 
counter and address bus to advance sequentially one count per mi
cro�econd for the number of microseconds needed to put down a 
row of character dots or graphics chunks. Remember that while the 
scan microinstruction is advancing the address bus, the display mem
ory is putting characters out the upstream tap and into the interface 
hardware. 

On other microcomputer systems, comparable instructions are 
used to trick the microcomputer program counter into advancing 
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sequentially once per microsecond as needed. Any command that 
doesn't mess up the status of the computer too badly will do if it is 
fast enough. 

There is at least one other way to do a scan microinstruction. We 
can enter our display map by using a BRK or do-an-interrupt-now 
command. A BRK command in your computer calls for an immedi
ate jump to the place that an interrupt would normally go to. In the 
KIM-1, the jump is to the address stored by the IRQ vector at 17FE 
and 17FF. 

With break mapping, most of the scan microinstruction is the 
same as before, consisting of a bunch of LDY AO commands. But, 
since we went into our scan microinstruction as an interrupt, we 
have to get back from it as an RTI command, as shown in Fig. l-3B. 

You can use either subroutine or interrupt to get onto your dis
play map. Once on the display map, you output microinstruction 
code the same way. But, your exit from the display map has to match 
your entry. Use RTS to return from subroutine and RTI to return 
from break. 

We'll look at scungy video examples using both break- and subrou
tine-mapped scan microinstructions. Which you use will depend on 
your particular preference in coding, and specific features you want 
on your own video system. 

Fig. 1-4 shows more details on scungy video operation. 
In cheap video, our subroutine-called scan microinstruction 

jumped to a different part of memory for every row of characters 
we wanted. Around 28K of memory was tied up and reserved for 
operation of the cheap video decoder. The location of this memory 
was also fixed in your system. The decoder would decide where in 
this 28K address block operation was to take place, and then it 
would output suitable row and sync commands to the character 
generator or graphics module.) 

With scungy video, we use either a subroutine or an interrupt 
jump to a much smaller space reserved for the display map. The 
display map is simply a single picture of the display format, ex
pressed as one or more scan microinstructions. If you have only a 
single-line 1 X 32 display, your display map need only consist of 
32 words. On a 12 X 80 or a 16 X 64 display, your display map can 
take around lK of address space. 

So, scungy video frees up bunches and bunches of computer ad
dress space for any use you want. The display map can go just about 
anywhere in your computer address space you want it to, eliminating 
many restrictions on what else in the computer goes where. 

While graphics displays will take a somewhat larger display map 
(up to BK for 256 X 256), the display map is still much smaller than 
the 28K tied up by cheap video. Taller alphanumerics, particularly 
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(B) Scungy video. 

Fig. 1-4. Scungy video scan microinstruction frees most of the computer 
address space for normal use. 

12-line lower-case-with-descender characters, can now be done with
out any penalty in address space limits. 

So, our first difference between cheap video and scungy video is 
often how we produce the scan microinstruction. We used a sub
routine jump to a large 28K address space in cheap video, while we 
use a choice of interrupt or subroutine jumps to a much smaller dis
play map in scungy video. Scungy video takes up much less address 
space, is far more flexible, and saves us at least one PROM. 

The Display Map 
The display map is an area set aside in your computer's address 

space to contain a replica of the screen display. When the computer 
gets on the display map, it will output scan microinstructions as 
needed to get the separate display memory to output characters or 
chunks in the right order. 

A typical display map is shown in Fig. 1-5. Part of the computer 
address space is reserved for the display map. The display map is 
stuffed with scan microinstructions. The number of instructions re
ceived before the exiting RTI or RTS command sets the number of 
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EACH WORD ADVANCES . .  EXCEPT FOR THE 
THE COMPUTER LAST WORD WHOSE 
ADDRESS BUS BY RTI ENDS THE SCAN 
ONE µ.s AND ONE MICROINSTRUCTION 
CHARACTER . . .  

r \ \ 
AO AO AO AO • •  AO 40 

AO AO AO AO • •  AO 40 

. AO AO AO AO • •  AO 40 

AO AO AO AO 

I 
DISPLAY MAP 

• •  AO 40 

The number of commands per row sets 
the number of characters or chunks 
horizontally on the screen. 

The number of rows in the map sets 
the number of characters or chunks 
vertically on the screen. 

The display map MUST be outside the 
memory space with the upstream tap. 

I 
I " 

MICROCOMPUTER 

/ 

ADDRESS SPACE 

Fig. 1-5. Scungy video needs a display map in the computer address space. 

characters per line. The number ofJ different scan microinstructions 
decides the number of rows of characters or chunks on the screen. 

To use your display map, you write a scan program. Every time 
the scan program wants to output a line of video, the scan program 
calls for a BRK or a JSR that jumps somewhere on the display map. 
A scan microinstruction is then generated that outputs one line of 
characters or graphics chunks. 

The lower bits of the starting address on the display map are the 
same as the lower bits on the starting address of the display mem
ory. So, to output a different line of characters, you pick a different 
scan-microinstruction starting place on your display map. 

Now, while the computer is busy following the instructions on the 
display map, the display memory is going ahead and outputting 
characters or chunks by way of the upstream tap. Two things are 
happening at once in your computer! These two things must remain 
separate, since the instructions to advance the program counter are 
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obviously different from the video characters or chunks being out
put. 

Because the computer has to do two different things at once, and 
if scungy video is to work, there is a most important rule about 
where the display map has to go: 

The display map MUST he in a part of the microcomputer 
address space that is OUTSIDE the upstream tap on the 
display memory. 

We need this rule to make sure that the scan microinstruction 
being fed the computer is different from the characters being output. 
In most systems, this is a trivial rule to follow. On the bare-bones 
KIM-1, this means that if your upstream tap is on pages 00 through 
03, the display map must go outside this space. Two reasonable 
places to put it are in the RAM at 1780 or using a new small PROM 
on decoding K4. 

All that is on your display map is a bunch of scan microinstruc
tions. There are lots of possible ways to get your display map to 
appear in the computer address space. Four possibilities are shown 
in Fig. 1-6. 

For instance ( Fig. l-6A), you can put your display map into exist� 
ing system RAM. This is simplest, cheapest, and easiest. You just 
load the AO-AO-AO-AO . . . .  A0-40 scan microinstruction into system 
RAM somewhere. No new hardware or firmware is needed. The 
obvious disadvantage is that the display map disappears when the 
power does. But, this is a simple way to test a display and its format 
without any hardware involvement or commitment. 

Or, in Fig. l-6B, you can put your display map into existing sys
tem ROM, PROM, or EPROM space. A single large EPROM could 
hold your system monitor, display map, your scan programs, a key
board encoding scanner, I /0 routines, and so on. This option takes 
no new hardware, but it is best reserved till you are exactly sure 
what your system is to do. 

Both of these approaches need one memory slot in the display 
map for each character or chunk on the display. But, since the dis
play map consists of bunches of identical scan microinstructions, is 
there. some easier way that we can use "mirrors" to make much more 
compact coding look like a whole display map? The "mirrors" are 
done by redundant decoding. In Fig. l-6C, we use a small 32 X 8 
PROM on a TVT 6%, either the existing subroutine-mapped PROM 
or a new interrupt-mapped one. The PROM is enabled anywhere on 
the display map as needed. The advantages of this route are that 
you are compatible with your existing TVT 6%, and only a single 
$1.50 PROM is needed for the entire memory map. A disadvantage 
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is the need to custom program a bipolar PROM for each system you 
are going to use. 

Finally, in Fig. 1-6D we use a plain old hardware decoder. This 
LSTTL circuit is activated when addresses are inside the display 
map range. 

® 

@ 

© 

PUT IT IN EXISTING SYSTEM 
RAM FOR DEBUG AND ECONOMY. 

OR 

PUT IT IN SYSTEM ROM, PROM, 
OR EPROM ALONGSIDE YOUR 
MONITOR AND SCAN PROGRAMS. 

OR 

USE A SMALL REDUNDANTLY 
DECODED PROM SIMILAR 
TO CHEAP VIDEO SCAN PROM. 

OR 

HARDWARE DECODE 
AND ACTIVATE THE 
DISPLAY MAP. 

AO-A4 

� 

I ROM! 

AO-A4 

K4 
1f 

cs 

32 X 8 
SCAN PROM 

5610 
K4 

cs 
1f 

>
::::, 

74LS54 1  
OCTAL DRIVER 

Fig. 1-6. Four of many possible ways to build a display map. 

}
DATA 
BUS 

l DATA 
BUS 

If the address bus is outside the display map range, the data bus 
output of the hardware decoder is floated. If the address is on the 
display map but not the final microsecond on the line, an AO is out
put. If the address is on the final microsecond of the line, a 40 ( for 
RTI) or a 60 ( for RTS) is output. 

We'll look at examples of how to do a display map in system RAM 
and small PROM shortly. 
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- = "I " 

(POSITIVE LOGIC) 

6502 coding 
Use for Scungy Video 
alphanumeric scans of 
32. 64. and other 
unpacked lengths and 
most graphics scans 

Fig. 1-7. Truth table for optional scan PROM 659-KS64. 



Cl � 

� 
0 
I 
2 
3 
4 
5 
6 

<C 7 
8 
9 

10 
II 
12 
13 
14 
15  "' 16 

z 1 7  <C 

18  
19  
20 
21 
22 
23 
24 
25 ..., 26 

<C 27 
28 
29 
30 
31 

INPUTS 

WHAT DOES THIS 
WORD DO? 

LDY 

. 

. 

. 

. . 

RTI 
LDV 

" 

" 

" 

RTI 
LDY 

" 
" 

" 

" 

" 
" 

RTI 

OUTPUTS 
Q8 Q7 Q6 Q5 Q4 Q3 Q2 QI 

u, 

Cl 

� .... <O = � ..., "' ;;; 0 
a, a, a, a, a, a, a, 

:,:: Cl Cl Cl Cl Cl Cl Cl Cl 

AO • CJ • CJ CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ CJ 
Ao • o • o o o o o  
AO • o • o o o o o  
AO • CJ • CJ CJ CJ CJ CJ 
AO • CJ • 0 0 CJ CJ 0 
AO • CJ • CJ CJ CJ CJ CJ 
AO • 0 • 0 0 0 0 CJ 
Ao • o • o o o o o  
Ao • o • o o o o o 
40 CJ • CJ CJ CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ CJ 
AO • 0 • 0 0 0 0 0  
AO • CJ • CJ CJ CJ CJ CJ 
AO • 0 • 0 0 0 0 0  
AO - CJ - CJ CJ CJ CJ CJ 
AO • 0 • 0 0 0 0 0  
AO - CJ - CJ CJ CJ CJ CJ  
AO - CJ - CJ CJ CJ CJ CJ 
AO - CJ - CJ CJ CJ CJ CJ 
40  0 • 0 0 0 0 0 0  
AO - CJ - CJ CJ CJ CJ CJ  
AO - CJ - CJ  D D  CJ D  
AO - CJ - CJ  D D  CJ D  
AO • 0 • 0 0 0 0 0  
AO - CJ - CJ CJ CJ CJ CJ  
AO • o • O D CJ CJ O 
AO - CJ - CJ D  CJ D D  
AO • 0 • 0 0 0 0 0 
AO • 0 • 0 0 0 0 0  
40 0 • 0 0 0 0 0 0 

! 659-KSBO ! 
PROM NUMBER 

o = ·o· 
- = "! " 

(POSITIVE LOGIC) 

6502 coding 
Use only for Scungy 
Video alphanumeric 
scans of 80 repacked 
characlers per line. 

Fig. 1 -8. Truth table tor optional scan PROM 659-KSBO. 
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0 
;;= 

0 
'/ I 

2 
3 

z 4 
� 5 

6 
7 

N 8 
z 9 <C � 10 

1 1  
1 2  

.., 13 
z 
<C 

14 
1 5  "' 
16 
1 7 
18 

z 19 
<C � 20 

21 
22  

"' 23 
z 24 
� 25 

26 
27 

<D 28 
z 29 
<C � 30 

31 
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INPUTS 

WHAT DOES THIS 
WORD D0' 

LOY 
" 

" 

RTI 
LOY 

. 

RTI 
LOY 

" 

RTI 
LOY 

" 

RTI 
LOY 

" 

RTI 
LOY 

" 

RTI 

OUTPUTS 
Q8 Q7 Q6 Q5 Q4 Q3 Q2 QI 

0 

0 

i'.:S ,_ <D "' = ..., N CQ 0 
00 00 00 00 00 00 00 

:,:: 0 0 0 0 0 0 0 0 

AO • CJ • CJ CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ CJ 
AO • CJ - D CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ CJ 
40 D • D CJ CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ CJ 
4 0  CJ • CJ CJ CJ CJ CJ CJ  
AO • CJ • CJ CJ CJ CJ CJ 
Ao • CJ • CJ D D CJ CJ  
AO • CJ • CJ CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ D 
4 0  D • D CJ CJ CJ CJ D  
AO • CJ • CJ CJ D CJ CJ 
AO • CJ • CJ CJ CJ CJ D 
AO • CJ • CJ CJ CJ CJ CJ 
AO • CJ • CJ CJ CJ CJ CJ 
40 o • o CJ CJ CJ CJ D  
AO • CJ • CJ CJ CJ CJ CJ 
AO - CJ - CJ CJ CJ CJ CJ  
AO - CJ - CJ CJ CJ CJ CJ 
AO • CJ • CJ o CJ D CJ 
40 D • CJ CJ CJ CJ CJ CJ 
AO - CJ - CJ CJ CJ CJ CJ 
AO - CJ - CJ CJ CJ CJ CJ  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0 

40 0 • 0 0 0 0 0 0 

! 659-KS40 l 
PROM NUMBER 

CJ = "O" 
- = "! " 

(POSITIVE LOGIC) 

6502 coding 
Use only for Scungy 
Video alphanumeric 
scans of 40 repacked 
characters per line. 

Fig. 1 -9. Truth table tor optional scan PROM 659-KS40. 



If you go the small PROM route to keep compatibility with your 
existing TVT 6%, you can use the scan PROM codings of The Cheap 
Video Cookbook for your scan microinstructions if your scan micro
instructions are subroutine mapped. If you choose to interrupt map 
your scan microinstructions, suitable new PROM codings are shown 
in Figs. 1-7 through 1-9. Again, these are options. Most likely, you 
will want to eliminate all special PROMS from your system. 

The Output Port 

Scungy video nicely eliminated cheap video's PROM instruction 
decoder. Unfortunately, we also eliminated any way to tell what dot 
row on a character we were working on, the sync signals, and the 
color graphics chunk select commands. Clearly, we need some new 
way to get these vital signals to the video interface hardware. 
Scungy video borrows part of an existing computer 1/0 port to do 
this. Two to four lines may be needed. Fig. 1-10 shows details of 
four options. 

In Fig. 1-lOA, we output port BO as a composite V and H sync out
put. The alphanumeric row commands show up on Bl, B2, and B3 
in ascending order. Now, if you increment this port and then immedi
ately decrement it, you will output only an H sync pulse. The pulse 
will be 6 microseconds wide instead of the usual 5 microseconds, 
but it still works well. 

If, instead, you increment the port, delay for a while, and then 
decrement the port, so that the increment and decrement are around 
180 microseconds apart, you output a V sync pulse. Both the V sync 
and H sync appear on the same port line as composite sync. Your 
positioning is done with software, and external hardware positioning 
is neither available nor needed. 

Now, if you increment the port twi� in a row, you still output an 
H sync pulse. But, at the same time, you advance the row counter 
by one count. You do this at the start of every live line to automati
cally step the row counter through the dot rows needed for a line 
of characters. 

Here's a summary of the operating rules for your parallel port: 

-To clear the port to no sync and the top ( blank) character row, 
load all zeros. 

-To output only an H sync pulse, increment and then immedi
ately decrement the port. 

-To output only a V sync pulse, increment, delay 174 microsec
onds or so, and then decrement the port. 

-To output an H sync pulse and advance the row counter, in
crement the port and then immediately increment it a second 
time. 
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The port assignment in Fig. 1-lOA is simple and works nicely for 
most graphics and short character lines. But it may be a bit slow for 
longer alphanumerics, or you may want to keep your H and V sync 
separate for hardware positioning. Fig. 1-lOB shows another option. 
The row commands are immediately incremented with a single in
crement command, and a V sync pulse is output separately on a 
higher line. H sync is picked up in a separate blanking and TVT 
CS circuit that senses when a jump to the display map takes place. 
This option seems preferable for 64 and 80 character lines. 

PARALLEL 
PORT 

PB3 
PB2 
PB! 
PBO 

(SPLIT SYNC WITH 
ADDITIONAL 
OUTPUT LINE) 

ROW 4 
ROW 2 
ROW 1 
COMPOSITE SYNC 

(A) For short alphanumeric l ines; 
software positioning. 

PARALLEL 
PORT 

PB! 
PBO 

(SPUT SYNC WITH 
ADDITIONAL 
OUTPUT LINE) 

CHUNK SELECT 
COMPOSITE SYNC 

(C) For color graphics. 

PARALLEL 
PORT 

(H SYNC DERIVED 
FROM TVT CS) 

PB3 V SYNC 
PB2 ROW 4 
PB! ROW 2 
PBO ROW 1 

(B) Faster for long alphanumeric 
l ines; hardware and 
software positioning. 

PARALLEL 
PORT 

PB! 
PBO 

(AN EXTERNAL ROW 
COUNTER COULD 
ALSO BE USED) 

ROW RESET 
SYNC + ROW CLOCK 

(D) For alphanumeric character 
generators that have internal 

row counter. 

Fig. 1 -10. Use of parallel port for row and sync information. 

If you are limited in your number of available ports, Figs. 1-lOC 
and 1-10D show you how only two ports are needed for color 
graphics, or for alphanumeric character generators that have their 
own internal row counter. The National DM-8678 is one example. 
You can also add your own CMOS or LSTTL binary counter to save 
on port pins if you want to. In operation, one port is used to output 
composite sync and a row clock. The second port is used to reset 
the row counter when needed. 
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A BOTTOM LINE SCUNGY VIDEO SYSTEM 

Let's see just how we can go about using scungy video. As an 
exercise in crudeness, let's pretend that we have only a KIM-1 and, 
say $7, and that we want to see what the absolute minimum is that 
we can do to get any video at all out of a microcomputer. We'll first 
set our sights rather low-a single nontransparent line of 32 char
acters. 

Once we see what the bare minimum we need in the way of video 
really is, it is a simple matter to pick up all of the features of just 
about any fancier display we want. 

Our bottom line KIM-1 scungy video circuit appears in Fig. 1-11, 
and a complete parts list is shown in Chart 1-1. As the parts list 
shows, very little is needed, and practically all that is needed is al
ready available on your TVT 6%. A total of five integrated circuits 
is involved! 

You can build up this circuit by taking your TVT 6¾ and remov
ing ICl, IC2, IC3, and IC5, and then tieing into the sockets as 

Chart 1 -1 .  Parts List for Bottom Line Scungy Video System 

Integrated Circuits 
251 3  Character Generator 
74165 TTL Shift Register 
74LS04 TTL Hex Inverter 

*74LS08 TTL AND Gate 
*74LS02 TTL NOR Gate 

Resistors 
47 
100 
220 
330 
470 (2) 
1 K  
4.7K 

Capacitors 
33 pF Poly 
62 pF Poly 
1200 pF Poly 
0.001 µF (Optional) 
0.1 µF Bypass 
1 .0 µF (Optional) 
33 µF Tantalum 

Diodes 
1 N4148 (2) 

·Parts not already available on TVT 6'/a 
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shown by the bracketed numbers. If you start from scratch instead, 
your total cost, using surplus parts, should be around $7 or so. 

The scungy video interface hardware has to receive characters 
from an upstream tap on your computer, and then convert these 
ASCII characters into parallel video with a 2513 character genera
tor. The parallel video dots are then converted into serial video with 
a 74165 shift register and output to a tv set or video monitor. Load 
and clock commands are generated for the shift register by a 7 4LS04 
that takes the computer's 1-MHz clock, and then derives a load pulse 
and seven clock pulses from each clock cycle. 

Some additional gates are needed to get this bottom line system 
to work. A 74LS02 is used to activate the computer display memory 
( KIM pages 00 through 03) whenever the computer wants memory 
access, and whenever the video circuitry wants the characters to go 
out the upstream tap. 

Our first programming example will have the display map sitting 
in RAM starting at 1780. A NOR decoding of AB6 and K5 will go 
high when the computer goes onto the display map. This new TVT 
chip-select signal gets combined with the existing KO decoding to 
drive the display memory chip selects low either when the computer 
needs access or when the video circuitry wants characters to go out 
the upstream tap. 

A final gate in the package is used to invert. the composite sync 
that the scan software is going to output on port\ PAO. This inverted 
composite sync is then used in the resistor-diode video combiner 
circuit as shown. 

These four integrated circuits are all we need to get video out of 
a KIM-1, but, if we do nothing further, a few extra characters will 
be displayed on the screen, outside the live message area. A little 
black tape is one cheap but crude way around this, but even on a 
bottom line system, something better is needed. 

Why the extra characters? The extra characters come about since 
the parallel port row commands change to a nonblank line before 
the computer moves onto the display map and scan microinstruction. 
These row commands also remain nonblank after exiting the scan 
microinstruction. This is different from cheap video, where the row 
commands started and stopped exactly with the scan microinstruc
tion. 

So, scungy video needs a new blanking circuit, done with a 
74LS08 AND gate as shown. The apparently "extra" line AB7 going 
to the blanking circuit takes care of a quirk of the KIM-1. The IRQ 
vector is stashed close enough to the display map that some extra 
decoding is needed to separate the two. 

There are two capacitors shown in the video combiner. The 0.001 
is a very crude bandwidth enhancer and is adjusted for the best 
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Fig. 1-11. Bottom line scungy video system. 
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looking characters on a tv display. Chances are that you will want 
to omit this capacitor entirely if a quality video monitor is used. 
The output coupling capacitor should be included for video monitor 
use and excluded for tv-set use. If you direct couple for tv use, the 
output voltage will be pretranslated to the bias level needed for the 
first video stage of a typical tv set. This output level is around +4 
volts for white, +3.25 volts for black, and +3 volts for sync. See The 
Cheap Video Cookbook for more interface details. 

FROM VIDEO 
SHIFT REGISTER 

7ilC4 
9/IC4 

COMPOSITE SYNC 

PAO (APP 14) 

+ 

(6/IC3] 

+5 V 

fl:!!!!! 
!OK 

4 

R l l  
Cll

l 

150  pf 

= 

12  

+5 V 

Rl3 150 p "TV " 

J2 
� 

OUTPUT 

D4-7 cs IN4149 0.1 

Rl2 JI p "VIDEO" 
22 OUTPUT 

100 

05 = 7405 

Fig. 1-12. A better video output circuit using parts from the TVT 6%. 

Actually, we've done this particular output circuit just to see how 
cheap we can get and still have the circuit work. A much better out
put circuit is shown in Fig. 1-12. This better output circuit uses more 
of the parts already on your TVT 6% and gives a full CLARITY con
trol and an adjustable WIDTH control. You can get the adjustable 
width simply by using the TVT 6% WIDTH pot instead of the 47-ohm 
resistor shown in Fig. 1-11 . 
. If you want a winking cursor, return IC3 to its socket, but bend 

pin 6 up and out so that it doesn't interfere with the new sync lead. 

Scan Software 
Now, if you build this bottom line scungy video circuit and plug 

it into your KIM-1, nothing will happen. This shouldn't be surpris
ing, because we haven't gotten anything going in the way of scan 
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software yet. Your scungy video hardware will only work when you 
use suitable scan software to make it go. This is just the same as in 
cheap video, where it took both hardware and software working 
together to get us results. 

For our first demonstration program, we'll temporarily ignore 
transparency and assume that you are going to alternate your com
puter and display modes. We will need only a single scan microin
struction for our display map. For sta1ters, we'll put our display map 
in RAM, since this is simplest. Remember that our display map has 
to go outside the upstream tap, and that the upstream tap on a bare 
KIM will cover RAM pages 00 through 03. So, the only remaining 
RAM is the scratchpad starting at 1780. This is where the scan mi
croinstruction will be stashed. 

If our scan microinstruction goes from 1780 to l 79F, the characters 
displayed will be on page 03 and range from 0380 to 039F. We can 
show this easily enough, since the lowest address bits on both the 
display map and display memory must be identical for scungy video 
to work: 

Display Map ( 1780 ) 0001 0111 1000 0000 
Display Memory ( 0380 ) 0000 0011 1000 0000 

Since our upstream tap is across 4 pages, or lK of memory, lK of 
address space, or ten bits, must "match" between display map and 
display memory. 

Your Turn: 

Where are all of the 63 permissible loca
tions in 65K address space for a display 
map if your  d isplay memory i s  to go from 
0380 to 039F? 

Generally, when you are designing a scungy video system from 
the ground up, you have lots of flexibility in where you put your 
display map and your display memory. The basic rules are as 
follows: 

* The display map must go outside the upstream tap area. 
* All the lower address bits must match between the display map 

and the display memory. The number of bits that have to 
match is set by the upstream tap. If the upstream tap is across 
lK of RAM, then ten bits must match. 
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* There must be no conflict between display map, display mem
ory, and other use of computer address space. 

Since we have a choice of break or subroutine mapping for our 
scan microinstructions, let's look at the break-mapped route to see 
what it can do for us. Break mapping uses a ERK-forced interrupt 
to put us on the display map. When we go on the display map, we 
do the scan microinstruction. While the scan microinstruction is 
being done, characters from the display memory are output by way 
of the upstream tap and converted to video. 

We will use parallel port A per Fig. 1-lOA to get our composite 
sync and row commands. Later, you will most likely want to change 
this to port B to make room for an ASCII keyboard input. 

A scungy video break-mapped subroutine lets you put down an entire l ine of 
characters with only fourteen software words. Si nce the code does not modify 
itself, it can be stored in RAM, ROM, PROM, or EPROM. 

Your scan program fi rst in it ial izes the IRQ vector and then sets an output port 
to work on the upper or blank dot row of characters. It then jumps to this 
subroutine: 

Enter via JSR�� INC EE 00 1 7  This starts a n  H sync pulse 
INC EE 00 1 7  Sync ends; new dot row picked 
BRK 00 EA This causes a break-mapped 

� 
scan m icroinstruction 

IAO AO AO AO AO AO AO AO AO AO AO AO AO AO AO A�J I AO AO AO AO AO AO AO AO AO AO AO AO AO AO -40 -40 
I 

CMP Cd 00 1 7  This tests for the last dot row 
----BNE d0 F3 And repeats if it isn't the last one 

Exit to scan-- RTS 60 This finishes the subroutine 
program 

For a new row of characters, the IRQ vector is changed to a new starting 
address. Graphics work simi larly. 

Fig. 1-13. Break-mapped subroutine for putting down an entire row 
of characters. 

Before we look at the whole scan program, let's see how the criti
cal part involving break-mapping can work. Fig. 1-13 shows a sub
routine that will put down an entire row of characters. Each char
acter row consists of seven dot rows of serial video. You call this 
subroutine as often as you need it, once for each row of characters 
on the screen. 
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To use this scan sequence, you have to set things up ahead of 
time. You do this first by initializing your port to be an output and 
forcing all port lines low. This means you are between sync pulses 
and the row commands are pointing to the blank top dot row of 
your character generator. This makes everything a blank before you 
begin. 

Secondly, you load a value into the accumulator that matches the 
last line of dots you want to put down. For a 5 X 7 character gen
erator, and the Fig. 1-lOA port callouts, this value will be OE. The 
zero part we don't care about, since these lines aren't in use. The 
E part of the number gives us between-sync and row seven with its 
1110 code. 

Finally, since you are break-mapping, you have to load your IRQ 
vector so that an interrupt will jump you to the display map. On 
the KIM-1, you do this by 17FE 80 and 17FF 17. 

Once everything is set up, we can use our break-mapped sequence. 
As Fig. 1-13 shows, we immediately increment the port twice. This 
outputs an H sync pulse and moves us to the first live dot row on 
the character generator. 

Then we do a BRK ( 00 ) command. The BRK command immedi
ately calls for an interrupt, and the computer jumps to the scan 
microinstruction at 1780 and starts doing its LDY AO routine. This 
makes the program counter advance one count per microsecond. 
Since the program counter is connected to the address bus and since 
the address bus is connected to all memory in the computer, and 
since the lower address bits match on the display map and the dis
play memory, characters from the display memory will be output 
via the upstream tap. 

As is usual during a scan microinstruction, the scan microinstruc
tion has control of the computer data bus, but the display memory 
is simultaneously enabled as far as the upstream tap. This lets your 
computer do two things at once and is the key hardware secret to 
both cheap video and scungy video. 

The scan microinstruction continues its A0s until we are two mi
croseconds shy of where we want to end the line. Then we give a 
command to exit the scan microinstruction. This is an RTI ( 40 ) if 
you are break mapping or an RTS ( 60 ) if you are subroutine map
ping. The last two characters ·on the line get output as part of the 
initial process of exiting either from interrupt or subroutine. 

After we exit the scan microinstruction, we compare the port to 
see if we are on the bottom row of dots. If we are not yet to the 
bottom dot row, we repeat the whole process, putting down a new 
H sync pulse and then changing to the next dot row, and finally put
ting this row out as serial video. When the characters are finally 
complete, the sequence exits to the main scan program. 
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One detail. What is that EA following the BRK command? The 
6502 rulebook says that a return from a ERK-forced interrupt goes 
two steps away from the point where you called it. Thus, the in
struction word immediately following a BRK gets ignored. If this 
happens to be a two-byte or three-byte instruction, only the first 
byte will be ignored, and you find yourself in deep, deep trouble. 
A rule: 

On a 6502, the slot immediately following a BRK com
mand will be ignored. Always put an EA in this location. 

This break-mapped sequence lets us put down an entire row of 
characters in only fourteen words of code. The code is not self-modi
fying, meaning it can go in ROM or PROM. To change to a differ
ent row of characters, the IRQ pointer is moved to a different posi
tion on the display map. That causes a different match on the lower 
address bits, which in turn outputs a different part of the display 
memory. 

A Timing Detail 
How long does it take us to put down a single row of characters? 

Well, let's run the usual timing check. There's 32 microseconds of 
live scan time, 11 microseconds of BRK and RTI time ( remember 
two of the RTI's 6 microseconds are charged against live character 
time ) ,  6 microseconds for each of two increment times, 4 microsec
onds for the compare, and 3 for the branch. A total of 62 microsec
onds, just about what we would like. 

But, hook this up and try it, and guess what? Your line is 67 micro
seconds long. This is still useful with a slight hold adjustment. But 
-where on earth did those extra five microseconds get burned up? 

The answer is that the system monitor has to get its finger in the 
pie. BRK doesn't really branch to where the IRQ vector tells it to. 
It branches to the monitor firmware ROM. The firmware ROM then 
branches with a jump indirect to the address stashed in the IRQ 
location. This is typical of most monitors. The nmaround is needed 
to keep the reset and IRQ vectors in firmware so that the system can 
be turned on and brought up. 

The specific details of where the five microseconds goes in a 
KIM-1 are this. The BRK command, or any other IRQ, sends you 
�o lFFE and lFFF in the monitor ROM. These locations immedi
ately send you to lClF, also in ROM. lClF and the two following 
code words tell you to do a jump indirect to the location stashed in 
1780, or 6C 80 17. Finally, the actual jump takes place, and the in
terrupt is ready to go. The monitor's piece of the action takes a jump 
indirect command and costs us five microseconds. 

Another rule : 
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A break-mapped interrupt may take longer than you ex
pect it to because of a monitor's operation. Allow 5 extra 
microseconds on the KIM-I. 

To BRK and then to RTI will take a total of 18 microseconds. 
Two of these microseconds take place during the live scan, and 16 
happen during the blanking and retrace time. 

1 x 32 Scungy Display 
A 1 X 32 scungy video alphanumeric scan program is shown in 

Fig. 1-14. This program works with the scungy video hardware of 
Fig. 1-11. 

We have put this program on page 02, but it can go most any
where you like, either inside or outside the upstream tap. There are 
only two limits to where your scan program can go : 

* The scan program must not be on the display map. 
* The scan program has to be separate from the actual 

memory slots displayed. 

Thus, your scan program can even be on the display memory page. 
Unless you really want it to display itself, though, you'll have to 
have separate space for what is being displayed and the commands 
that cause the display to appear as video. Seems fair enough. 

We start at 020E, do some equalization, set up the parallel port, 
and then do a V sync pulse. Then we do a bunch of H sync pulses, 
corresponding to the blank scans. We do not call any scan microin
structions to do this. We simply increment and then decrement the 
port to produce an H sync pulse and then use the delay loop starting 
at 0230 to space out between sync pulses. 

When the blank lines are finished, we call our live scan sequence 
to put down the row of characters. The live scan is stashed at 0200-
020d. Remember that the IRQ vector must point to the display map 
at 1780. 

With scungy video, there is no longer any need to disable the 
Decode Enable or DEN line on your KIM. Be sure to keep this line 
grounded. One way to do this is to jumper 6/ICl to 8/ICl on the 
empty !Cl socket of the TVT 6%. Keeping DEN grounded elimi
nates many of the sources of bombed and astray programs you might 
have run across getting your older cheap video up. If you have a 
firm ground on DEN, you should be able to use a changeover switch 
without any program problems. 

There is one new small quirk that comes up if you are using RAM 
for your display map. This RAM must, of course, be loaded with 
scan microinstructions every time you repower your system. But-
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µP-----6502 Start-JMP 020E Displayed-0380-039F 
System-KIM-1 + Stop-RST Program Space-0200-023F 

Scungy Video (64 words) 
Scan Space-1 780-1 79F 

(32 words) 
IRQ-1 780 ( 1 7FE 80; 1 7FF 1 7) 

Live Scan Subroutine: 

0200 EE 00 1 7  INC 1 700 Output H sync pulse 
0203 EE 00 1 7  INC 1 700 Advance row count 
0206 00 BRK 1 780 ///DO SCAN MICROINSTRUCTION/// 
0207 EA NOP Equalize 2 µs 

0208 Cd 00 1 7  CMP 1 700 Is this the last dot raw? 
020b d0 F3 BNE 0200 No, do another row af dais 
020d 60 RTS Return ta main scan 

Main Scan Program: 

START-+ 020E EA EA EA Equalize 6 µs 
021 1  A9 FF LDA #FF Make A part an output 
021 3  8d 0 1  1 7  STA 1 701 continued 
021 6  A9 01 LDA #01 Start V sync pulse 

021 8  8d 00 1 7  STA 1700 continued 
021 b  A9 OE LDA # 1 0  Load last row compare 
021 d  AO l F  LDY # l F  Delay for rest of V Sync 
021 F  88 DEY continued 

0220 d0 Fd BNE 021 F  continued 
0222 CE 00 1 7  DEC 1 700 End V sync pulse 
0225 A2 AF LDX #AF Set # of blank scans 
0227 48 PHA Equalize 9 µs 

0228 68 PLA continued 
0229 EA NOP continued 
022A EE 00 1 7  INC 1 700 Output H sync pulse 
022d CE 00 1 7  DEC 1 700 continued 

0230 AO 08 LDY #08 Delay to complete blank scan 
0232 88 DEY continued 
0233 d0 Fd BNE 0232 continued 
0235 CA DEX One less blank scan 

0236 d0 EF BNE 0227 Done with blank scans? 
0238 EA NOP Equalize 6 µs 
0239 EA NOP continued 

023A 20 00 02 JSR 0200 /I/DO LIVE SCAN SUBROUTINE/// 
023d 4C OE 02 JMP 020E Start new field 

Fig. 1-14. Scungy video demonstration softwar� 
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Scan Microinstruction: 

Notes: 

1 780 AO AO AO AO AO AO AO AO 
1 788 AO AO AO AO AO AO AO AO 
1 790 AO AO AO AO AO AO AO AO 
1 798 AO AO AO AO AO AO 9E 9F 

(Fifteen LDY AO's followed 
by one RTI) 

Scungy video circuit of Fig. 1 - 1 1 must be connected to KIM-1 . 
IRQ vector must be loaded as 1 7FE 80 and 1 7FF 1 7. 

Flowchart: 

NO 

START 

DO V SYNC 
PULSE 

INITIALIZE PORT 
& 

ROW COUNTER 

DO BLANK SCANS 

YES 

020E 

021 1  

022A 

0236 

DO LIVE SCANS 023b 

NO YES 
'------< >-------' 

0208 

1 x 32 alphanumeric display. 
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since your display map does in fact map itself onto the display mem
ory, any writing on the display map will also appear in the display 
memory. So, always load your display map first. After your display 
map is loaded, then go ahead and put your characters into display 
memory. Another rule: 

If your display map ever has to be rewritten, the display 
memory will also have to be reloaded afterward. 

This creepy crawler only shows up if your display map is RAM. 
There is no problem with a firmware display map, so long as you or 
the computer never try to write into this space. 

Your Turn: 

Do a 3 x 32 scungy video display. 

For more lines of characters, you have to make a bigger display 
map and have to change the IRQ vector for each line you want to 
display. 

We will look at a 16 X 64 display ·after we pick up our new trans
parency trick in the next chapter. Any size or shape display you did 
with cheap video can also be done with scungy video, so don't let 
our short and simple examples deter you from ··using scungy video 
on sophisticated displays. 

Your Turn: 

Rewrite the 1 x 32 scan program to be 
subroutine mapped, rather than interrupt 
mapped. 

Your choice of subroutine or break mapping depends on your 
programming style and the limits you have set on your particular 
computer system. Break mapping seems to be easier for generating 
short programs in nonmodifying code. But it also ties up the inter
rupt lines, is slower, and can be a hassle on graphics and other scans 
where lots of different memory blocks have to be called. Which way 
you go is up to you. Interrupt mapping is interesting, but right now, 
I like the subroutine route better. 
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Actually, any way you can dream up to get onto a display map 
and off again has potential for simple video displays. An addressing 
mode of JSR indexed indirect sure would be simple and handy. 
While it's not immediately available on the 6502, we'll find a way 
of faking it in the next chapter. 

How about plain old jumps or relative branches? What about 
jump indirect? Can you use these? 

What options are available to you? Is there really life beyond 
KIM? 
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CHA P TE R  2 

The Snuffler -

Super Simple Transparency 

Now that we have slashed the cost of adding video to any micro
processor to under $7 and have freed up almost all of the micra's 
address space for any old use, and have gotten rid of some custom 
PROMs, what can we do for an encore? 

It sure would be nice if we could have full and easy transparency 
with high throughput. This lets you compute and display at the 
same time. Full transparency without any critical program restric
tions or lots of extra parts would be very handy.•· 

It turns out there is a new and mind-blowing way to get full trans
parency on either cheap video or scungy video. All it takes is a long 
length of wire and a single extra CMOS gate! What you do is add 
a sensor coil to the outside of your tv set or monitor. The sensor coil 
tells the computer what the tv set wants to hear. 

This new route to transparent cheap video is called the snu-ffier 
method. 

One advantage of this snuffier method is that your cheap or scungy 
video interrupts your main computer programs, instead of vice versa. 
This is just like the front-panel interrupt common to some micro
computer systems. By changing the amount of time you service the 
display, you adjust the time left over for computer use. Your typical 
throughput time remaining can go as high as 95%, and of ten over 
half the time will remain for your other programs, even with a fancy 
display format. 

There are some limits to the snuffler method, but these are easy 
to get around. To get the snuffier working the first time, some simple 
testing on your tv set will be needed, and you'll probably want to 
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use an oscilloscope. You'll have to solidly understand how the snuf
fler works before you can use it. You will also have to do some inter
rupt management games on your system. And, you'll have to find 
some way to rapidly synchronize your microcomputer to an outside
world signal with a minimum of jitter. 

On the 6502, you can get this rapid sync free with an obscure and 
often ignored input pin. On other computer systems, it may take 
some rethinking to get the same results. Let's try out the snuffler 
and see what it can do for us. 

THE METHOD 

If you have played with cheap video at all, you have almost cer
tainly found out how unhappy the tv set gets with missing sync 
pulses, fast starts and stops of displays, misplaced timing, and so on. 
It looks like we have to always and exactly provide continuous sync 
signals to the tv set. 

Or do we? 
Let's take a closer look. Just when do we have to exactly provide 

continuous sync signals? Certainly during the live portion of a scan. 
No argument there. 

We also want to continuously provide vertical sync signals at a 
60-hertz rate without too much jitter. But this is a field or a frame 
rate and shouldn't be too much of a hassle. 

Suppose we just stop delivering horizontal sync pulses during the 
blank portions of the scan. This is easy enough and lets the computer 
go back to working on its main program. And, the blank portion of 
the display will look-blank. The internal horizontal oscillator in the 
tv takes over, and the tv generates its own free-running horizontal 
sync pulses. So, there's no problem so long as the display stays blank. 

The trouble starts when you fire up your external horizontal sync 
pulses from the computer at the beginning of a live scan. The result 
is usually a terrible looking lock transient that tears up the display, 
often in a wavy "S" shape or worse. If the lock transient is the same 
from field to field, you usually will get an ugly but stable display. 
If the lock point varies from field to field, you get a jumbled mess of 
lock transients superimposed on top of each other. But, you already 
know this if you've done anything at all with cheap video. 

Now, suppose we eliminate the lock transient by picking just the 
right instant with respect to the tv horizontal timing to start a live 
scan. In other words, suppose we lock the computer to the tv set 
instead of the other way around. Now, if we do this and pick the 
wrong lock point, we will still get an ugly S-shaped display. But, by 
picking just the right lock point, we can get a nice, clean, stable dis-
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play. We still have a lock transient, but we've made its amplitude 
zero so that it won't hurt anything. 

In the real world, if we try this, the first few lines may still be bent 
a little or have some jitter. But, we can blank these bent lines and 
then start our actual display with the straight ones that follow. 

Fig. 2-1 shows how the snuffier works. We add a pickup coil to 
the outside of the tv set to find out what the horizontal sweep is up 
to. The pickup coil will sense the horizontal flyback pulse. The 
best place for this coil is often the rear bottom of the tv's left side. 
After the flyback pulse is sensed, a CMOS Schmitt inverter or gate 
converts the pulse into something a computer can live with. 

HERE'S HOW IT WORKS: 

LI 

6502 

CMOS 
SCHMITT 

(D A PICKUP COIL IS ADDED TO THE OUTSIDE 
OF THE TV SET TO SENSE THE FLYBACK 
PULSE. 

(V THE FL YBACK PULSE IS CLEANED AND 
CONDITIONED . . • . . 

@ AND USED TO SET THE COMPUTER'S 
OVERFLOW FLAG • . . • •  

© WHICH LOCKS THE SCAN PROGRAM TO 
THE TV. ELIMINATING ANY TEARING AT THE 
START OF A SCAN. SYNC SOFTWARE LOOKS 
LIKE THIS: • 

� CLV 
L svc • 

Fig. 2-1. Snuffler feedback from Iv to computer simplifies transparency. 
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Every time your scan software starts a new field, you hold up the 
start of the live scan on your computer until the next flyback pulse. 
This locks the start of your display timing to the tv' s horizontal scan 
timing. You then put down a few blank lines to eliminate anything 
that remains in the way of jitter, and then go on to a stable live dis
play of your choice. 

There are lots of ways you can use this new "the tv set is ready" 
command. Shoving it into a parallel port or using it as an interrupt 
may be the only routes you have on some computer systems. Either 
of these two ways probably will work, but they might introduce too 
much jitter. For instance, an interrupt usually delays till the next 
instruction is finished, resulting in a 1- to IO-microsecond random 
delay. And, it's hard to read a port faster than once every seven to 
nine microseconds. While either of these obvious methods will work, 
the leftover jitter still may need bunches of blank lines before your 
live scan. 

If your micro has a halt or a DMA command, maybe you can use 
this for fast, jitter-free locking. 

The 6502 has a unique feature buried on normally unused pin 38. 
Haven't thought much about good old pin 38 have you? There it is, 
just sitting there halfway between 37 and 39, and unused in just 
about every 6502-based system. 

Pin 38 of the 6502 sets the overflow flag immediately when fed a 
positive-to-ground TTL or CMOS transition. You can test for an 
overflow set in a single instruction, giving you a maximum lock jitter 
of around 2 microseconds. This is something the snuffier can easily 
live with and gives you a simple way to lock your micro to your tv 
set. Very nicely, the KIM-1 people even brought the SO pin 38 out 
to Expansion Connector No. 5, so you can gain access to your snuffier 
without any mods. 

To use the snuffler, you interrupt your main program at the be
ginning of a field. Then you clear the overflow flag with a CLV com
mand. Then you tell the computer to do a BVC 00 branch. This puts 
you in a one-instruction loop that continues until the flyback signal 
gets there from the snuffier. When overflow finally sets, you are 
locked to the tv set's timing, and are all set to put down a stable 
display. 

The snuffier method works if 

* Your tv set has reasonably stable horizontal circuits with decent 
lock recovery. * You are able to reliably sense the flyback pulse from the hori
zontal-sweep section of the tv set. * You can lock your computer to the outside world with only a 
few microseconds of jitter. 
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So, to use your snuffler, build yourself a sensor to pick off the Hy
back pulse, and then clean up the pulse so that it looks like some
thing your computer can understand. Then, use this signal to delay 
the start of a field. After locking, use some software equalization to 
minimize the lock transient, and then put down a few blank lines. 
Then go on to your live display. 

Looking at the big picture, 60 times a second something interrupts 
your main program and says to start a display. After this command, 
your computer spins its wheels until the next flyback pulse from the 
snuffler arrives. Then the computer outputs video to the tv set. Then 
the computer goes back to your main program. How much time is 
spent on the display determines both the display size and the time 
left over to run your programs. Shortly, we'll see a 16 X 64 display 
that is fully transparent, uses scungy video, and leaves well over half 
the computer time available for your main program. 

BUILDING THE SNUFFLER 

The new snuffier circuit is shown in Fig. 2-2, and the construction 
details of the snuffler coil are shown in Fig. 2-3. 

The snuffler coil is made from a length of hookup wire. Use 
around 40 feet of wire, and hank wind it into a 3-inch diameter loop. 
Then secure the coils with tape. Finally, the two leads are tightly 
twisted together and made long enough to get conveniently from tv 
set to computer. Around 10 feet or so is reasona,ble. 

You put the coil at the lower left rear of your tv set, where it can 
couple to the Hyback transformer in the tv. The coil is then con
nected to the circuit of Fig. 2-2A. The CMOS Schmitt inverter or 
gate acts as a high impedance level detector with lots of noise im
munity. An input signal above 2.5 volts drives the output low. An 
input signal below this value drives the output high. The Schmitt 
input circuitry provides noise immunity through its hysteresis or 
snap-action. This is just what we need to condition the more-or-less 
messy flyback pulse. 

Debug will be simplest if you use a scope for your initial check
out. View Point A. The flyback peaks should be around five volts 
high. You adjust the strength with the sensitivity pot and the posi
tioning of the coil on the outside of your tv set. Once you find a 
good location, hold the coil in place with masking tape. Try to find 
a position that gives you five volts out with a centered sensitivity 
pot, when viewed with the usual IO-megohm 10 : l  scope probe. 

Once the position is nailed down, operation should be noncritical 
and reliable. If you don't have a scope, use your KIM-1 and a custom 
program to measure the times between overflow sets. No overflows 
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SNUFFLER 
COIL 

A 
CMOS SCHMITT 

TRIGGER 
4093 OR 4584 

SYNC TO COMPUTER 

EXPANSION-5 ON KIM-I 
IOOK SENSITIVITY 
MUST BE ON 
GROUND SIDE' 

(A) Circuit. 

POINT A WAVEFORM 
APPROX 5 V P-P 

---------------- +5 V INCORRECT POINT B 
WAVEFORM - SENSITIVITY 
TOO LOW OR POSITION - - - -

-
- -- - ---- - - --- - - - 0 TOO "COLD "  

+ 5 V CORRECT POINT B 
WAVEFORM - ONE 
CLEAN PULSE PER 
CYCLE 

+5 V  

0 

(B) Waveforms. 

Fig. 2-2. Snuffler circuitry. 

INCORRECT POINT B 
WAVEFORM - SENSITIVITY 
TOO HIGH OR POSITION 
TOO "HOT" 

mean too low a sensitivity, and erratic overflows mean too hot a coil 
position or too high a sensitivity setting. 

Note that the sensitivity pot MUST go on the ground side of the 
snuffler coil. Otherwise, the snuffler coil self-shields and gives you 
far too low an output signal. 

Your point B waveform should give you one clean output pulse 
per input :flyback pulse. 
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START WITH 40 FEET OF SOLID HOOKUP 
WIRE. HANK WIND 20 FEET AS 20 TURNS 
ON 3 INCH DIAMETER. 

SECURE LOOP WITH TAPE. TWIST LEADS 
TOGHHEff STRIP ENDS. 

TAPE TO TV SET AT LOWER LEFT REAR. 
USE OSCILLOSCOPE TO FIND 
"LOUDEST" POSITION. 

Fig. 2-3. Details of snuffler coil. 

A SNUFFLER DEMONSTRATOR 

Fig. 2-4 shows a demonstration program that puts a stable raster 
on the screen for you. It's a handy place to start. It demonstrates the 
full transparency of the snufller method. The demo assumes you have 
the old TVT 6% cheap video system and both PROMs in use. 

The snufller works by interrupting an existing program. Start out 
with the default "main" program shown starting at 0100. 

This particular display will give you a blank raster or else one 
with a bunch of stripes. Later on, you'll replace the blank raster with 
the live scan format of your choice. 

We use the interval timer on the KIM-I. This gives us an inter
rupt 60 times a second. This interrupt stops the main program and 
starts the video display sequence. 

The interrupt from the timer branches us to 1780. When we get 
to 1780, we wait for the next flyback pulse from the snufll.er. After 
the snufll.er sync arrives, we put down 20 or so blank scans. Most 
often, we can get by with far fewer prescan blanks than this, but 
20 is a good choice for very stable displays. These blanks are put 
down in step 178C. 

The live scans follow and are set down by 1796. The stripes you'll 
get correspond to the first dot row of whatever happens to be in 
display memory locations 0014 to 003F. Since this is a demonstration, 
all we are interested in is showing a stable live scan area separate 
from the rest of your program and the blank scans. Later, of course, 
you'll replace the live scan with something useful. 

After the live scans, we output a vertical sync pulse and set the 
timer to get us a new interrupt as needed next time around. Be 
sure to jumper your timer to the IRQ line ( APP15 to EXP4) .  Once 
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your timer is set, the interrupt is released, and the computer returns 
to the main program. 

The sum of the prescan blanks, the live scan lines, and the timer 
value must add up to a stationary hum bar at 60 hertz when the tv 
horizontal hold is at its best setting. Be sure to follow the detailed 
notes in Fig. 2-4. Your program is working when you have a station
ary display and 50% throughput. 

Your Turn: 

Add interlace and l ine lock to the snuffler. 

Interlace is fairly easy to add. Just change the timer value and the 
vertical sync position for each field of your frame. Combine N scan 
lines and a late V sync pulse on one field with N + 1 scan lines and 
an early V sync pulse on the second field. See details on this in 
Chapter 2 of The Cheap Video Cookbook. Shortly, we will look at 
an alternative to full interlace that gives you much higher through
put on fancy displays. 

Line lock will be tricky. The advantages of line lock are that it 
eliminates the timer and gives you a stationary hum bar. But some-

µP-----6502 
System-KIM-I + 

TVT 65/e + 
Snuffler 

Start-JMP 0 100 Program Space-1 780-1 7A6 
Stop-Reset (39 words) 

IRQ-1 780 
( 1 7FE-80; 1 7FF- 17) 

This P.rogram puts a raster on the screen with about 50% throughput. It uses the 
TVT 65 /a with PROMs 658-KD8 and 658-KS64, along with a snuffler circuit applying 
flyback t iming routed to the overflow set pin. The display is fully transparent. 

Use the following as a default main program to be interrupted: 

0 100 A9 1 0  LDA # 1 0  Start IRQ Timer first cycle 
0 102 8d OF 1 7  STA 1 70F continued 
0 105 58 CLI Clear Interrupt flag 
0 1 06  4 C  05 01 JMP 0105 Loop ti l l  scan interrupts 

Scan Program: 

1 780 
1 781  

68 CLV Wait for flyback pulse 
50 FE BVC 1781 continued 

(Continued on next page) 

Fig. 2-4. Snuffler demonstration program for TVT 6%. 
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1 783 50 00 BVC 1 705 Equalize 2 or 3 /JS as needed 
1 785 20 1 0  60 JSR 6010 Equal ize even µs as needed 

1 788 A2 1 4  LDX # 1 4  Set # o f  init ial  blank scans 
1 78A 70 00 BVS 1 78C Equa l ize 3 µs 
1 78C 20 10 60 JSR 6010 /////INITIAL BLANK SCANS///// 
1 78F CA DEX One less blank scan 

1 790 d0 FA BNE 1 78C Done with blank scans? 
1 792 A2 80 LDX #80 Set # of l ive scans 
1 794 70 00 BVS 1 796 Equalize 3 µs 
1 796 20 1 4  70 JSR 701 0  //// /LIVE SCANS////////////// 

1 799 EA NOP Equalize 4 µs 
1 79A EA NOP continued 
1 796 CA DEX One less l ive scan 
1 79C d0 F8 BNE 1 796 Done with l ive scans? 

1 79E A9 71 LDA #71 Set IRQ timer for rest of field 
1 7A0 8d OE 1 7  STA 1 70E continued 
1 7A3 AD 00 E0 LDA EOOO Output vertical sync pu lse 
1 7A6 40 RTI Return to main program 

Notes: 

TVT 65/e must be connected and both the Scan (658-KS64) and Decode (658-KD8) 
PROMs must be in c ircuit to run. Snuffler must i nput clean flyback pulses to SEO 
pin (#38-6502; EXP5-KIM-l )  

IRQ vector mus1 be set to 1 780 ( 1 7FE 80; 1 7FF 1 7) 

Normal setti ngs: Module A or D; OFF; + ;  64; FAST 

Step 1 783 provides even or odd equal ization as needed. Use 50 for 2 µs and 70 for 
3 µs. Step 1 786 provides multiples of 2 m icroseconds for equalization. These two 
steps together set the 1v horizontal lock transient. 

Step 1 789 picks the number of prescan blanks. Step 1 793 picks the number of l ive 
scan l ines. Step 1 79F picks the remain ing field time after scan, in roughly one
scan increments. These three values interact. Their sum must be adjusted for a 
stationary hum bar at the tv's best hold setting. 

Tv set hold control must be adjusted for a near vertical presentation. Display con
sists of f irst dot row of characters stored in 001 4 to 003F. In  a real application, any 
desired scan format can replace this demonstration scan. 

Fig. 2-4. Cont'd. Snuffler demonstration 
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Tv horizontal frequency opproximately 1 5625 Hz; vertical approximately 60 Hz. 
live scan time 64 µs. Live scan l i nes 1 28. Hold control may need to be retouched 
every 30 minutes or so. 

KIM interval timer must be jumpered to IRQ l ine. 
(APP-1 5  to EXP-4). 

Flowchart: 

MAIN PROGRAM 
INTERRUPTED 60 
TIMES A SECOND. \  

1 ___ 
oNCE PER FIELD __ \_ __ , 

I I 

11780) 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L.o.--- SNUFFLER INPUT 

t 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

OUTPUT V SYNC 
SET IRQ TIMER 

RTI 

I 
I 

l I 
_ _ _ _ _ _ _ _ _ _______ J 

program for TVT 6%. 

11781) 

(1788) 

11792) 

(179E) 
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how you have to lock the horizontal frequency to the line as well. 
Otherwise you will get vertical jitter of your characters. 

The obvious source of line lock is a sine wave from the power 
supply that is filtered and routed through a CMOS Schmitt gate 
something like we did with the snuffler. But this may jitter too much 
unless it is further cleaned up with a phase-locked loop or something 
else workable. 

Here are a few unexplored possibilities for line lock : 

* Use a clean 60-hertz line signal to speed up or slow down the 
microprocessor clock slightly. 

-or-

* After your live scan time, put down some blank scans that 
can pull the tv set's sync, speeding up or slowing things 
down as needed for lock. 

-or-

* Make the characters so big that one line of jitter isn't an
noying. 

Line lock really isn't needed, but it would be very elegant to pro
vide, particularly if you can do it for 20 cents or less. 

ALTERNATE-FIELD SNUFFLING 

Here is an even more dastardly trick you ca'n play on your tv set. 
Suppose we use the snuffler and scungy video for one field and then 
keep the whole next field blank. We would have 30 frames per sec
ond. Each frame would have one live field and one blank field at the 
usual 60-hertz rate. A stunt like this will dramatically raise the 
throughput, since the computer is free to do what it pleases well 
over half the time, even with a super-fancy display. 

Alternate-field snuffling is an interesting way to up the throughput 
and is essentially free. All it takes is a change of a few software 
words in the scan program. Disadvantages we can expect are less 
brightness, more flicker, and potentially less stability. But on the 
tv I tested, the results are more than good enough, and you can get 
a 16 X 64 display with over 50% throughput and full transparency. 

To try this on the demonstration program of Fig. 2-4, make the 
following patches: 
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1 789 19 (This throws in a few extra prescan blank l ines to hit exactly 
30 hertz) 

1 79F 1 7  (This picks a longer timer delay) 
1 7Al  OF (This puts timer in 1024 µs  mode) 



The best way to find out if alternate-field snuffiing works is to try 
it and see. The tv set has to lock with every second vertical sync 
pulse, but this doesn't seem to be any problem at all. The flicker 
seems comparable to what you get using double stuffing, maybe a 
little worse. As usual, watch your contrast and brightness settings. 
While there are obviously "better" ways to get a video display than 
alternate-field snuflling, its ridiculously low cost for high throughput 
and full transparency makes it a useful option for your cheap-video 
bag of tricks. 

THE BEST OF BOTH WORLDS 

What happens when we combine scungy video and the snufller? 
Well, we get extremely flexible, low-cost video displays with full 
transparency and high computer throughput. Let's look at two ex
amples. First, we will take the 1 X 32 scungy video "bottom line" 
display and put it in the snuffier demonstrator. Then we'll look at a 
16 X 64 video display using your TVT 6% to get high throughput 
and full transparency. 

Transparent 1 x 32 

Our 1 X 32 example will use the snuffier and break mapping. This 
takes only a bare KIM-1 and a TVT 6% without any Scan or Decode 
PROMs. We'll use the existing RAM in your KIM-1 for the display 
map. The display you get is fully transparent and leaves over 75% 
throughput remaining for your main programs. 

While a single-line short display might not seem like much in the 
way of performance, note that we are adding around $7 worth of 
parts to a bare-bones KIM-1, getting video out of it, and transpar
ently running other programs at the same time. This is a dramatic 
example of what scungy video can do for you. 

Our scan program and its flowchart are shown in Fig. 2-5. Except 
for one or two details, the program combines our existing scungy, 
nontransparent display of Fig. 1-14 with the snuffier demonstrator 
of Fig. 2-4. Rather than use the Scan PROM 658-KS64 as we did on 
the snuffier demonstrator, we'll use existing RAM inside the KIM-1 
to save needing a custom part. 

Another detail that is involved in combining scungy video with 
the snuffler concerns the IRQ line. It looks like we have to ask our 
interrupt to do two different things. First, it has to get us to the scan 
program sixty times a second when our main program is interrupted 
by a timer. Secondly, since we are using break mapping in this ex
ample, we also will need the IRQ vector to point at the display map 
for us every time we want to put down a dot row. 
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To get the IRQ line to do two different things, just change the 
IRQ vector locations ( 17FE low and 17FF high) twice during the 
scan program. When we begin the scan program, we anticipate that 
this IRQ vector will be needed later for the break mapping and 
change it. Then, when we are done with our live scans, we change 

µP-6502 
System-KIM-1 + 

Scungy Video 

Start-JMP 0100 
Stop-RST 

Displayed-0380-039F 
Program Space-0200-0250 
Display Map Space-l 780-l 79F 
IRQ-0200 for scan program 

1 780 for display map 

This program uses the bare-bones KIM and a TVT 65/e without any PROMs to g ive 
a video d isplay with a total system cost as low as $7. The circuits of Figs. 1 -1 0A, 
1 - 1 1 ,  1 - 1 2, and 2-2A are used. Throughput is above 75% with total transpar
ency. 

Use the following as a default main program to be interrupted: 

0 100 A9 00 LOA #00 Set IRQ to Scan Program 
0102 8d FE 1 7  STA 1 7FE continued 
0105 A9 02 LDA #02 continued 
0107 8d FF 1 7  STA 1 7FF continued 

0 l0A A9 1 0  LDA #10  Start IRQ timer l s t  scan 
0 lOC 8d OF 1 7  STA 1 70F continued 
0 l0F 58 CLI Clear IRQ flag 
01 10  4C 1 0  0 1  JMP 01 1 0  Loop ti l l  scan interrupts 

Scan Program: 

IRQ 
entry-+ 0200 68 CLV Wait for flyback pulse 

0201 50 FE BVC 0201 continued 
0203 EE 00 1 7  INC 1 700 Start V Sync pulse 
0206 A0 70 LDY #70 Equalize lock transient 

0208 88 DEY continued 
0209 d0 Fd BNE 0208 continued 
0206 A9 80 LOA #80 Change IRQ to Display Map 
020d 8d FE 1 7  STA 1 7FE cont inued 

021 0  A9 1 7  LOA # 1 7  continued 
021 2  8d FF 1 7  STA 1 7FF continued 
021 5  A9 FF LOA #FF Make sure A port is output 

. 021 7  8d 01 1 7  STA 1 701 continued 

021 A  A2 30 LOX #30 Set # of prescan blanks 
021 C  A9 00 LOA #00 End V Sync pu lse 
021 E  8d 00 1 7  STA 1 700 continued 
0221 EA NOP Equalize 2 microseconds 

Fig. 2-5. 1 X 32 transparent 
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0222 EE 00 1 7  INC 1 700 Output H sync pu lse only 
0225 CE 00 1 7  DEC 1 700 continued 
0228 A9 1 0  LDA #10  Set # of  dots per character 
022A AO 09 LDY #05 Deloy for blank scan 

022C 88 DEY continued 
022d d0 Fd BNE 022C continued 
022F CA DEX One less prescon blank l i ne 
0230 d0 EF BNE 0221 Do another prescon blank l ine? 

0232 FO 00 BEQ 0234 Equalize 3 microseconds 
0234 EE 00 1 7  INC 1 700 H sync pulse; advance row coun ter 
0237 EE 00 17  INC 1 700 continued 
023A 00 EA BRK I I I I /SCAN MICROINSTRUCTION//// 

023C Cd 00 17  CMP 1 700 Is this the lost dot row? 
023F d0 F3 BNE 0234 No, do another dot row 
0241 A9 OC LDA #OC Set timer for next field 
0243 8d OF 1 7  STA 1 70F continued 

0246 A9 00 LDA #00 Change IRQ to Scan Program 
0248 8d FE 1 7  STA 17FE continued 
0246 A9 02 LDA #02 continued 
024d 8d FF 1 7  STA 1 7FF continued 

0250 40 RTI Return to main program 

Stan Microinstruction: 

Notes: 

1 780 AO AO AO AO AO AO AO AO 
1 788 AO AO AO AO AO AO AO AO 
1 790 AO AO AO AO AO AO AO AO 
1 798 AO AO AO AO AO AO 40 40 

(Fifteen LDY A0's followed 
by one RTI) 

Main user program must in i tialize IRQ to 0200 and start t imer. 

Timer must be jumpered to IRQ l ine (APP-1 5 to EXP-4)<-TVT 65/e must hove ICl , 2, 
and 3 removed per Fig. 1 - 1 1 .  Fig. 1 - 1 2  output stage recommended. Snuffler circuit 
of Fig. 2-2A also must be used. 

Remain i ng transparent throughput is approximately 75% .  

The sum of locations 0206 (transient and V sync width), 021 b (# of prescon 
blanks), and 0242 (timer field delay) must odd to 16.7 m i l l iseconds for a stationary 
hum bar. 

Horizontal frequency 1 4,925 Hz. Vertical frequency with properly set horizontal 
hold control 60.0 hertz; stationary hum bar. 

(Continued on next page) 

TVT 6% scan program. 
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the IRQ vector back again to point to the start of the scan program 
we will need on the next field. 

The IRQ vector must point to 0200 for the scan program and to 
1780 to get us on the display map. We'll assume your main program 
does not need or use the IRQ vector; if it does, some more straight
ening-out should solve things for you. 

For your first test, use a "default" main program starting as shown 
at 0100. Set your IRQ vector to make sure it points to 0200, and then 
whap the timer once to generate the interrupt for the first display 
field. End up with a continuous loop as shown in the jump-to-your
self trap in OJ J 0. 

Flowchart: 

MAIN PROGRAM 
INTERRUPTED 60 
TIMES A SECOND. 

r---------------, 

SNUFFLER 
INPUT 

ONCE PER FIE
� 

I ,  
I 
I 
I 
I 
I 
I 
I 
I 
I 

l 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

RTI 

- - - - - - - -------- l 

(0200) 

(0202) 

J020b) 

(0221) 

NO 

10241) 

(0246) 

J0232 + SCAN 
µINST AT 1780) 

J023Ci 

Fig. 2-5. Cont'd. 1 x 32 transparent TVT 65/e scan program. 
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When the first timer interrupt arrives, we vector to 0200 and start 
our Scan Program. The first thing we do is spin our wheels until the 
fl.yback pulse from the snuffier arrives by way of the SO input. Then, 
we start a vertical sync pulse and use the width of this pulse to 
adjust our lock transient to something acceptable. The width of the 
vertical sync pulse is not at all critical to the tv set; anything over 
150 microseconds should do, with the upper limit set by what you 
want in the way of throughput. 

From this point in our scan program, we go on to move our IRQ 
vector to point at the display map ( 1780 ) .  We next make sure the 
parallel A port is an output, pick the number of prescan blank lines, 
and then end the vertical sync pulse. Remember that our vertical 
and horizontal sync pulses both appear on the same A port line
the difference in time duration is the only difference between the 
two pulses. 

Our prescan blanks follow. This lets things even out before we 
attempt to put down any character dots. The prescan blanks also 
give us some space between the V sync pulse and the message, let
ting the message end up near the top of the screen and down far 
enough to be legible. 

To do a blank scan, we increment and then decrement parallel 
port A. This gives us a horizontal sync pulse without advancing the 
row counter lines. After the sync pulse is complete, we use the Y 
register as a timer to stall for the rest of the line, ending up with a 
total line time of 67 microseconds. 

These operations repeat over and over until enough prescan blank 
lines are put down. Our program uses 48 prescan blanks, enough to 
make the display stable and move it well onto the screen, but not 
enough to really cut into the throughput. 

Once our prescan blanks are finished, we go on to put down our 
live character rows. We do this by incrementing the A port twice. 
This gives us a horizontal sync pulse and advances the row dot 
counter. After the sync pulse is finished, we .do a break-mapped in
terrupt to the display map. The display map is located at 1780. It 
gives us a scan microinstruction that advances our program counter 
one count per microsecond for 32 consecutive microseconds. This is 
the action we need to let a line of 32 character dots go out the up
stream tap and appear as video. 

After a scan microinstruction is complete, we test the A port to 
see if we have finished the bottom dot row. This is done in step 
023C. If we have not done all seven dot rows needed for a line of 
characters, we repeat the process and pick up a new row of dots. 
When we are finished, we go on to complete the scan program. 

When the complete characters are put down, the scan program 
sets the timer for the next field and moves the IRQ vector back to 
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point at 0200, where we will start the next field. When all is done, 
we exit to our main program. 

The entire process of locking to the snuffler, putting down the 
prescan blanks, doing the live scans, and exiting takes a few milli
seconds. For the rest of the. time, your main program is free to run, 
and the tv set goes on putting down blank lines without any horizon
tal sync input. The process repeats 60 times a second to give you a 
stationary display. Around 75% of the time is available for your 
main program to run. 

Your Turn: 

Show a software vertical position control 
for your disp lay. Can you move the d isplay 
down without decreasing the throughput? 
What is the maximum transparent through
put you can get and sti l l  have a stable dis
play? 

Some program slots may need adjustment to suit your particular 
tv. The lock transient and vertical sync width is set by 0207. The 
number of prescan blanks is controlled by 021b. The time to the next 
field is set by 0242. 

Your time to the next field is a coarse adjustment. No way will 
you exactly hit a stationary hum bar unless you really luck out. So, 
use the number of prescan blanks and the vertical sync width to fine 
tune to a stationary hum bar. There will be some interaction be
tween the horizontal hold control and the hum-bar timing. Aim for 
a stationary hum bar with the most stable display. Your horizontal 
hold may occasionally need retouching. 

16 x 64 or 16 x 40 

Let's do either a 16 X 64 or a 16 x 40 transparent display as a final 
example of something fancy you can do with scungy video. Let's 
assume you have an old TVT 6% along with its Scan PROM 658-
KS64, and a KIM-1 with extra RAM added on. Let's assume you 
have at least lK of RAM immediately above the usual, and that de
coding K4 on the KIM is still free. If your K4 happens to be in use 
as part of RAM or PROM space, just work out another decoding 
scheme. Be sure to remember that your display map is picked by 
your decoding, and that your display map must be outside the dis
play memory upstream tap address space. 
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The circuit is shown in Fig. 2-6. The display memory will usually 
be across the new RAM in your system, since a full lK will be 
needed for either display format. This, of course, means that your 
upstream tap also has to go across the new memory, just like we 
used a tap on the KIM-2 add-on memory in The Cheap Video Cook
book. 

Your TVT 6¾ is modified by removing !Cl, Cl, and C3, and any 
existing connector jumper between HIN and DEN. 

Three new ICs are added. One is a CMOS Schmitt trigger for the 
snuffler, just like we did back in Fig. 2-2A. Two NOR gates are used 
to combine the display memory chip select from the computer with 
the chip select from the TVT and then route this result to the display 
memory. Another NOR gate is used to invert the K4 Scan Enable 
decoding to give us a signal useful for blanking and the H sync sig
nal. This blanking signal is also routed to three AND gates that move 
us to "row zero" except during the live portions of the scan. 

You can use the empty decode PROM socket ICl on the TVT 6% 
to access three row inputs, the vertical sync input, and the Scan 
Enable. Details on this are shown in Fig. 2-7. If you already have 
your TVT 6% socket prewired, you can also pick off DEN, SEO and 
SEI at socket ICl. But, for new work, it is best to keep SEI, SEO, 
and DEN totally off the TVT 6% board. 

Note that DEN is now hard-wired to ground. A simple changeover 
switch between CSO and CSI can be used to pick TVT or normal 
operation. This switch can be changed at any time without any pro
gram bombing problems. 
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FROM V 
SYNC PORT 

K4 SCAN 
MICROINSTRUCTION 
ENABLE 

ICl DECODE 
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1 2 1 :  
1 1 1 

CHIP SELECT 
FROM COMPUTER 

Note: CSI. CSO. & DEN 
available at ICl 
only if connector 
pins prewired. 

.,__(c_s_Ol_ CHIP SELECT IQ 
UPSTREAM TAP. 

Fig. 2-7. How to access the TVT 6% using the decode PROM socket. 



The parallel port assignments appear in Fig. 2-8. Note that rows 
1, 2, and 4 occupy the lowest lines, while port PA3 serves as a verti
cal sync pulse source. Horizontal sync and blanking are separately 
picked off with the NOR gate that inverts the scan decoding K4. 

You'll find the scan software in Fig. 2-9. The scan program works 
by interrupting a main program of your choice. For initial tests, use 
the default main program shown starting at 0100. 

The display memory is on RAM pages 04 through 07. The display 
map is the K4 decoding space. The scan program resides in 1780 to 
17dF. Since this scan program is nonmodifying, it can go elsewhere 
in RAM, ROM, or PROM. 

PA3 V SYNC 

Fig. 2-8. Port assignments for 16 X PA2 ROW 4 
64 or 16 X 40 transparent 

scungy display. 
PAI ROW 2 

PAO ROW I 

Three locations are reserved on page zero. The display starting 
address is stored at 0080 ( low) and 0081 (high) . Location 0082 
holds the number of character rows for us. By changing 0082, you 
can change the number of character rows. This gives one good way 
to trade off throughput versus the number of characters displayed. 

A timer-generated interrupt breaks your main program sixty times 
a second. The IRQ jumps us to 1780 where we begin our scan pro
gram. We first wait for the snuffier pulse to lock us to the tv scan
ning. Next, we put down a bunch of prescan blanks in steps 178A 
to 1794, and Ulen set our timer to tell us when the next field is to 
begin. 

To initialize our character scanning, we poke the display memory 
starting address in 0080 and 0081 and pick the number of rowsto 
be displayed by poking 0082. We then make port A an output and 
verify that it is on the top blank dot row with no vertical sync. This 
is done by step l 7C6 by clearing the port. The number of vertical 
dots per character is set by step l 7b5 and held in the X register 
for us. 

After initialization, we jump to the character putting-down sub
routine starting at 17d6. And here you'll find something new. 

Remember that on our early TVT 6% circuits, we had to have 
code that self-modifies to get by with short code sequences? We 
could beat this if only we had a jump-to-subroutine-indirect com
mand. This command doesn't seem to exist on the 6502, but we can 
fake it as shown in Fig. 2-10. You first jump to a "local" subroutine, 
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and then do a "jump indirect" to the scan microinstruction subrou
tine. The values in 0080 and 0081 tell us where to begin our scan 
microinstruction. 

So, to do a scan microinstruction, we go to a local subroutine that 
starts at 17d3. We then jump indirect to the display map, using the 
values in 0080 and 0081 as an address. At the end of the scan micro-

µP-6502 Stort-JMP 0100 
System-KIM- I + Stop-Reset 

Extra Memory+ 
TVT 65/a + 
Snuffler 
(See Fig. 2-6) 

Program Spoce-1 780-1 7dF 
Disployed-0400-0700 
IRQ-1780 ( 1 7FE 80; 1 7FF 1 7) 
Reserved Locations: 
0080-Disploy Lo Star! 
0081-Disploy Hi Siar! 
0082-# of Character Rows 

This program gives a transparent 1 6  x 40 orl 6 x 64 video display with high 1hrough
put. It uses the circuil of Fig. 2-6. Throughput and l ine length options ore shown 
in Chari 2-1 .  

Use the following as a default main program to be interrupted: 

0100 A9 1 0  LDA # 1 0  Start IRQ timer first cycle 
0102 8d OF 1 7  STA 1 70F continued 
0105 58 CLI Clear i nterrupt flog 
0106 4C 05 01 JMP 0105 Loop ti l l  scan interrupts 

Scan Program: 

IRQ -+ 1 780 68 CLV Wait for flybock pulse 
Entry 1 781 50 FE BVC 1 781 continued 

1 783 A2 01 LDX #01 Equalize lock transient 
1 785 CA DEX continued 

1 786 d0 Fd BNE 1 785 cont inued 
1 787 EA NOP Continue equal ization 
1 788 EA NOP continued 
1 789 EA NOP continued 

1 78A A2 1 4  LDX # 1 4  Set # of prescon blanks 
1 78C 20 1 8  1 0  JSR 10 18  // // /Prescon Blanks///// 
1 78F 48 PHA Equalize 1 1  µs 
1 790 68 PLA continued 

1 791 EA NOP continued 
1 792 EA NOP continued 
1 793 CA DEX One less prescon blank 
1 794 d0 F6 BNE 1 78C Done? 

1 796 A9 EF LDA #DF Set timer for next field 
1 798 8d OE 1 7  STA 1 70E continued 
1 796 EA NOP Equalize 6 µs 
1 79C EA NOP continued 

Fig. 2-9. 16 x 40 or 16 x 64 transparent TVT 6% 

56 



instruction, the RTS command undoes the original JSR, and we go 
back to the scan program. 

1 79d F0 00 BNE 1 79F continued 
1 79F A9 1 8  LDA # 1 8  Set Display Memory Start Low 
1 7A1 85 80 STA 0080 continued 
1 7A3 A9 1 0  LDA #10  Set Display Memory Start High 

1 7A5 85 81 STA 0081 continued 
1 7A7 A9 1 0  LDA # 1 0  Set # of choracter rows 
1 7A9 85 82 STA 0082 continued 
1 7Ab A9 FF LDA #FF Make A ports a l l  outputs 

1 7Ad 8d 01 17 STA 1 701 continued 
1 760 20 38 1 0  JSR 1 038 I I /Blank Equalizing Scan//// 
1 763 do oo BNE 1 765 Equalize 3 µs 
1 765 A2 08 LDX #08 Set # of dots per characler 

1 767 20 d6 1 7  JSR 1 7d6 GO TO LIVE CHARACTER SCANS 
1 76A 1 8  CLC Find next row slart address 
1 766 AS 80 LDA 0080 continued 
1 7bd 69 40 ADC #40 continued 

1 7bF 85 80 STA 0080 continued 
1 7Cl 90 0d BCC 1 7d0 Page Overflow? 
1 7C3 EE 81 00 INC 0081 Yes, fix 
1 7C6 A9 00 LDA #00 Clear A port (row 0, no sync) 

1 7C8 8d 00 1 7  STA 1 700 continued 
1 7Cb C6 82 DEC 82 One less character row 
1 7Cd d0 E l  BNE 1 760 Done with last character row? 

Exit +- 1 7CF 40 RTI Yes, exit to main program 
to main 
program 1 7d0 EA NOP No Page Overflow Bypass 

1 7d1  90 F3 BCC 1 7C6 continued 
1 7d3 6C 80 00 JMP (0080) ((Jump lo scan instruction)) 
1 7d6 20 d3 1 7  JSR 1 7d3 I I I /Live Character Scans//// 

1 7d9 EE 00 1 7  INC 1 700 Advance character dot row 
1 7dC CA DEX Done with last dot row? 
1 7dd d0 F7 BNE 1 7d6 No, do another dot row 
1 7dF 60 RTS Yes, exit character subroul ine 

Notes: 

IRQ Vector must be set to 1 780 ( 1 7FE 80; 1 7FF 1 7) 

Normal Sellings: Module A or D; OFF; + ;  64; FAST; No ICl 

KIM I nterval T imer must be jumpered to the IRQ l ine (APP- 15  to EXP-4) 

(continued on next page) 
scungy video scan program using snuffler. 
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Flowchart: r---------------, 

MAIN PROGRAM 
INTERRUPTED 

60 TIMES A SECOND. 
ONCE PER FIELD \i 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I • 

RTI 

- - - - ----------- I 

(1780) 

--,-17-81-) 
- S�����ER 

(178C) 

(17b7) 

NO 

(17bA) 

NO >---� (17dC) 

(l7df) 

Fig. 2-9. Cont'd. 16 x 40 or 16 x 64 transparent TVT 6% scungy video scan 
program using snuffler. 

The advantage of this route is that all your code can be in ROM 
or PROM, except for two page zero locations. The disadvantages are 
a few extra code words and the extra 5 microseconds it takes to do 
a scan microinstruction due to the JSR indirect command. But, 
there's enough room in the 16 X 40 display to still let you run on a 
normal horizontal frequency, and the 16 X 64 will need a much 
lower horizontal frequency anyway, so the extra 5 microseconds is 
something you can live with either way. 

To put down a row of dots, we do a jump to a local subroutine 
that does a jump indirect to the display map. The display map gives 
us our scan microinstruction to put down a dot row and then returns 
us to the scan program. 
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Start with a "local" JSR . . .  

1 7d6 20 00 30 JSR 1 7d3 

) then do a jump indirect . . .  

1 7d3 6C 80 00 JMP (0080)

) to the display map . . .  

00 AO AO LDY AO 
02 AO AO LDY #AO 

I I I 
I I I 
I I I 

XX 60 RTS 

which does the usual scan microinstruction. In this example, a "00" in 0080 and 
an "07" in 0081 point us to 0700. 

Step 0300 does a jump i ndirect to the display map and scan microinstruction 
starting address held in 0080 (low) and 0081 (high). This " JSR indirect" approach 
takes 5 code words and 5 microseconds extra. 

Fig. 2-10. How to "fake" a "JSR indirect" op code on a 6502. 

After a dot row is complete, step 17 d9 advances us to the next dot 
row, and 17dC checks to see if this is the final dot row. If our char
acter row is not finished, we keep repeating scan microinstructions 
until we are done. Then we exit our character putting-down subrou
tine to get back to our main scan program. 

To get a new row of characters, we take the old starting address 
in 0080 and 0081 and add hex 40 to it in step l 7bd. We restore the 
new value in 0080 and then check for a page overflow. If the page 
overflows, the carry bit sets, and we increment 0081 high address in 
step 17C3. If no page overflow happens, we use 17d0 and 17dl to 
take up exactly as much time as if an overflow happened, and then 
go on. 

When we have the starting address for a new line, we make sure 
the A port is on the top row, and then we go on to our dot row sub
routine again at 17d6. 

At the end of the last dot row of the last character row, we do an 
RTI and exit to the main program at 17CF. 

That's quite a bit of nesting for one program. Fig. 2-11 should 
clarify the action. Your main program is interrupted 60 times a sec
ond by the scan program. When the scan program wants a character 
row, it subroutine calls the live character scans sequence. When the 
live character scans coding wants to put down a single row of dots, 
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60 

SIXTY TIMES A SECOND A 
TIMER INTERRUPTS THE 

!MAIN PROGRAMl 
AND STARTS SERVICING . . .  

• 
. . .  SCUNGY VIDEO'S , 

jSCAN PROGRAM I 
WHEN THE SCAN PROGRAM 

WANTS TO PUT DOWN A ROW 
OF CHARACTERS, IT CALLS . . .  

• 
. . . A SUBROUTINE CALLED 
I LIVE CHARACTER SCANS I 

TO PUT DOWN A SINGLE DOT ROW. 
A "JSR IND IRECT" COMMAND IS FAKED 

BY STARTING A SUBROUTINE AND THEN . . .  

• 
. DOING A jJUMP IND IRECTj 

WHICH USES CODING THAT DOES 
NOT SELF-MODIFY TO GET US . . .  

• 
. . . TO THE USUAL CHEAP VIDEO 

jSCAN MICROINSTRUCTIONj 
WHICH PUTS DOWN A DOT ROW FOR 
US AND THEri RETURNS DIRECTLY TO 

THE LIVE CHARACTER SCAN SUBROUTINE. 

Fig. 2-1 1.  Software nesting for 16 x 40 or 16 x 64 transparent 
scungy video. 



it calls a local subroutine which does a jump indirect to the scan 
microinstruction on the display map. 

Things unwind just the way they built up. A finished scan micro
instruction subroutine returns to the live character scans subroutine. 
When live character scans is finished, it exits to the scan program. 
When the scan program is finished, it releases the interrupt, and the 
main program picks up where it left off. For the rest of the frame, 
the main program does its thing, and the tv goes ahead putting 
down blank lines without any external sync. 

Your Turn: 

Show how the vertical sync pulse gets out
put in  the right place. Hint: What happens 
if you set the V POS control far too low? 

If you understand where our vertical sync pulse comes from, you 
have a good start at understanding this circuit and program. Note 
that our vertical sync pulse takes zero lines of code. This is a pretty 
fair example of efficient coding. 

Chart 2-1 shows some options for this circuit and scan program. 
You can go 16 X 64 or 16 X 40 and either do so at the usual 60 times 
a second or use alternate-field snuffiing with 30 frames a second, just 
by changing seven words of code. 

The 16 X 40 programs run at nearly normal horizontal hold set
tings, while the 16 X 64s take the much lower hold settings and are 

Chart 2-1 . Options for 16  x 40 or 16  x 64 Transparent 
Scungy Video Display 

16 x 40 16 x &4 
16 x 40 High 1& x 64 High 

Step Function Normal Throughput Normal Throughput 

1 78b Prescan Blanks 1 4  1 7  14  1 7  
1 797 Timer Fine EF 1 F  E4 1 E  
1 799 Timer Coarse OE OF OE OF 
178d Blank Scan Length 18  18 00 00 
1 761 Equalizing Scan Length 38 38 20 20 
1 7AO Live Scan Length 18 18  00 00 
1 784 Lock Transient Adj 01? 01? 24? 24? 

Throughput 37% 67% 10% 52% 
H Line Time 66 1-1s 66 /,IS 90 ,..s 90 ,..s 
Hold Setting Normal Normal Low Low 
Field Rate 60/s 30/s 60/s 30/s 
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limited to small-screen black-and-white sets, as we detailed in The 
Cheap Video Cookbook. 

Throughput will be much higher for the alternate-field snuffling 
options, but the display may not be as bright and may flicker some
what. Question marks are .shown for the lock transient adjust values, 
since these may vary for your particular set. Pick whatever gives 
you a straight and stable display. 

Note that one of the options gives you a 16 x 64 display with 
50% throughput. 

SOME PERSPECTIVE 

What good is scungy video and where can we use it? Scungy video 
is useful to put video onto bottom-line systems where cost is very 
important and you want to hold both dollars and circuit complexity 
to the absolute minimum. There is no reason why scungy video can
not be added to most popular microprocessors for $10 or less for your 
total hardware costs of video display. 

For fancier systems, we are better off replacing the snuffler with 
fixed field and line timing. This timing can be generated totally by 
the CPU, it can be done with a fancy controller chip, or a counter 
or sync fill-in method can be used instead. Details on some of these 
methods were shown in the last chapter of The Cheap Video Cook
book. 

Note that many of the features of scungy video are easy to apply 
to older cheap video systems. The elimination of bipolar PROMs, 
the freeing up of large bunches of address space, the elimination of 
self-modifying code, and so on-all of these ideas are easy to use on 
fancy video displays at very low cost. Which of these concepts can 
you put to use? 
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C HAPTER 3 

Custom Characters 

How would you like to display any character or graphics chunk 
of your choosing on a cheap video system? If you add a pick-your
own feature to your cheap video system, you could: 

* Deliver a message in Swahili with Icelandic subtitles. 
* Do printed circuit layouts and logic diagrams right on the 

screen. 
* Directly display music scores or game pieces with minimum 

software. 
* Provide lower-case character shapes and descenders your way 

rather than someone else's. 
* Add one or two special symbols to a stock symbol or character 

set. 
* Eliminate completely any delivery hassles over "stock" charac

ter generators. 

Now, there is one sure-fire way to do all this. And it takes nothing 
in the way of special hardware. You can simply use a high-resolution 
graphics display with an enormous RAM, along with bunches of 
software. With this brute-force attack, you get the symbols out of 
a file somewhere and remap them onto a screen memory. 

The advantages of brute-force, hi-res graphics are ext�eme flexi
bility and the elimination of special hardware. The disadvantages 
are needing lots of RAM, very long software sequences, and vola
tility that destroys the characters or symbols on power-down or if 
a program goes astray. 

Do we have any other alternatives to brute-force, hi-res graphics 
or stock character generators? 
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Suppose you could build your own character generator and put 
up to 256 characters of your choice into it. You then simply replace 
the stock character generator with your new custom one. The new 
one has the characters or symbols you designed into it. As these 
characters are called, they appear on the screen. 

The characters are nonvolatile and available when you need them. 
You can call any character with a single software word from a single 
memory slot, rather than needing the eight or more words called for 
by brute-force methods. 

Even better, a character can be anything. It can be a graphics 
symbol or a chunk of a graphics symbol. You can put these symbols 
side-by-side or top-to-bottom to build up complete displays. For in
stance, a pair of symbols could be used to do a music staff with an 
8 X 16 bit resolution. Or a symbol quad could give you a 16 x 16 
chess piece. 

It turns out there is an integrated circuit beast called a 2716 
EPROM, short for Erasable and Programmable Read Only Memory. 
You get an EPROM empty, and then you fill it with your choice of 
ones and zeros in any pattern you like. If you make a mistake or 
change your mind, you simply erase the EPROM by shining strong 
ultraviolet light through a window in the top of the EPROM. This 
erases everything, and you can refill the EPROM with your choice 
of new material. 

You can reprogram as often as you care to. Once you get some
thing you like, you replace the existing character generator with your 
new EPROM, and your special symbols or whatever are on the air. 
A new adaptor module, somewhat similar to module "A" of the TVT 
6%, is needed to change the pinouts around. 

There are lots of advantages of using an EPROM as a character 
generator on a cheap video system: 

* You have total control over the character and chunk set. * Characters, chunks, or groups of chunks can be called with a 
single software word, dramatically minimizing display memory 
RAM. * The characters and chunks are nonvolatile, always there and 
ready to use. * The entire personality of your video system can be changed by 
changing a single integrated circuit. 

The disadvantages of EPROMs are that they may cost more than 
character generators and that a hardware change is needed for a 
different type of display. 

Let's explore using an EPROM as a character generator replace
ment. We'll first look at EPROMs and then build a simple Module 
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"E" adaptor for your TVT 6%. We'll find out that the EPROM route 
is so attractive that you may never want to ever again use a stock 
character generator. From there, we'll go on to next chapter's design 
example that lets you do a sophisticated music display directly on 
your minimum KIM-1. 

What we show you should easily work out on other systems and 
other graphics displays. 

EPROMs AS CHARACTER GENERATORS 

A character generator is a read only memory. An EPROM is a 
read only memory. The 2716 EPROM is bigger and faster than most 
character generators. So, simply by rethinking and relabeling things, 
you ought to be able to use either one to generate characters or 
graphics symbols. Fig. 3-1 compares the two methods. 

In Fig. 3-IA, we use a commercial character generator. There are 
six or seven input lines that accept ASCII coding. These are our 
"what-character-do-you-want" input lines. There are also three or 
four input lines that accept row timing information. These serve as 
our "what-row-of-dots-are-we-working-on" inputs. 

The number of input lines changes with the features offered in 
any character generator. If you have only 64 characters, then you 
need only six ASCII input lines. If you are generating characters only 
7 or 8 dots high, then you need only the three row commands called 
RI, R2, and R4. But, if you want 12 or 16 dot rows per character, 
you have to have a fourth row command called RS. These taller 
formats give you better lower-case descenders but take fancier tim
ing. They also put fewer characters vertically on the screen, or else 
take more throughput to put the same number of characters down. 

For each and every possible combination of inputs, a row of dots 
is output. These output dots are routed to a video shift register for 
conversion to serial video. Output dots may be five, seven, or eight 
in number. This depends on whether you are working with 5 X 7 
characters, 7 X 9 characters, or fancy graphics chunks. The 5 X 7 
character has the lowest bandwidth and the simplest timing. 

At any rate, if you take away all the fancy input names and call
outs, a character generator is nothing but a read only memory with 
9 to 11 inputs and 5 to 8 outputs. Since the 2716 EPROM has 11 in
puts and 8 outputs ( 2K X 8 ) ,  it can replace most any character 
generator you may want to use. 

You can get many different formats out of a 2716. At the extremes, 
you could get a single character out that was 8 bits wide and 2048 
bits high. Or, you could get out 2048 different characters, all one bit 
high by eight bits wide. 
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ROW TIMING l 
INPUTS 

ASCII 
CHARACTER 

SELECT INPUTS 

ROW TIMING l 
INPUTS 

ASCII 
CHARACTER 

SELECT INPUTS 

+ 5 V  

i 
------- RB 

R4 
R2 
R I  

------- AG 
A5 
A4 
A3 
A2 
Al 
AO 

l 

CURSOR 
OR CS 

I 
cs 

Q7 
QG 
Q5 
Q4 
Q3 
Q2 
QI 
QO 

-------
-------

�------

{A) Stock character generator. 
CU RSOR 
OR CS +5 V 

i I 

------- AIO 
A9 
AB 
A7 Q7 -------

------- AG QG 
A5 Q5 
A4 Q4 
A3 Q3 
A2 Q2 
Al QI -------
AO QO -------

l 
(8) EPROM used as character generator. 

DOT OUTPUTS 
TO VIDEO SH IFT 

REGISTER 

DOT OUTPUTS 
TO VIDEO SHIFT 

REGISTER 

Fig. 3-1. If you replace a character generator with an EPROM, you gain 
complete control over the characters and graphics symbols. 

These extremes are seldom useful. Most often, we would be more 
interested in reasonable combinations of input words and output 
dots. Several of these format options are shown in Fig. 3-2. 

In Fig. 3-2A, we use 8 character select inputs and 3 row select 
inputs. This gives you 256 different characters. Each character is 8 
bits wide by 8 bits high in an 8 X 8 matrix. Most often, the cursor is 
stored as one of these 256 characters. Since we have used all eight 
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+sv  

r 
AIO cs 

ROW SELECT R2 A9 
RI AS 
A7 A7 
A6 A6 
AS AS 

CHARACTER A4 A4 
SELECT A3 A3 

A2 A2 
Al Al 
AO AO 

(A) 256 characters, 8 X 8 dot matrix. 

l" ROW 
SELECT RZ 

R I  
+SVo-o 

FONT _ 
SELECT � 

AS 
A4 

CHARACTER A3 SELECT 
A2 
Al 
AO 

+sv  A7  (CURSOR) 

AIO cs 
A9 
AB 
A7 
A6 
AS 
A4 
A3 
A2 
Al 
AO 

+ s v  

{" 
AIO cs 

ROW SELECT R2 A9 
RI AS 

CURSOR OR A7 REVERSE 
A6 A6 
AS AS 
A4 A4 

CHARACTER A3 A3 SELECT A2 A2 
Al Al 
AO AO 

-

(B) 128 characters, 8 X 8 dot matrix, 
cursor or reverse video. 

{" ROW 
SELECT RZ 

RI 
A7 OR RS 

A6 
AS 
A4 

CHARACTER A3 SELECT 
A2 
Al 
AO 

+s v (OR A7) 

AIO cs 
A9 
AB 
A7 
A6 
AS 
A4 
A3 
A2 
Al 
AO 

(C) Two fonts of 1 28 characters each, (D) 128 characters, 8 X 16 dot matrix. 
8 X 8 dot matrix. 

Fig. 3-2. Some format options for 2K x B EPROM character generators. 

input lines available to us on a data bus to pick characters, there is 
no input bit left for the cursor. So, the cursor becomes a stored 
character instead. 

We have eight output lines. If we want only five, six, or seven of 
these, we simply output blanks on the unused lines, or else leave 
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them unconnected. Outputting blanks is the better choice, as it 
gives us compatibility with graphics outputs that may need all eight 
lines. 

In Fig. 3-2B, we get 128 characters, each an 8 X 8 dot matrix. This 
frees up data bus line A7. We can then use A7 as a software con
trolled cursor, or we can use it to reverse selected characters, giving 
us black characters on a white background, or vice versa. To do 
these options, you make one half of the words inside the EPROM 
the cursor symbol, or you make one half of the words inside the 
complement of the other half. 

In Fig. 3-2C, we get two fonts or graphics groups of 128 charac
ters each. This lets you pick either font with a jumper or a switch, 
and still lets you use data bus line A7 as a cursor. This time, A7 
forces the outputs high at the chip select input, giving you all white 
boxes. With some simple extra hardware, you can pick up the wink
ing "jail" type cursor like we did on the TVT 6% ( Fig. 4-3, pp 160-
161 of The Cheap Video Cookbook ) .  

This combination might be useful to let one chip serve for two 
different games, or to provide special symbols for two different lan
guages. 

In Fig. 3-2D, we get 128 characters again, but this time we can 
make the characters up to 16 bits high by 8 bits wide. The 8 X 16 
format is very useful for graphics chunks, such as are needed in the 
music system we are going to build. An 8 X 12 font has advantages 
if you want your display to include lower-case characters with at
tractive descenders. 

Somehow, we have to get four inputs to give us a choice of sixteen 
rows. We have two ways to do this. We can add a new timing line 
RB and always generate the 12 or 16 dot high character we need. 
This fixes everything to the full height, and frees up line A 7 for the 
cursor. 

Or, we can use data bus line A7 to be an "upper or lower chunk" 
selector. This has two advantages. First, it is directly compatible 
with the existing TVT 6%, and second, it lets you mix 8 X 8 and 
8 X 16 characters inside the same character generator. This gives you 
many more characters and incredibly more display flexibility. For 
instance, you can single or double underline characters, and only 
those characters with descenders would need double chunks. 

By the way, it is a simple matter to provide an extra row command 
on the TVT 6% if you really want to. Simply rework the decode 
PROM slightly and add a new wire to reach the unused plug-in 
module pin 12. 

So, as you can see, there are lots of new format options you have 
when you replace a character generator with an EPROM. Can you 
think of any more? 
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GRAPHICS CHUNKS 

For alphanumerics, you use each character separately as it comes 
out of the character generator or EPROM. Blanks for the undots 
between characters are gotten either by coding in your PROM or 
by hard-wired inputs on the video serial shift register. 

To do graphics type stuff, you usually do not want these blanks. 
Instead, you probably want each symbol to butt up against the next 
one. The individual chunks then combine to give you a complete 
picture. Since the TVT 65h video shift register accepts a full 8-bit 
wide dot word, we can easily do both graphics and alphanumerics 
interchangeably. The same feature is usually possible but may take 
lots of hardware modifications in other terminals and displays. This 
is particularly true if the video shift register is less than the full eight 
bits long. 

Fig. 3-3 shows two ways to put together graphics chunks to get 
bigger symbols. In Fig. 3-3A, we combine the 8 X 8 upper and lower 
halves of a G-clef to get a treble music staff. In Fig. 3-3B, we use four 
adjacent symbols to build a rook for a chess display. 

Using graphics subelements like this lets you build up attractive, 
high-resolution symbols with a minimum of software and RAM stor
age. For instance, the 16 X 16 chess square has a 256 dot resolution, 
but it is put on the screen with only four words of storage. A full 
chess screen takes only 256 RAM locations, compared to the 2048 
that would be needed in brute-force, hi-res graphics. The software 
overhead and access times are also much better when you use the 
call-from-a -character-generator approach. 

USING EPROMs 

The 2716 is often a top choice for EPROM use. It was one of the 
first to use a single +5-volt power supply. It is simple to program 
and erase. You can program the 2716 in-circuit by changing the volt
age on a single pin. The 2716 is an industry standard device with 
standard pinouts, and it is widely available. 

While the 2716 was initially an Intel product, the part is second
sourced by just about every semiconductor house. The usual dis
tributors and suppliers that list in the electronics and hobby com-

IMPORTANT NOTE: Do NOT use a Texas Instruments 
2716! This is an obsolete, oddball, multisupply part. 
The Texas Instruments part that is identical to the in
dustry standard 2716 is called a TMS 2516. 
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(A) Two chunks. 8 X 16 
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(8) Four chunks. 

Fig. 3-3. How 8 x 8 graphics chunks may be combined into larger symbols. 
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puter magazines almost all carry the 2716, so the part is also easy to 
get. More technical details on the 2716 are shown in Appendix A. 

Sources of the 2716 include American Micro Devices, Fairchild, 
Intel, Motorola, National, Texas Instruments, American Microsys
tems, Electronic Arrays, Toshiba, Mostek, Synertek, Hitachi, Mitsu
bishi, and Computer Microsystems. 

Erasing an EPROM 

When you get a new EPROM from the factory, all of the bits in 
all of the locations are supposed to be in the "one" or output high 
state. To ,make the part useful, you go through an electrical pro
gramming\ procedure that changes the ones you don't want into 
zeros. The net result is a truth table programmed into the EPROM 
that meets your needs. 

EPROMs are nonvolatile memory. They will hold your truth 
table forever, with or without power applied. To get back to the 
"empty" state, an EPROM is erased with high-intensity, short-wave
length ultraviolet light. Fig. 3-4 shows a typical 2716. Unlike the 
usual 24-pin integrated circuits, the 2716 has a transparent lid, usu
ally made as a quartz window. To erase the chip, you shine strong 
ultraviolet light through the window. 

Unfortunately, there is no sane way to erase a single bit. You have 
to erase the entire 16,384 locations all at once. If you happen to make 
a programming error that changes a one to a zero, you have to erase 
everything and start over. If you happen to forget a zero, you can 
simply reprogram the single bit as needed. Thus, you can put any 

Fig. 3-4. Typical 2716 EPROM. 
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number of zeros anywhere at any time, but to erase any one, the 
entire chip has to be erased. 

Ordinary fluorescent lights and poster "black lights" do not put out 
short enough wavelengths of uv light to let you erase an EPROM. 
To erase your EPROM, you can leave it in direct sunlight outside 
for a week, or you can erase in twelve minutes or so with a suitable 
lamp specially designed to output short-wave ultraviolet energy. 

You can buy lamps just for EPROM burning. A few commercial 
sources of EPROM erasers are listed in Chart 3-1. 

Chart 3-1 . EPROM Eraser Sources 

Electrolabs 
Box 6721 
Stanford, CA 94305 
(41 5-321 -5601)  

I nformation Central 
5521 Broadway 
Chicago, IL 60640 
(312-271-6418) 

Ultra Violet Products 
5100 Walnut Grove Avenue 
San Gabriel, CA 91778 
(213-285-3123) 

All commercial EPROM erasers have special plastic shields that 
block uv energy. They usually also have a lockout safety switch that 
keeps the lamp from lighting when the trar holding the EPROMs is 
accessible. The EPROM should be held in protective foam during 
erasure. Several EPROMs can usually be erased at once. 

IMPORTANT SAFETY NOTE: Don't EVER look di
rectly at short-wavelength ultraviolet light! Permanent 
eye damage can result. 

Should you have just a single EPROM or two to erase, someone 
at a local computer club will almost certainly have a lamp you can 
use. Sometimes rockbound mineral lamps can be used if the filter is 
removed and the bulb is the short-wavelength type. 

'It's a good idea to erase all EPROMs completely before program
ming them, just in case a "new" chip has been preprogrammed. 

Programming an EPROM 

The 2716 is much easier to program than just about any earlier 
EPROM. All programming is done with the usual TTL system level 
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signals, except for a single supply pin that gets manually switched 
to a higher supply voltage. 

Chart 3-2 summarizes the rules for reading and programming a 
2716 EPROM. There are really only three pins you have to worry 
about, the chip enable I program pin ( 18 ) ,  the output enable pin 
(20 ) ,  and the programming voltage pin ( 21 ) .  Here's what they do: 

* Pin 18 is the chip enable. Hold it low to read the chip. Hold 
it low to program the chip. Only after all inputs are stable and 
after you apply the right data, the chip enable is brought high 
once for exactly 50 milliseconds and then brought low again 
to complete programming. * Pin 20 is the output enable. Hold it low to read and high to 
program. 

* Pin 21 is the programming voltage pin. Power it from +5 
volts for read and from +25 volts for programming. The pro
gramming +25 volts should be current limited to 40 milli
amperes. 

So, to read, make VP +5 volts, ground OE and ground CE. To 
program, make VP +25 volts, make OE high, and ground CE. Then 
feed the desired address to the address pins and the desired data to 
be pro�mmed to the output pins. The output pins will act as inputs 
since OE has them floating. After the address is stable, the data is 
stable, and +25 volts has been applied to VP, bring CE high once 

Chart 3-2. Three Operating Modes of the 2716 

I. To READ the memory: 

Apply + 5  volts to PROGRAMMING VOLTAGE VP (pin 21 ). 
Make CHIP ENABLE CE (pin 18) low. 
Make OUTPUT ENABLE OE (pin 20) low. 

I I .  To PROGRAM the memory: 

Apply + 5  volts to PROGRAMMING VOLTAGE VP (pin 21). 
Make CHIP ENABLE 'O'E' (pin 18) low. 
Make OUTPUT ENABLE UE' (pin 20) high. 
Apply + 25 volts to PROGRAMMING VOLTAGE VP (pin 21). 
Then - select the correct address and apply the data 

word to be programmed to the output pins. 
Then bring CHIP ENABLE GE high once for exactly 
50 mi l l i seconds. Then return CE low. 

Bring VP back to + 5 volts when f in ished. 

I l l .  To DESELECT the memory (standby): 

Apply + 5  volts to PROGRAMMING VOLTAGE VP (pin 21). 
Make CHIP  ENABLE C'E (pin 18) high. 
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for exactly 50 milliseconds. Then return CE low before any address 
is changed. 

All bets are off if you hold CE high during programming or if you 
apply high VP voltage without putting the usual +5 on the chip 'first. 
Be very careful to observe these two rules! 

There's no need to program an entire EPROM at once. You can 
use part of it, and then add to your code later. 

In theory, you could program your EPROM with nothing but a 
bunch of slide switches, two power supplies, and a handy source of 
SO-millisecond single-shot pulses. But there is absolutely no way you 
can hand program 16,384 bits of information without a mistake. For 
EPROMs this large, something saner and more automatic MUST 
be used. 

There are lots of 2716 programmers available. Some of these are 
expensive stand-alone machines. Many work with older EPROMs 
and thus are much more complicated than needed for 2716s. Some 
distributors will program 2716s for you free, at least the first time. 
Usually they will want the code in some inane form like paper tape 
or punched cards. 

Fig. 3-5 shows a simple, low-cost commercial EPROM program
mer that attaches to a KIM-1. Chart 3-3 lists a few sources of rea
sonably priced programmers. Check recent hobby computer maga
zine articles for do-it-yourself alternatives to these commercial de
vices. Programming a 2716 requires almost negligible hardware on 
top of an existing micro such as a KIM-1. 

A simple attachment to convert your KIM-1 into an EPROM pro
grammer is shown in block diagram form in Fig. 3-6. All you need 
is a CMOS binary counter and a regulated power supply. Parts cost 
is around $3. 

Courtesy Optimal Technology, Inc. 

Fig. 3-5. An EPROM programmer that fits a KIM-1 or other microcomputer. 
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Chart 3-3. EPROM Programmer Sources 

Microproducts 
1024 Seventeenth Street 
Hermosa Beach, CA 90254 
(21 3-374-1673) 

Ol iver Audio Engineering 
676 W. Wilson Avenue 
Glendale, CA 91203 
(213-240-0080) 

Optimal Technology, Inc. 
Blue Wood 1 27 
Earlysville, VA 22936 
(804-973-5482) 

Here's how it works. Eight of the KIM's parallel output ports are 
used to supply the data for programming. Programming addresses 
are provided by the binary counter whose length matches the 
needed 11 address lines. 

Four additional parallel I/ 0 lines are also used. CLEAR resets 
the binary counter if it is brought high. COUNT advances the binary 
counter when it is driven high and then low again. OUTPUT EN
ABLE controls the output enable, forcing oE high during pro
gramming and oE' low for read or verify. The final CHIP ENABLE 
line is held low for both read and program, except that, during pro
gramming, CE is brought high once for exactly 50 milliseconds for 
every word to be programmed. CE is then returned low before any 
input or voltage changes are made. 

Your software is mostly a bunch of timer loops. You first initialize 
things, resetting the counter, making CE low and then OE high. 
Then you manually change the program voltage to +25 volts from 
a 40-mA current-limited source. You then clock the binary counter 
to pick the addresses and apply the data to the correct output pins 
of the 2716. The software times out the positive 50-millisecond chip 
select time after each desired program address and data is applied. 

Most often, you'll get your data out of RAM storage in sequential 
order as needed. Obviously, you should check this entire data table 
before starting. Since you can make several programming passes, 
this table needn't be the full 2048 words in size. For instance, you 
can program 512 words at a time using pages 2 and 3 of a bare 
KIM-1, and make four passes to complete burning the whole chip. 

To do this, adjust your software to let the counter run until it gets 
to the right address, and only then start applying the 50-millisecond 
CE high pulses. The whole process takes around two minutes. You 
can follow programming with a verify check, testing everything to 
be sure it is correct. 
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Your Turn: 

PARALLEL 
PORT "B" 
CONTROL 

PARALLEL 
PORT "A" 

DATA 

+ 5 V  

Show the software needed to  program a 
271 6 EPROM on a KIM-1 . 

CLEAR 

COUNT 

OUTPUT ENABLE 

CHIP ENABLE 

+ 5 V  

V, 
1-
:=, 
c... 
1-
:=, 
0 

330 

EPROM 2716 

READ 

1N4 148 

OE 

AO .___....____. QO 
CLK RST 

V, 
u.J 
V, 

Cl 
Cl 

VP 

0.� l 

PROGRAM 

QlO 

+5V  

4040 
CMOS 

COUNTER 

-

+25-VOLT 
REGULATED 

SUPPLY, 
40 mA L IMIT 

Fig. 3-6. This circuit and suitable software let you program a 2716 with your 
KIM-1 microcomputer. 
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Chances are you can find someone in a local club to burn a single 
EPROM for you or loan you a programmer. Only, don't expect him 
to hand load 2048 words of code for you, unless he happens to be a 
very good friend. 

Some EPROM Programming Hints 

Here are three hints that may save you hours of grief if you do 
build your own EPROM programmer : 

1. If you are using a separate power supply for VP, make the 
ground connection directly to the EPROM card, and connect 
the positive supply directly to the 25-volt regulator used for 
programming. These precautions keep noise off the rest of the 
computer bus. 

2. Make sure there is no way to suddenly discharge a bypass ca
pacitor charged to 25 volts back into the computer's +5-volt 
bus. The 330-ohm resistor shown in Fig. 3-6 limits discharge 
current to a safe value. Spiking the power supply on a micro
computer can raise all sorts of havoc. 

3. Be sure everything else is removed from the parallel ports when 
you are programming your EPROM. Leaving a keyboard en
coder connected, or having a short to ground on, say, PA7, left 
over from previous cheap video use does the strangest things 
to your EPROM data. 

DESIGNING A CHARACTER SET 

Character and graphics dot programs for an EPROM are much 
easier to design than the usual EPROM stuff, since you can look 
at your results ahead of time, and since there is a one-to-one corre
spondence between the stored code and the dots that appear on the 
screen. 

Fig. 3-7 shows a form that makes designing characters and graph
ics simple and orderly. 

A typical symbol is shown listed on the form in Fig. 3-8. The ad
dress of the character is located in the upper boxes. This is the base 
location in the EPROM where you want the symbol or character to 
reside. The hex coding for the various dot rows goes on the left. This 
is the data you want stored in your EPROM at the symbol location. 
Note that there are actually eight different data locations, decided 
by the row code selected. The address code is the base address for 
code 000. We'll see a detailed example of how to use these forms 
later when we do a music display. 

There are several ground rules that you'll want to follow to make 
your symbols more attractive. 
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Fig. 3-7. This form helps you design your own EPROM characters or 
graphics chunks. 

* Use the lowest resolution you can. Counting on detail from 
every last dot may limit your display to quality video monitors. 
Tv sets may smear adjacent dots together and make the sym
bols illegible. 

* Rely on the overall, dominant, or bulk shape to give the viewer 
all he needs to know to tell the character or symbol from the 
others. 

* High resolution vertically is much easier go get than high reso
lution horizontally. 

* Make all the symbols look like they "belong" together. Use the 
same style, height, and the same general overall font "vibes." 

* Test to be sure adjacent characters or chunks work well to-



gether, particularly in graphics where subelements have to 
combine in building a larger image. * Check your results on an actual video display. There are 
enough differences between pen-on-paper and electrons-on
screen that on-screen testing is a must. 

Actually, we'll be violating our "low resolution" rule on the music 
display, just to show you the potential of hi-res graphics. As a result, 
our music will look best on a monitor and may not look too good on 
a cheap to average-quality tv set. 

Fig. 3-8. Example of how to use 
EPROM character design block. 

i- - - - -----------

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 I 1 1 1 1 l b  I F I  

L _ _ _ _ _ _ _ _ _ ____ _ 

You can emulate your EPROM character generator symbols on 
just about any microcomputer or terminal that lets you put chunks 
or dots on a screen. Fig. 3-9 shows a way to put large symbols on an 
Apple II that makes it easy to create and change your symbols. This 
program is good to show how well graphics subelements will work 
together. 

To use the program, you type R, L, U, or D to move the cursor to 
a desired square. 'T' lights the square; "O" puts it out. "X" clears 
everything. A red cursor appears briefly after every keystroke, so 
if you watch for this indicator you can always know where you are 
on the screen. 

Be sure to do some sort of character emulation ahead of time. For 
example, the music display presented in the following chapter had 
to be redone several times in order to make the notes and the note 
dots look good together. 

We'll pick up more details on designing characters and symbols 
in just a bit. But, first, let's go on and build up a simple adaptor that 
lets you plug an EPROM into your TVT 6% or other video display 
system. 
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This BASIC program is useful to design your own characters and graphic shapes. 
It's especial ly good to see how the symbols wi l l  work and how they wi l l  look on 
a screen. 

The program is shown for an Apple I I .  

10 REM: CHARACTER GENERATOR SYMBOL EMULATOR FOR APPLE I I  
1 1  REM: U = UP D = DOWN L= LEFT R= RIGHT X=CLEAR 1 = LIGHT 0= DARK 
1 2  REM: CR=CURSOR RUN +CR=START CTRL C =STOP 

1 5  DIM A$( 1 0): X=0: Y = 0  

20 INPUT A$ 
30 IF A$= "R" THEN GOSUB 300 
40 IF A$= "L" THEN GOSUB 400 
50 IF A$= "U" THEN GOSUB 500 
60 IF A$="D" THEN GOSUB 600 
70 IF A$= "X" THEN GOSUB 700 
80 IF A$=" 1 "  THEN GOSUB 800 
90 IF A$= "0" THEN GOSUB 900 

1 00  
1 1 0 
1 20 

1 30 

Z= SCRN(X,Y):COLOR= l :  PLOT X,Y 
FOR N= 1 TO 1 25: NEXT N 
COLOR =Z: PLOT X,Y 

GO TO 20 

200 REM: 20 GETS COMMAND; 30-90 PICK SUBROUTINE; 100- 1 20 BRIEFLY 
2 1 0  REM: FLASHES CURSOR; 1 30 LOOPS FOR NEXT COMMAND. SUBS FOLLOW: 

300 IF X<40 THEN X=X+ l :  RETURN 
400 IF X >O THEN X=X-1 : RETURN 
500 IF Y >O THEN Y = Y-1 :  RETURN 
600 IF Y <40 THEN Y=Y+ 1 :  RETURN 
700 GR: RETURN 
800 COLOR=6: PLOT X,Y: RETURN 
900 COLOR=0: PLOT X,Y: RETURN 
1000 END 

Notes: 

To use the program, type RUN followed by a RETURN. "U," "D," "R," and "L" 
move the cursor around. The cursor briefly appears in red after each activily. 
" 1 "  l ights the cursed position, while "O" puts it ou1. A RETURN musl follow each 
command. CTRL-C stops the program. The display is a very large dot matrix 
40 x 40 array. 

Fig. 3-9. Character generator symbol emulator. 
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BUILDING EPROM ADAPTOR MODULE "E" 

All you really need to put a 2716 EPROM onto a TVT 6% or other 
computer or terminal that has 2513 style pinouts is a simple adaptor 
to rearrange the pins. Fig. 3-10 shows details on a Custom Pro
grammed EPROM Module "E." 

You can make this adapter from a 24-pin DIP carrier, a small PC 
card, a 24-pin socket, and five jumpers. The adaptor rearranges the 
pins so that a 2716 looks like the "enhanced" 2513 pinout arrange
ment we used on the TVT 6%. 

On the 2716, programming pin VP is permanently held at +5 volts. 
The output enable and chip enable pins are tied together and routed 
to the module's c1:1rsor input. The cursor input is held grounded by 
the OFF position of the cursor switch. With the cursor switch in the 
CON position, a 'T' on upstream tap line VD7 will flash the "jail" 
cursor as is done on modules "A" and "D." Module pin 12 is not used, 
while pin 1 provides a permanent ground to the serial input of the 
video shift register. 

Construction might go something like this : 

Carefully inspect the circuit board for opens, solder bridges, 
etc. Try tinning one of the pads on the board. If there is any 
problem with easy solder adhesion, carefully clean all areas 
to be soldered with an ordinary pink eraser. Avoid handling 
the board, as this will make soldering harder. 

( Place the PC board bare side up with the notch at the up
per left. Insert a 24-pin IC socket in the 24 holes at the up
per right. Put any code notch indicating pin one of the 
socket at the top of the board. Bend all the socket pins flat 
against the foil and solder in place. Important note: Be sure 
the socket goes in the upper righthand corner. 

( Insert a bare wire jumper in the bottom two holes and solder 
in place ( Fig. 3-l0C) . 

( Insert a bare wire jumper in the two holes just to the left of 
the socket and solder in place. 

( Turn the PC board over so that the foil side is up and the 
notch is at the upper right. Try fitting the 24-pin PC carrier 
onto the unused and unsoldered 24 foil pads. The jumpers 
we are going to add in the next four steps are not to inter
fere with our later mounting of this socket. So, be sure 
jumper leads are routed "end around" and not through any 
pads. 

( Note the pin numbering ( Fig. 3-10D) . The rightmost col
umn refers to DIP Carrier numbers and goes vertically from 
pin 1 at the top to pin 12 at the bottom. The next column 
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Custom Programmed 

Parts List 

1 -271 6  EPROM, programmed as wanted 
1 -24 pin DIP socket 
1 -24 pin DIP carrier 
1 -Circuit board "E" 
2-jumpers, bare, #24 solid wire 
3-jumpers, insulated, #24 solid wire 

-solder 
-flux remover 
-protective foam 

,., 
QO 

QI 10 

01 
II 

03 
13 

04 
14 

05 
15 

Q6 16 

07 
17 

GHQ 12 

cl 18 

ii[ 10 @ NC 
2716 

(A) Schematic. (8) Foil pattern. 

Fig. 3-10. Module "E" 



E 
EPROM Module 

How It Works 

8-bit character or chunk code is input on pins VD0 
through VD7. Corresponding 8-bit dot code appears 
on outputs A through H. Row inputs R l ,  R2, and R4 
select dot row. · Input VD7 can act as cursor, font 
select, or upper /lower chunk select as desired. 
CURSOR input is grounded to provide display, made 
high to float outputs and output all-white box. 

I 
BARE WIRE/ 

JUMPERS (2) 

· -

(C) Bare side. (D) Foi l  side before mounting 
DIP carrier. 

Normal Settings: Cursor OFF; FAST clock; WIDTH set to EIGHT pulses 

construction details. 
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over is the EPROM Socket and numbers vertically again 
with pin 1 at the top and pin 12 at the bottom. Unlike our 
earlier modules, both the DIP Carrier and the EPROM 
socket number "clockwise" when viewed from the bottom 
or foil side. 

) Study Fig. 3-IOD. Put an insulated wire jumper between 
EPROM socket pin 1 and DIP Carrier pin 13. Route this 
lead well to the right, leaving the pads at DIP Carrier 14 
and DIP Carrier 15 exposed. 

( ) Route a fairly long insulated wire jumper from DIP Carrier 
pin 14 to EPROM socket pin 23. Be sure this wire goes 
around the bottom and not through the pins. Test your DIP 
carrier again to make sure it will still fit. 

( ) Route a similar insulated wire jumper from DIP Carrier pin 
15 to EPROM socket pin 22. Be sure this wire also goes 
around the bottom and not through the pins. 

) Neaten the position of these three jumpers, and once again 
check to make sure the dip carrier will fit. 

( ) Check to see how hard it will be to solder your dip carrier 
in place. Find a suitable small-tipped soldering iron. 

( ) Study Fig. 3-11. If you have to, cut one each of the small 
dual barbs on each pin end of the DIP Carrier as shown. 
Again, if it will help soldering, file off any flanges or any
thing else that keeps you from soldering at close range. Do 
not file the insulating portion of the carrier down so close 
that soldering heat can loosen the pins. Remove only as 
much material as you have to in order to solder the carrier 
in place. 

BEFORE ttl I CUT OR FILE . 
I 

AFTER 

H 
(A) Trim excess material outside pins. 

BEFORE AFTER 

t t-
(B) Clip one barb off each pin. 

Fig. 3-11 .  The 24-pin DIP carrier may have to be modified to ease soldering. 
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) Carefully tin each of the remammg 24 pads on the PC 
board, leaving a nice, even, medium-height bump of solder 
on each pin. 

( ) Tin the pin ends of the dip carrier that are to be soldered 
to the PC card. 
Carefully align the Dip Carrier to the PC board. Then "re
flow" solder the pins together. Fig. 3-12 shows how the 
board will look after the DIP Carrier is in place. 

( ) Use a magnifying glass to make sure all pins are in fact 
soldered and no pins are shorted to adjacent ones. 

( ) Clean the board with flux remover or lacquer thinner. 
( ) Press the board into a piece of protective foam. Then insert 

the already programmed 2716 EPROM so that pin 1 is near
est the notched corner. 

Fig. 3-12. Foil side of Module "E" 
after reflow soldering DIP carrier. 

This completes the assembly of your Module "E." Always store 
module "E" in protective foam when not in use. If you are using 
several 2716s, keep them in foam as well. 

CHECKOUT 

For a quick test, get your TVT 6% up and working with alpha
numeric Module A or D and a random character load. Then unplug 
the alpha module and plug in Module "E." A new random display 
should result, depending on the program you put in your EPROM. 

Your choice of format per Fig. 3-2 decides what you are going to 
do with lead A 7, how your cursor is to be entered, and whether or 
not you will use a Row 8 line. For most uses, keep the cursor switch 
in the OFF position to force grounds on the EPROM's enable inputs 
as needed for a live output. 

Any troubles in your display can give you hints as to EPROM pro
gramming difficulties. If the eighth output line is always a zero, pos
sibly a hard-wire ground was left on the parallel port during pro-
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gramming, or else the WIDTH pot is giving you nine clocks per load. 
If the bottom half of all characters is missing, the programmer 
stopped short of filling the EPROM. If the whole display is blank, 
but everything else is apparently "alive," you may have an unpro
grammed but erased EPROM. Double or funny single characters 
can usually be traced to incorrect coding on your worksheets, or an 
error between the worksheet, your RAM loading, and the actual 
EPROM programming process. Lots of extra dots may mean an in
complete previous erasure. 
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C H A P T E R  4 

A Music Display 

Let's do a detailed design example to see just how you can use a 
2716 EPROM in a custom alphanumeric or graphics display. Fig. 
4-1 shows a photo of a music display that has some very fancy fea
tures but still runs on a bare-bones KIM-I or other "minimum" 
micro. 

The features of our music display are listed in Chart 4-1. We have 
whole, half, quarter, eighth, and sixteenth notes, any of which can 
be dotted, Ratted, sharped, or naturaled. There are lots of measure 
and line symbols, a few of the more important keys, and four popular 
tempos. Above-staff notation includes guitar chords, loudness, ties, 
repeats, and so on. Additional ties and a location pointing cursor 
can go below the staff. 

Chart 4-1 . Features of the Music Display 

Monotonic, approximately five measures across the screen. 
Number of l i nes varies with display and system. 

Whole, half, quarter, eighth, and sixteenth notes, any of which 
can be made sharp, flat, or dotted. Treble low A through 
high G, or bass equ ivalent. 

Seven different measure symbols, five keys, four tempos. 

Treble and bass clefs, rests, repeats. 

Guitar chords A-F, sharps, minors, minor sevenths. 

Single and double repeats, loudness, d iminuendo, crescendo, 
loudness, s lurs, ties. 

Ful l  cursor control. 

Above-staff, staff, and below-staff space separately accessible. 

Expandable and modifiable. 
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Fig. 4-1. Music display using EPROM character generator. 

On a bare-bones KIM-I, there's room for one music line. This gives 
you around five measures on the screen at once. It's easy to extend 
this to almost any size display you want, just by adding memory, or 
going to a slightly larger micro. 

Our music display takes either a video monitor or a very good tv 
set for its display. Results may not be too attractive on an ordinary 
tv set. Only a single note is displayed at a time in any position. We'll 
see how to add multiple notes later on. 

What we'll be looking at is by no means limited to music. The 
same ideas will work to give you chess pieces, tanks, foreign lan
guages, PC layouts, circuit symbols, or galactic transports. It all 
depends on your character set and your display plan. 

THE DISPLAY PLAN 

The first step in designing something new in a custom display 
is to set up an overall display plan. Are you going to use alphanu
merics only, mixed alphas and graphics, graphics symbols only, or 
larger graphics symbols that are built up out of combinations of 
smaller chunks? How many chunks or characters vertically? How 
many h01izontally? Do the chunks always abut, or are there always 
to be undots between characters? Is everything 8 X 8 or 8 X 16? Or 
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8 X 8 DOT MATRIX 

\ 

0 2 3 

HORIZONTAL CHUNK POSITIONS 
(54 PER LINE) 

ABOVE-STAFF CHUNK 

UPPER-STAFF CHUNK 

LOWER-STAFF CHUNK 

BELOW-STAFF CHUNK 

EACH DOT IS FOUR 
SCAN LINES HIGH 
(2 LINES/FIELD; 
2 FIELDS/FRAME) 

Fig. 4-2. Four vertical 8 x 8 chunks are used for music display. 

are we going to mix matrix sizes to suit the display and still get as 
many characters or chunk symbols as possible? 

Your answers to these questions decide just how you are going to 
build your custom display. Always start with these basic questions 
and then work from there. 

For a music display, it turns out convenient to use a matrix that 
is 8 dots wide by 16 dots high for many of the symbols. Fig. 4-2 
shows a useful display plan. 

We will use a graphics space that is four chunks high by 54 chunks 
wide. The width is set by the tv or monitor capabilities and is ad
justable. This is typically enough space for five or six measures. Our 
initial plan will be for a single line of music; later you can easily 
extend things with more memory and different scan software. 

We'll make a single dot four lines high. To do this, we will use 
two lines on the first field and two additional lines on the interlaced 
second field. Anything less than this looks pretty bad. 

Our vertical display space is made up of four chunks, the above
staff chunk, the upper staff chunk, the lower-staff chunk, and the 
below-staff chunk. The middle two chunks are paired with software 
to give us an 8 x 16 dot symbol space. The actual staff lines are 
somewhat above center in this 8 X 16 space, since below-staff notes 
( treble low A through D )  are more common than above-staff ones. 
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The above-staff chunk gives us room for guitar chords, repeats, 
diminuendo, ties, and stuff like that. The below-staff chunk will usu
ally be 'blank, except for a cursor box or possibly some below-staff 
note ties. This space will also be needed to separate additional lines 
of music on the screen in fancier displays. 

Your staff chunks work as a vertical pair. We will use the conven
tion that the lower chunk will always have an EPROM address of 
hex 80 more than the upper one, letting us pair chunks easily with 
software. Thus, two 8 X 8 chunks will automatically be combined 
into a single 8 X 16 symbol. The location of our symbol in EPROM 
will decide whether it gets entered above staff, below staff, or on
staff. We'll see how some simple software sorts things out for us. 

Each symbol will be one chunk wide. All on-staff symbols must 
be arranged to abut each other peacefully. A continuous appearance 
is gotten by abutting each symbol and having the staff lines exactly 
align. Usually, we will fill the screen first with an empty staff. The 
notes will magically "appear" where they belong by replacing the 
empty staff chunk with a new symbol that has both the staff and the 
new note on it. 

Fig. 4-3 shows the display space we will use if we are on a bare
bones KIM-1. Most of page two is used as shown. The width of the 
display is adjusted by changing the starting address to suit the tv 
or monitor in use. Up to eight music lines can be put on screen with 
a larger system, just by arranging for a new page of 256 bytes for 
each line to be displayed, and adding suitable scan and cursor soft
ware. 

ABOVE STAFF ( 

MUSIC STAFF ! 
BELOW STAFF { 

WIDTH OF DISPLAY ADJUSTED 
FROM THIS END 

I 
OA Ob oc Od OE OF 

4A 4b 4C 4d 4E 4F 

8A 8b ac 8d 8E 8F 

CA Cb cc Cd CE CF 

10 1 1  { 3A 3b 3C 3d 3E 3F 

50 51 I 7A 7b 7C 7d 7E 7F 

90 91 9\ \bA bb bC bd bE bF 

dO di  d2) /FA Fb FC Fd FE FF 

Fig. 4-3. One page of 256 words in a display memory is needed per line of 
music. Here are typical memory locations used. 

A CHARACTER SET 

Fig. 4-4 shows the character set we will use. Since you can custom 
program everything with your EPROM, if you don't like this one, 
do it your way. This particular set leans heavily toward guitar chord
ing and as a teaching aid for beginning band. While rather fancy, 
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it doesn't let us put more than a single note on a particular location, 
omits grace notes, and has some compromises in calling for sharps, 
Hats, and naturals. We11 find a sledgehammer way around these 
limits later, but for now, let's use it as shown. 

Each symbol is called by a single word or word pair stored in a 
display memory. For instance, a hex "3b" will give us the upper half 
of an eighth note at high "E" on the treble staff. 

MSB 

----------- LSB -----------. 

IBLANI i 'g =b= I� I� 1�  .. = 
I ==  --- ---

� = l ::E  ,� � � I� 'r- BLANI 

A J a J  c .f  o.f E J f J GJ  A.f a J  
A I  al c l  o J E l  f J  G J A i  a l  

A J  s J  c J  o J  E J  F J G J AJ a J 

Ad ed c d  o d  E d  F d  G d  Ad a d  

A -0- B-<>- c -o- o-o- E -o- F -<r G-<r A-o. B -o-

A •  a .  c .  o .  E •  F • G • A •  B e  

A 

} 7 # l:, 

LANI 2 ! i 
4 4 

cJ  o.f E .f  F.f  

cJ oJ E l  d 

c J  o J  E J  F J  

c d  o d  E d  r d  

C -o- 0 -0- E -o- F -o-

c .  D •  E •  F e  

l:i 
A B 
C D 

! E F 
8 G 7 

G JI ;��� G rr 
G J  

I fT , 7 

G d  
BLNK --

G-o-
r->""' 

, --
Ge  'lil'W'I IRLNK 

'--------
DO-IJ

-BL_E _H-EIG..-HT-SY-MB-0-LS ______ _,S�lT 
LOWER = UPPER + $80 SYMBOLS -., = $80 

Fig. 4-4. Character set for music display. 

Now, if the least significant bit of the word is d or less, the symbol 
will be a double one that needs two chunks. The second chunk ad
dress can be found by adding hex 80 to the first, and then storing 
this value in a suitable display memory location. As we've just seen, 
a word of "3b" represents the upper-chunk half of eighth-note high 
"E." The matching lower chunk will have a value of hex ( 3b + 80 ) 
or hex bb. To put a character on the screen, you call for the upper 
value and store it in the correct display memory location. Then you 
add hex 80 to this value and store that value in the lower chunk 
display memory location that appears immediately below the upper 
on the screen. 

Thus, while only a single word is needed to call an 8 X 16 symbol, 
two words get stored in the proper display memory locations. One 
of these is the upper chunk, stored as called for. The other is the 
lower chunk, calculated by adding hex 80 to the upper chunk. While 
the upper and lower chunk data values will be hex 80 apart, the 
address locations in the display memory will be such that they 
appear immediately above and below each other. Typically, this will 
be an address difference of decimal 64, or hex 40. 
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OQI'--0 ,2_ 
0 0  ...._ 0£ 
0 2. 

��� 
o§:V 

�&" o o ,-,-0 0  

�� �� o o ...-,-,-o o  
'.2S/ 

92 

1� "' 
<o P.  
roe 
o[ 
I l_ ...-
q �  
Z. £  / 

i MLl".,1C., CC;i 

100-01 ; <ao-s1 I 

�I '-
2..2. .... 
£.£. 
2..Q. 
.QS!. 
2..£ -/ 2� / £2. 

Fig. 4-5 Character set 



I MUSIC, C,q 
! 00 - OF- ; llll-'3F! 

�� I'. 
'f: F  
'o 0 

s2, 
0 0 
F F  
00 

0 0  t'--. 0 0 "-. 
F F--o o  

�..2 I 'i! ----
1/ �� 

J.� 

b-9_ 
3 .1 � 
�! / 

]._i 
t.� --S 3 v !l 

[t'F 
o'o "-. __ , 
F- F �  

]�"' 2�r--... 
F F 

00 
00 0 0  
oo....---,,, 
Q.2/ .2.2 

££ 
£.2 / 

_ei.2 / 

-- --
�Q, 
0 0  
FF ...... 

�.2"-. 
�£: 

I 1. -
0 0  
Sf 
4£ l .l / S,Q. 

7� 
7� 
l'c:..-
0� --/ .2£? 

(Continued on next page) 

for music display. 
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--
�& I'-... 
�& 
..E.!: � 
.2.2 
,F,F -
10,0 

..E.!: I/ &� 

F-] "-
0,2 ,..,__. 
FJI,,._ 
O_Q 
O,Q 
0,2 ,._ 

V 0.2 V 0.2 

94 

--
.2&>1',... && 
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F,!: I'-... 
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J:t 
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00 "-D ot-.. 
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z. 8 
F F  

l.lf I/ F F  I/ � ll  
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-
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F F  
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Fig. 4-5. Cont'd. Character set 
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,2,2 I'-. 
�� o o-
�� 
£?� oo...-.......... 
�,Q V .2� 

2:§, 0 0  
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00 
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0 0 ,..  
OQ/ 
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o s...-�v 9 1-v � !i 

for music display. 
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Q� 
Q� 

I'-.. 
�� 
$!.� �� 
Qi2 
£� --; .2.£ 
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(Continued on next page) 
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I MU":,IC, C,q 

� lw-21 P,() - P.1 I 

1 1  lz.l • I  I I 1-z.lz-l -- --
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u� .f.f �s .2..Q 
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�� 
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Fig. 4-5. Cont'd. Character set 
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(Continued on next page) 

for music display. 
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000 00 18  30 00 08 20 20 00 00 00 00 00 00 00 00 00 
010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
020 00 00 00 00 00 00 00 OE 00 00 00 00 00 30 00 00 
030 00 00 00 00 00 00 00 00 OE 00 00 00 00 OC 00 FF 

040 00 00 00 00 00 00 00. 00 02 00 00 00 00 OC 10  7F 
050 00 00 00 00 00 00 00 00 02 00 00 00 00 OE 00 00 
060 00 00 00 00 00 00 00 00 00 00 00 00 00 OE 00 00 
070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 FF 

080 00 89 4F 87 OF FF El  FF FF 63 d7 53 67 1 7  00 00 
090 FF FF FF FF F5 AF FF 60 00 00 83 83 83 83 00 00 
OAO EA EB EE EA 88 bb F7 67 88 EA EE EB EA EE 08 00 
060 EE EA EA E2 E2 EE FC EC El E2 EA EE EO FF 00 7F 

QCO FA FA FA FA E2 EE FC EC El FA FA FA FA FB 10  FE 
OdO FA FA FA FA E2 EE FA EE EO FA FA FA FA FB 00 00 
OEO FF FF FF FF EO EE FA EE EO FF FF FF FF FF 00 00 
OFO FF FF FF FF l F  SF SF l F  FF FF FF FF FF FF 00 00 

1 00  00 24 4A 00 08 60 60 00 00 00 00 00 00 00 QC l C  
1 1 0 00 00 00 00 00 00 00 00 00 00 38 38 28 38 l E  l E  
1 20 00 00 00 00 00 00 OE QA 00 00 00 00 30 30 00 07 
1 30 00 00 00 00 00 00 00 OE QA 00 00 00 QC QC l E  00 
1 40 00 00 00 00 00 00 00 02 02 00 00 00 QC OC 1 0  60 
1 50 00 00 00 00 00 00 00 02 02 00 00 00 OE QA 00 FF 
1 60  00 00 00 00 00 00 00 00 00 00 00 00 OE QA 00 00 
1 70 00 00 00 00 00 00 00 00 00 00 00 00 00 40 00 FF 

1 80 00 89 00 00 00 00 00 00 00 00 00 00 00 00 l E  l C  
190 co 00 1 0  03 do Ob 28 00 00 00 28 28 28 38 l E  78 
l AO 08 OE QA 08 38 30 30 00 OA OE 08 OA OE 00 28 00 
1 60 QA QA 02 02 OE OC QC 00 00 QA OE 00 00 00 00 60 

l CO 02 02 02 02 OE oc QC 00 00 02 02 02 00 00 1 0  06 
l dO 02 02 02 02 OE QA OE 00 00 02 02 02 00 00 00 00 
l EO 00 00 00 00 OE QA OE 00 00 00 00 00 00 00 QC QC 
lfO 00 00 00 00 40 40 00 00 00 00 00 00 00 00 AA 00 

200 00 AS 6A BF OE FF FB FF FF FF FF FF FF FF 1 2  1 2  
2 10  FF FF FF FF FF FF FF FF 00 00 86 86 Ab A3 10  10  
220 FF FF FF FF EO EE EA EB FF FF 87 67 F3 bb 00 01 
230 FF FF FF FF FF EO EE EA EA FF E l  EC FC EE 1 2  00 
240 FF FF FF FF FF FB FA FA FA FF E l  EC FC EE 10  6E 
250 FF FF FF FF FF FB FA FA FA FF EO EE FA EE 00 00 
260 FF FF FF FF FF FF FF FF FF FF EO EE FA EE 00 00 
270 FF FF FF FF FF FF FF FF FF FF FF l F  SF SF 00 FF 

280 00 49 FF FF FF FF FF FF FF FF FF FF FF FF 1 2  1 2  
290 FF FF FF FF FF FF FF FF 00 00 Ab Ab Ab Ab 10 08 
2(>,.0 EE EA 88 bb F3 67 87 FF EE EB EA EE EO FF 7C 7E 
260 EA E2 E2 EE FC EC EO FF FF EE EO FF FF FF 06 6C 
2CO FA FA E2 EE FC EC EO FF FF FA FA FB FF FF 1 8  06 
2d0 FA FA E2 EE FA EE EO FF FF FA FA FB FF FF 00 FF 
2EO FF FF Cl EE FA EE EO FF FF FF FF FF FF FF QC OC 
2FO FF FF l F  SF SF l F  FF FF FF FF FF FF FF FF 54 00 

Fig. 4-6. Hex dump 

108 



300 00 28 68 20 4A 60 62 00 00 00 00 00 00 00 1 2  lC 
310  co 00 1 0  03 dO Ob 28 00 00 00 38 38 38 38 l C  l C  
320 00 00 00 00 OE OA OB OE 00 00 30 30 38 OB 7C F9 
330 00 00 00 00 00 OE OA OA 02 00 oc oc OE 02 l E  00 

340 00 00 00 00 00 02 02 02 02 00 oc oc OE 02 10  62 
350 00 00 00 00 00 02 02 02 02 00 OE OA OE 02 00 00 
360 00 00 00 00 00 00 00 00 00 00 OE OA OE 00 03 FO 
370 00 00 00 00 00 00 00 00 00 00 00 40 40 00 00 FF 
380 00 3E 00 00 00 00 00 00 00 00 00 00 00 00 10  12  
390 00 00 00 00 00 00 00 00 00 00 38 38 38 38 16 1 0  
3AO OA OB 38 30 30 00 00 00 OB OA OE 00 00 00 28 42 
360 02 02 OE oc oc 00 00 00 00 00 00 00 00 00 OE 64 

3CO 02 02 OE oc oc 00 00 00 00 02 00 00 00 00 OB 06 
3d0 02 02 OE OA OE 00 00 00 00 02 00 00 00 00 FF 00 
3EO 00 00 l C  OA OE 00 00 00 00 00 00 00 00 00 OE l C  
3FO 00 00 40 40 00 00 00 00 00 00 00 00 00 00 AA 00 

400 00 31 OB A3 4C 4F 46 FF 3C 63 bd 53 5F 47 I E  1 2  
4 10  FF FF FF FF F5 AF FF 06 00 00 A3 Bb Bb Ab 10  1 0  
420 FF FF EO EE EA EB EE EA 87 67 F3 bb BB EA 54 AA 
430 FF FF FF EO EE EA EA E2 E2 EC FC EE E2 E2 10 00 

440 FF FF FF FB FA FA FA FA E2 EC FC EE E2 FA 10 6E 
450 FF FF FF FB FA FA FA FA E2 EE FA EE E2 FA 00 00 
460 FF FF FF FF FF FF FF FF EO EE FA EE EO FF OE J C  
470 FF FF FF FF FF FF FF FF 1 F 1 F 5F 5F I F  FF FF FF 

480 00 OB 00 00 00 00 00 00 00 00 00 00 00 00 1 2  1 2  
490 00 00 00 00 00 00 00 00 00 00 OB OB OB 28 1 2  20 
4AO BB bA FC 30 00 00 00 00 OA OE 00 00 00 00 7C 5A 
460 E2 EE FC oc 00 00 00 00 00 00 00 00 00 00 OE 64 

4CO 62 6E 7F oc 00 00 00 00 00 00 00 00 00 00 OE 06 
4d0 E2 EE FA OE 00 00 00 00 00 00 00 00 00 00 00 FF 
4EO Cl EE 77 OE 00 00 00 00 00 00 00 00 00 00 03 FO 
4FO 00 40 40 00 00 00 00 00 00 00 00 00 00 00 54 00 

500 00 50 1 2  38 70 00 06 3C 3C 1 8  34 FB 40 70 1 2  l C  
5 1 0  co 00 10  03 d4 26 28 4C 00 00 38 38 OB 38 l E  1 0  
520 00 00 OE OA OB OE OA OB 30 30 38 OB OA OE 54 AA 
530 00 00 00 OE OA OA 02 02 OE oc OE 02 02 OA 10 00 

540 00 00 00 02 02 02 02 02 OE oc OE 02 02 02 10  68 
550 00 00 00 02 02 02 02 02 OE OA OE 02 02 02 00 FF 
560 00 00 00 00 00 00 00 00 OE OA OE 00 00 00 oc oc 
570 00 00 00 00 00 00 00 00 40 40 40 00 00 00 00 FF 

580 00 OB 00 00 00 00 00 00 00 00 -' 00 00 00 00 l E  J C  
590 00 00 00 00 00 00 00 00 00 00 OB OB OB 38 l E  20 
5AO 38 30 30 00 00 00 00 00 OE 00 00 00 00 00 28 5A 
560 OE oc oc 00 00 00 00 00 00 00 00 00 00 00 1 8  64 

5CO OE oc oc 00 00 00 00 00 00 00 00 00 00 00 06 06 
5d0 OE OA OE 00 00 00 00 00 00 00 00 00 00 00 00 00 
5EO J C  OA l C  00 00 00 00 00 00 00 00 00 00 00 00 00 
5FO 40 40 00 00 00 00 00 00 00 00 00 00 00 00 AA 00 

(Continued on next page) 
of music PROM coding. 

109 



If the least significant bit of the character code is E or F, then we 
get single-height chunks that are intended to go above or below the 
staff lines. These symbols will usually go above staff, except for the 
blanks, cursor, and possibly some ties that might be needed below 
staff. 

The shape of each note is set up so that it can be dotted. Done this 
way, the separate dot symbols aren't needed for dotted eighth, 
dotted quarter, and dotted half. But, only a single sharp, flat, or 
natural symbol is used for the entire staff. This compromise looks 
good enough on most notes and saves us EPROM space for more 
useful things. 

You'll find two user-definable notes at hex 18 and 19, and there 
are tricks you can pull to get more space for even more symbols if 
you really need them. 

600 00 Sb 92 EF dF FF F6 3C FF Cb 85 53 77 57 00 00 
610 FF FF FF FF Fl BF FF 18 00 00 83 83 83 83 00 00 
620 EO EE EA EB EE EA 88 bb F3 bb 88 EA EE EB 00 00 
630 FF EO EE EA EA E2 E2 EE FC EE E2 E2 EA EE 00 00 

640 FF FB FA FA FA FA E2 EE FC EE E2 FA FA FA 1 0  6E 
650 FF FB FA FA FA FA E2 EE FA EE E2 FA FA FA 00 00 
660 FF FF FF FF FF FF EO EE FA EE EO FF FF FF oc oc 
670 FF FF FF FF FF FF l F  AF SF : SF l F  FF FF FF 00 FF 

680 00 18  00 00 00 00 00 00 00 00 00 00 00 00 00 00 
690 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
6AO FE B6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
660 FE EC 00 00 00 00 00 00 00 00 00 00 00 00 10  6E 

6CO 7F 6C 00 00 00 00 00 00 00 00 00 00 00 00 06 06 
6d0 FA EE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
6EO Fl EE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
6FO 40 00 00 00 00 00 00 00 00 00 00 00 00 00 54 00 

700 00 Sb 20 30 60 00 04 00 00 18  08 FB 50 70 00 00 
7 10  co 00 1 0  03 d4 26 28 32 00 00 38 38 38 38 00 00 
720 OE OA OB OE OA 08 38 30 38 08 OA OE 08 OA 00 00 
730 00 OE OA OA 02 02 OE oc oc 02 02 OA OE 00 00 00 

740 00 02 02 02 02 02 OE oc oc 02 02 02 02 02 10  00 
750 00 02 02 02 02 02 OE OA OE 02 02 02 02 02 00 00 
760 00 00 00 00 00 00 OE OA OE 00 00 00 00 00 OCi 00 
770 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 FF 

780 00 1 8  00 00 00 00 00 00 00 00 00 00 00 00 00 00 
790 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
7AO JO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
760 oc 00 00 00 00 00 00 00 00 00 00 00 00 00 10  00 

7CO oc 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
7d0 OE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
7EO l C  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
7FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 AA 00 

Fig. 4-6. Cont'd. Hex dump of music PROM coding. 
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Once you have your design plan and an overall list of what sym
bols you want and where you want them to go in EPROM, you can 
go on to design each symbol or symbol pair using the emulation pro
gram and the forms we already have looked at in the last chapter. 

Fig. 4-5 shows my selection of the music chunks. This character 
set includes 32 single-height symbols and 112 double-height ones. 
A dark square on the form indicates light on the screen. On each 
coding square, the hex value for each successive row appears at the 
left, while the upper-chunk location in EPROM is shown above the 
symbol. 

Once you have your forms complete, you should double-check the 
coding. Then go to an emulator of some sort that will show you how 
well the characters work together. 

After you are reasonably sure you have workable symbols and 
believe your coding is right, you can go on and compile a truth table 
for your EPROM. Fig. 4-6 shows the coding we need, as lifted off 
the music forms. 

To generate your truth table, assume your EPROM coding space 
is broken into 8 pages of 256 words each. Page 000 is the top dot 
row. Page 100 is the next row down, and so on down to page 700, 
which is the bottom dot row. Now, go across your symbol sheet, 
a row at a time in address order, to generate your truth table. 

For instance, at location 24, the coding for the sixth dot row is EE. 
Coding EE then appears at location 24 on page 600, or as entry 624 
EE on the truth table. 

Note that the EPROM doesn't know about the "add hex 80" pair
ings of the chunks. Each individual 8 X 8 chunk simply goes into 
the EPROM truth table in the sequence it comes up. Now, our work
sheets show the chunks paired. So, you make two trips through the 
worksheet when you compile your truth table, picking up each loca
tion in sequential address order. 

After your truth table is completed, check it thoroughly. If you 
don't find any mistakes, this means that you haven't checked it well 
enough. Then load it into RAM somewhere, and make a tape or disc 
copy of the truth table for future use. Hand loading 2048 words is 
a bit painful on the KIM keypad. An easier route is to use a full 
ASCII keyboard and a loader program similar to the one in Fig. 2-21 
in The Cheap Video Cookbook. This will shorten your routine by 
some 2048 keystrokes and is far more pleasant to do. 

If you do things right the first time, you will only have to make 
a full 2048 word entry into your computer once. Then change the 
existing loading so that you won't have to redo the code over and 
over again. 

As soon as you get a good tape or disc copy, program your 
EPROM. After programming, you can run a quick check on any old 
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alphanumeric display program. This should give you a random load 
of bits and pieces of badly jumbled music symbols. To get something 
more interesting, we have to add some music software. 

MUSIC ·soFTWARE 

As usual, it takes a combination of software and hardware work
ing together to get us a useful result. Now that we have our music 
symbols safely and permanently in EPROM, we need a SCAN pro
gram to put things on the screen for us. We also need some sort of 
a CURSOR program that decides what symbol goes where. 

We'll use four scan lines for each dot row of the music symbols, 
two per interlaced field. This makes things large and easy to read. 
A typical music display program for your KIM-I and TVT 6% is 
shown in Fig. 4-7. 

We have once again kept the program in several sections to let 
you rework things any way you like. Our program sections are the 
main scan, the keyboard interrupt, the cursor processor, and the 
keyboard formatter. 

The main scan gives us a display of 4 X 56 chunks on an otherwise 
blank screen, accepting note values from a display memory and 
putting them on the screen. 

The keyboard interrupt is a trick to improve transparency. When 
a key is pressed, the keyboard interrupt program saves this infor
mation until the next vertical blanking time, and spends exactly one 
horizontal line doing so. This "pseudo-transparent" approach gives 
a very slight bump when a key is pressed. It eliminates the need for 
a handshaking flip-flop as was used in Fig. 5-5 of The Cheap Video 
Cookbook. 

The cursor processor picks up after each key is pressed. It inter
prets the key strokes. If a cursor entry was made, this program clears 
the screen, moves the cursor, or turns the cursor OFF or ON. A 
single key entry is used for cursor motions. 

To enter a music chunk, a hex code pair of key closures must be 
entered, such as a "3b" for our high E eighth note. If a noncontrol 
character is fed the cursor processor, it is assumed to be part of a 
valid hex entry which is passed on to the keyboard format part of 
the program . 

. The keyboard formatter is a subprogram of the cursor processor. 
This program combines two hex keystrokes into one word. It then 
decides where on the staff the symbol is to go. If needed, the key
board formatter program finds a matching bottom staff chunk and 
puts it in place. 

The reason for separating the keyboard formatter from the cursor 
processing is mostly to leave you with an option to pick up a better 
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way to enter note commands. As shown, the program takes a hex 
two-digit entry from an ASCII keyboard to put a symbol on the 
screen. You might like to use a BASIC string command, or actually 
input from a real music keyboard instead. This may take a larger 
system than a bare KIM. There are all sorts of interesting possibili
ties, so we've kept this part separate. 

Here is a more detailed look at how the Music Display program 
works : 

MAIN SCAN PROGRAM-The scan uses a brute-force program that 
calls each live line as needed, rather than computing each line's 
location. This eliminates any self-modifying code and lets you put 
your music scan into PROM or EPROM if you like. Full interlace 
is used, with the carry bit representing the interlace even-odd Hag. 

The program starts by putting down the blank scans ( steps 
0300-0307 ) followed by calling the live scans as needed for a sin
gle field. Each scan is called twice for the two lines per dot per 
field. 

After the live scans are finished, the carry bit is saved on the 
stack to hold the even-odd field value through any cursor process
ing. A check for a newly pressed key is made by 03C8. Usually, no 
new key will be pressed, and the scanning will continue. If a key 
was pressed, the main scan program jumps to the cursor process
ing subroutine. 

Either way, the carry bit even-odd flag is brought back off the 
stack in 03d0 and then either an even or an odd field sync process
ing is done to create the interlace. With a set carry, an early V 
sync pulse is put down and one scan is removed from the next 
field. With a clear carry, a late V sync pulse is put down and a 
normal number of scans is used for the next field. The carry bit is 
then changed so that the next field reverses the process, picking 
even field if odd and vice versa. 

After some equalization in 03Eb, the program jumps back to 
0300 for the next field's blank scans. The process is repeated 60 
times a second, putting down 30 pairs of even-odd interlaced 
fields. 

KEYBOARD INTERRUPT-Memory location OOEA is a temporary 
store. Its seven lower bits hold the ASCII keyboard code of the 
last pressed key. The eighth bit is a flag that tells us "a key is newly 
pressed that hasn't been processed yet." If the eighth bit is a zero, 
there is a new key that needs to be serviced. If it is a one, no atten
tion is needed. 

The keyboard interrupt program is a short interrupt sequence 
beginning at 03F3. When a key is pressed, the scan program is in-
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µP----6502 
System-KIM-1 ,  TVT 65/e , Music "E" pl ug-in 
Start-JMP 0300 
Stop-STOP 

Cursor Motions - ERASE-clear screen (CAN) 

Displayed -

-+-cursor right ( HT) 
+--cursor left ( BS) 
f-cursor ON ( VT) 
!-cursor OFF ( LF) 

ENTER-Hex pairs of music code; cursor disappears 
between first and second enlry. 

020A-023F (above staff) 
024A-027F (upper staff) 
028A-02bF ( lower staff) 
02CA-02FF (below s1aff) 

Program Space - 0300-03FF (MAIN SCAN program)  
1 780- 1 7dC (CURSOR program)  
0 100-0129 (KEYBOARD FORMAT program)  

ODEA-Keyboard strobe and character 
OOEb-Character complete flag 

OOEd-Cursor low 
OOEF-Cursor high (02) 

1 7FE-IRQ low F3 
1 7FF-IRQ high 03 

Main Scan Program: 

START-+ 0300 20 d2 62 JSR 621 2  Do blank scan 
0303 CA DEX One less blank scan 
0304 do oo BNE 0306 Equalize 3 µs 
0306 d0 F8 BNE 0300 Last blank scan? 

0308 20 1 0  62 JSR 621 0  Scan Staff + 8 
030b 20 0A 62 JSR 620A again 
030E 20 0A 72 JSR 720A Scan Staff + 7 
031 1  20 OA 72 JSR 720A again 

031 4  20 0A 82 JSR 820A Scan Staff + 6 
031 7  20 QA 82 JSR 820A again 
031A 20 0A 92 JSR 920A Scan Staff + 5 
031 d  2 0  0A 92 JSR 920A again 

0320 20 0A A2 JSR A20A Scan Staff + 4 
0323 20 QA A2 JSR A20A again 
0326 20 QA b2 JSR b20A Scan Staff + 3 
0329 20 0A b2 JSR b20A again 

Fig. 4-7. A music display program 
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032C 20 0A C2 JSR C20A Scan staff + 2 
032F 20 0A C2 JSR C20A ogoin 
0332 20 0A d2 JSR d20A Scan staff + I 
0335 20 0A d2 JSR d20A ogoin 

0338 20 4A 62 JSR 624A Scan staff 1 6  
033b 20 4A 62 JSR 624A ogoin 
033E 20 4A 72 JSR 724A Scan staff 1 5  
0341 20 4A 72 JSR 724A ogoin 

0344 20 4A 82 JSR 824A Seo n st off 1 4  
0347 20 4A 82 JSR 824A ogoin 
034A 20 4A 92 JSR 924A Scan staff 1 3  
034d 20 4A 92 JSR 924A ogoin 

0350 20 4A A2 JSR A24A Scan staff 1 2  
0353 20 4A A2 JSR A24A ogoin 
0356 20 4A b2 JSR b24A Seo n staff 1 1  
0359 20 4A b2 JSR b24A again 

035C 20 4A C2 JSR C24A Scan staff 1 0  
035F 20 4A C2 JSR C24A ogoin 
0362 20 4A d2 JSR d24A Scan staff 9 
0365 20 4A d2 JSR d24A again 

0368 20 8A 62 JSR 628A Scan staff 8 
036b 20 SA 62 JSR 628A ogoln 
036E 20 SA 72 JSR 728A Scan staff 7 
0371 20 BA 72 JSR 728A ogoin 

0374 20 BA 82 JSR 828A Scan staff 6 
03n 20 SA 82 JSR 828A again 
037A 20 8A 92 JSR 928A Scan staff 5 
037d 20 BA 92 JSR 928A ogoin 

0380 20 SA A2 JSR A28A Scan staff 4 

0383 20 8A A2 JSR A28A again 
0386 20 SA b2 JSR b28A Scan staff 3 
0389 20 BA b2 JSR b28A ogoin 

038C 20 BA C2 JSR C28A Scan staff 2 
038F 20 SA C2 JSR C28A ogoin 
0392 20 8A d2 JSR d28A Scan staff l 
0395 20 SA d2 JSR d28A ogoin 

0398 20 CA 62 JSR 62CA Scan staff -1 
039b 20 CA62 JSR 62CA again 
039E 20 CA72 JSR 72CA Scan staff -2 

03Al 20 CA72 JSR 72CA ogoin 

03A4 20 CA 82 JSR 82CA Scan staff -3 
03A7 20 CA 82 JSR 82CA ogoin 
03M 20 CA 92 JSR 92CA Scan staff -4 

03Ad 20 CA 92 JSR 92CA again 

03b0 20 CA A2 JSR A2CA Scan staff -5 
03b3 20 CA A2 JSR A2CA ogoin 
03b6 20 CA b2 JSR b2CA Scan staff -6 
03b9 20 CA b2 JSR b2CA again 

(Continued on next page) 

for the KIM-1 and TVT 6%. 
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03bC 20 CA C2 JSR C2CA Scan staff -7 
03bF 20 CA C2 JSR C2CA again  
03C2 20 CA d2 JSR d2CA Scan staff -8 
03C5 20 CA d2 JSR d2CA again 
03C8 08 PHP Save ILCE carry flog 
03C9 24 EA BIT EA Is a new key pressed? 
03Cb 30 03 BMI 03d0 No, continue 
03Cd 20 80 1 7  JSR 1 780 Yes, process CURSOR JSR 

03d0 28 PLP Get ILCE carry flog bock 
03dl A2 C4 LDX #C4 Set # of blank scans 
03d3 90 OC BCC 03El Pick even or odd scan 
03d5 AC OO EA LDY EAOO Output odd field V sync pu lse 

03d8 AO 05 LDY #05 Deloy 26 1.1s 
03dA 88 DEY con1inued 
03db d0 Fd BNE 03dA continued 
03dd CA DEX Subtract l ine for odd field 

03dE 1 8  CLC Change to even field 
03dF 90 0A BCC 03Eb Bypass even field V sync 
03El AO 05 LDY #05 Deloy 26 1.1s 
03E3 88 DEY continued 
03E4 d0 Fd BNE 03E3 continued 
03E6 AC 80 E0 LDY E080 Output even field V Sync pulse 
03E9 EA NOP Equal ize 2 1.1s 
03EA 38 SEC Change to odd field 
03Eb AO 03 LDY #03 Equalize 1 4 1.1s 
03Ed 88 DEY continued 
03EE d0 Fd BNE 03Ed continued 
03FO 4C 00 03 JMP 0300 Go lo blank scans 

KBD I RQ-03F3 48 PHA Save accumulator 
Entry 03F4 Ad 00 1 7  LDA 1 700 Gel key from Keyboard 

03F7 85 EA STA EA Hold character in OOEA 
03F9 A9 20 LDA #20 Equal ize t iming 
03Fb 4A LSR continued 
03FC dO Fd BNE 03Fb continued 
03FE 68 PLA Restore accumulator 
03FF 40 RTI Return to main scan 

Notes: 

To test main scan without keyboard entry, defeat IRQ (OOFl 04) and 
store 8� in the keyboard strobe (OOEA 80) 

To test main scan with keyboard entry, use 1 780 60, and set IRQ vector 
to 03F3 (l 7FE F3; l 7FF 03). 

To el iminate any wh ite ports of the nondisploy area, connect blanking 
input BNK to DEN (test point HR) i nstead of to ground. Another route to 
a clean background is to put the scan program outside the memory with 
the upstream top. 

Fig. 4-7. Cont'd. A music display 
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Cursor Processing Program: 

ENTER -+ 1 780 A9 02 LDA #02 Set cursor to page two 
VIA JSR 1 782 85 EE STA EE continued 

1 784 A5 Ed LDA Ed Set cursor above staff 
1 786 29 3F AND #3F continued 

1 788 85 Ed STA Ed conti nued 
1 78A A9 80 LDA #80 Erase KP strobe flag 
1 78C 05 EA ORA EA continued 
1 78E 85 EA STA EA continued 

1 790 AO CO LDY co Erase old cursor 
1 792 A9 00 LDA #00 continued 
1 794 91 Ed STA (Ed,Y) continued 
1 796 A5 EA LDA EA Read keyboard 

1 798 C9 9F CMP #9F Is key a CTRL command? 
1 79A 90 03 BCC 1 79F yes, move cursor 
1 79C 4C 00 01 JMP 01 00 no, go lo keyboard formal 
1 79F C9 98 CMP #98 Clear screen? 

1 7Al FO 1 3  BEQ 1 766 yes, go clear screen 
1 7A3 C9 BA CMP #SA Cursor off" 
1 7A5 F0 OE BEQ 1 765 yes, RTS without cursor 
1 7A7 C9 89 CMP #89 Cursor right? 

1 7A9 F0 l b  BEQ 1 7C6 yes, move cursor right 
1 7Ab C9 88 CMP #88 Backspace cursor? 
1 7Ad F0 22 BEQ 1 7dl yes, go backspace cursor 
1 7AF AO CO LDY #CO Replace cursor 

1 761 A9 FE LDA #FE continued 
1 763 91 Ed STA (Ed),Y continued 
1 765 60 RTS Return to main scan 

Cursor Processing Sequences: 

1 766 A9 00 LDA #00 CLEAR SCREEN/////////// 
1 768 85 Ed STA Ed home cursor 
1 7bA AB TAY reset i ndex 
1 766 91 Ed STA (Ed),y store blank 

1 7bd ca INY next position 
1 7bE d0 Fb BNE 1 766 repeal ti l l  end of screen 
1 7C0 A9 0d LDA #Od home cursor 
1 7C2 85 Ed STA Ed continued 
1 7C4 1 0  E9 BPL 1 7AF exi t to main cursor program 

1 7C6 A9 3d LDA #3d CURSOR RIGHT/////////// 
1 7C8 C5 Ed CMP Ed right end of screen? 
1 7CA 90 02 BCC 1 7CE yes, ignore 
1 7CC E6 Ed INC Ed no, move right one 
1 7CE 4C AF 1 7  JMP 1 7AF exit lo main cursor program 

1 7dl A9 0d LDA #Od CURSOR LEFT//////////////// 
1 7d3 C5 Ed CMP #Ed left end of screen? 
1 7d5 60 02 BCS 1 7d9 yes, ignore 
1 7d7 C6 Ed DED Ed no, move left one 
1 7d9 4C AF 1 7  JMP 1 7AF exi t  lo main cursor program 

(Continued on next page) 
program for the KIM-1 and TVT 6%. 
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To test this portion of the cursor and the main scan program i ndependent 
of the keyboard formatting, use 1 79C 60. 

Keyboard Format Program: 

0 100 A5 EA LDA EA Get keystroke 
0 102 C9 co CMP #CO Is it A-F? 
0104 90 02 BCC 01 08 no, continue 
0106 69 08 ADC #08 yes, correct code 

0108 85 EA STA EA replace corrected hex code 
0I0A 24 Eb BIT Eb 1 st or second keystroke? 
0IOC 30 07 BMI 01 1 5  g o  enter i f  second 
0l0E A5 EA LDA EA get 1 st keystroke 

01 1 0  09 80 ORA #80 and erase keyf log 
01 1 2  85 Eb STA Eb and hold for 2nd keystroke 
01 1 4  60 RTS Return to owoit 2nd keystroke 
0 1 1 5  26 Eb ROL Eb Shift 1 st keystroke lo upper byte 

01 1 7  26 Eb ROL Eb continued 
01 1 9  26 Eb ROL Eb continued 
0l l b  26 Eb ROL Eb conti nued 
0l l d  A9 F0 LDA #F0 Clear tower byte 1 st keystroke 

01 I F  25 Eb AND Eb conti nued 
01 21 85 Eb STA Eb conti nued 
0123 AS EA LDA EA Get 2nd keystroke 
0125 29 OF AND #OF clear upper byte 2nd keystroke 

0127 05 Eb ORA Eb Combine upper and lower bytes 
0 129 AO OO  LDY #00 Clear keystroke flog 
0 12b 84 Eb STY Eb continued 
0 12d AB TAY Save character 

0 12E 29 OF AND #OF Is this above staff character? 
0 130 C9 OE CMP #OE If so, go to above staff entry 
01 32 bO OE BCS 01 2 continued 
0134 98 TYA Get character bock 

0135 AO 40 LDY #40 Set cursor to upper staff 
0 137 91 Ed STA (Ed),Y Store upper stoff character 
0 139 69 80 ADC #80 Calculate matching lower staff 
013b A0 80 LDY #80 Set cursor to lower staff 

0 13d 91 Ed STA (Ed),Y Store lower staff choracter 
013F 4C C6 17 JMP 1 7C6 And return lo cursor program 
0 1 42 98 TYA Get character bock 
0 1 43 A0 OO LDY #00 Set cursor above staff 

0 145 91 Ed STA (Ed), Y Store abo11e staff character 
01 47 4C C6 1 7  And return to cursor program 

Fig. 4-7. Cont'd. A music display 



Main Scan Flowchart: 

NO 

(03C9) 

EVEN 

KEYPRESSED IRQ SAVES 
KP PROCESSING UNTIL 

BLANK SCANS FOR 
IMPROVED TRANSPARENCY 

(03E6) 

(0300) 

(0306) 

10308) 

YES 

ODD 
(03d0) 

ODD V SYNC 
+ SETUP 

KEY IRQ = 03F3 

(03F3) 

(03F7) 

RTI 

program for the KIM-1 and TVT 6%.  

D O  CURSOR 
PROCESSING (1780) 
SUBROUTINE 

DETAILED IN 
NEXT FLOWCHART 

(03d5) 

(Continued on next page) 
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Cursor Processing Flowchart: 
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Fig. 4-7. Cont'd. A music display 



Keyboard Format Flowchart: 
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terrupted. This is done by connecting the keypressed strobe of the 
keyboard to the KIM's interrupt line, and pulling the IRQ line 
briefly low when a new and valid key is down. 

After the interrupt, the keyboard is read from the parallel input 
port and stashed in 00EA. A zero hard-wired on the PA7 auto
matically Hags the "new key" information into OOEA. After some 
careful timing equalization, the interrupt is then released. 

Note that the key closure can happen at any random time with 
respect to scan timing. This inten-upt program catches the key 
closure "on the fly" and stashes its value until the beginning of the 
next vertical blanking interval. By waiting until the vertical blank
ing time, you can gain transparency on your display. With a prop
erly designed cursor software sequence, only a slight bump will 
be produced at the instant the key is pressed. For this interrupt to 
work, the IRQ vector must branch to 03F3 on a key closure. 

CURSOR PROCESSING-The visual cursor appears as a dotted box 
on the screen, below the usual staff, and pointing to the location 
to be modified. A pressed key could be one of a pair of key clo
sures that tell us what the next symbol is to be, following the code 
of Fig. 4-4. The cursor disappears on the first keystroke and re
appears on the second, to prevent you from getting one keystroke 
off. A pressed key could also be a single control command that 
will move the cursor or erase the screen. The cursor processing 
subroutine finds out whether the key is a control command or part 
of an entry pair and then acts accordingly. 

There are four page zero locations associated with the cursor 
processing:  

OOEA-holds the ASCII keyboard command until i t  is  used. The 
MSB is a flag that is a 0 if the key needs to be acted on. 

OOEb-holds the first keystroke in corrected hex form on the 
lower four bits. The MSB is a Bag that is a O if the key is 
the first of an entry pair. 

OOEd-holds the cursor low needed for above staff entry. This 
value ranges from hex 0A to 3F. The Y index is added to 
00Ed for on-staff and below-staff locations. 

00EE-holds the cursor high location on page 02. 

The cursor processing subroutine is entered when the main scan 
senses a key-down-but-unprocessed Hag ( 0) in OOEA. The cursor 
location is then checked to be sure it is valid, and then the key
pressed Bag is reset. The valid cursor location is needed to prevent 
plowing another program with a wayward cursor, while the key
pressed Bag needs to be reset so that the key gets processed only 

122 



once. After these two steps, the cursor is replaced with a blank in 
step 1790. 

We then read the key in step 1796 and test it to see if it is a 
control key that will give us cursor motions or an alphanumeric 
key that is part of a two-stroke symbol entry. 

If we do NOT have a control code (ASCII AO or less ) ,  we jump 
to the upcoming keyboard format processing. If we do have a con
trol code, we test for codes to CLEAR SCREEN ( 98 ) ,  CURSOR 
RIGHT (89 ) ,  CURSOR LEFT ( 88 ) ,  CURSOR OFF ( SA) ,  or 
CURSOR ON ( any other CTRL code ) .  Cursor processing goes 
like this: 

* Clear screen-The cursor is set to the upper left of the page 
( l 7b6 ) and blank 00 values are stored on the entire page, 
using the Y index to step the blanks through the page space. 
The cursor is then set extreme left. 

* Cursor right-Cursor location flag 00Ed is incremented if the 
cursor is not already at extreme right. This is also done after 
symbol entry. 

* Cursor left-Cursor location flag 00Ed is decremented if the 
cursor is not already at the extreme left. 

* Cursor off-The cursor subroutine returns to the scan pro
gram immediately without restoring the cursor symbol. 

* Cursor on-The default option continues the cursor subrou
tine, replacing the cursor on screen without any motions. 

After the cursor motion is complete, the cursor symbol is re
placed at its new location, and the subroutine returns to the main 
scan program. 

This particular subroutine has not been fully equalized. You 
will want to add your own equalization to prevent any screen 
tearing. 

KEYBOARD FORMATTER-You enter the keyboard formatter 
part of the cursor program by jumping to 0100. This jump takes 
place if the pressed key was an alphanumeric rather than a con
trol command. 

Two keystrokes are needed to enter a hex character, so this por
tion of the program behaves two different ways, depending on 
whether it is the first or second keystroke needed for a symbol. 
The keyboard formatter program always starts off the same way. It 
gets the keystroke held in OOEA and converts the ASCII character 
to its hex equivalent. ASCII numbers 0-9 stay as they are, while 
ASCII A through F get converted to binary equivalents of decimal 
10 through 15. 
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The keyboard formatter program checks to see if this key was 
the first or the second needed by checking the most significant flag 
bit of 00Eb. If the key is the first one, we store its hex-converted 
value in 00Eb and set the entry pair flag to a 1. This "first-or-sec
ond" flag is the most significant bit in 00Eb and tells the software 
that the next key to arrive is the second of a needed pair to pro
duce the hex word. 

When the second key arrives, it starts the same way, getting cor
rected to a hex equivalent. The two keys are merged into one hex 
word in 0127. This is done by shifting the first key value four to 
the left and then oRing it with the new second key value. The net 
result is that the two key closures get converted into a hex word 
equal to the hex code of the wanted symbol. 

This hex code is then tested to see if it is an above-staff or an 
on-staff symbol. If it is an above-staff symbol, it gets entered di
rectly at the cursor location. The keyboard formatter then returns 
to the cursor subroutine to move the cursor one to the right and 
then returns to the main scan. 

Things are slightly more complicated if the hex code corre
sponds to an on-staff symbol. First, the hex code gets stored in the 
proper upper-staff location. Then the equivalent lower-staff sym
bol needed for the bottom half is calculated by adding hex 80 to 
the top half symbol code, in step 0139. This new value is then 
stored on the lower staff. The difference between upper staff and 
lower staff storage is set by the Y register and a Y indexed storage 
command. A value of Y=O puts things above staff. A value of 
Y=40 puts them on the upper staff. A value of Y=80 goes lower 
staff, while a value of Y=C0 goes below-staff in the visual cursor 
position. After the symbol goes on-screen, the cursor is advanced, 
and control returns to the main scan program. 

TEST AND DEBUG 

There are several hints for testing your music display software. 
The most important of these is to get the scan portion of your dis
play working first. The software can be sequentially debugged by 
following the notes in Fig. 4-7. 

Once things are working, there is a quick and easy way to put a 
bare staff on the screen. First, clear the screen. Then type a 10. This 
should give you the left end of the staff. Then hold down a "l" and 
use your keyboard repeat key or auto repeat. This will automatically 
generate a bare staff across the screen. To finish, wait until the cursor 
goes off. Then type a single "3." That should end the staff. Return 
to the left with the cursor left and repeat commands. You are now 
ready to write your music. 
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Your Turn: 

Modify the clearing sequence so that you 
clear automatical ly to an empty staff and 
cursor left. Improve the cursor transpar
ency. 
-then 

Interface your music display to a music 
keyboard, so that you enter notes on
screen by p laying them. 
-then 

Make your computer actual ly play the 
notes that appear on the sc reen. 

There are bound to be lots and lots of changes you'll want to make. 
If you run out of character positions in your EPROM, note that 
there are lots of redundant character bottoms and tops that can be 
"patched around" with software. Typical examples are the blank 
squares, three empty staff lines, and two empty staff lines. These are 
stored in many EPROM locations, when, in theory, you need only 
store them once. How many redundant characters are there in the 
EPROM program as shown? 

POLYPHONY 

But, how can we show more than one note at a time on the staff? 
Is there any simple way to let us show polyphonic music as well as 
the single-notedness we have already picked up? 

As usual, the answer is . . . yes, but. . . . Fig. 4-8 shows another 
sledgehammer. This works but will cost you extra RAM and extra 
software. 

What you do is set up a typical cheap video brute-force high-res 
graphics system, with its own display memory and a plain old Mod
ule "B'' graphics output plug-in. Now, put your new EPROM some
where else in the system, tied in just like any other ROM, EPROM, 
or RAM to the microcomputer's address and data buses. 

To change what goes on the screen, you use your EPROM and 
some mapping software to reload and change the display memory. 
You still have nonvolatile characters permanently stashed in your 
machine. The not-so-obvious new feature you pick up is that you 
can superimpose symbols in the display memory. 
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Fig. 4-8. "Sledgehammer" approach to complex graphics displays puts 
character generator before the display memory to let you add new symbols 

to ones already existing on the display. 

For instance, to put a single note in the display memory, you pick 
the note you want and decide where you want it to go. Then you use 
some map software to read the EPROM and stash the results in the 
main display memory. Eight to sixteen reads will be needed for a 
single transfer. This is easily handled with a software subroutine. 

Now, if the screen is empty or a blank staff, you put the new note 
in, as before. But, if you want to add a second, a third, or any num
ber of new notes to an already existing one, just get the old note out 
of the display memory, add or logically OR the stuff to be added from 
the EPROM character store, and then put everything back into the 
display memory. Your character set will probably be different than 
the one we've looked at, but it will have a big advantage-far fewer 
stored symbols are needed to generate a wide variety of composite 
notes and chords. If you get into animation, this route can also get 
you smoother results, since the symbols need only move one dot at 
a time instead of a whole chunk. 
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All we are really doing here is using an EPROM the way every
body else does, and using a separate hi-res graphics display memory 
for the final display. This takes much more in the way of RAM and 
software than you need with cheap video and a custom EPROM 
character generator, but it offers a powerful way to do elegant and 
nonvolatile graphics displays of your choosing. 
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C H A P T ER 5 

8080 Cheap Video -

Heath HS Hardware 

You'll find things more challenging when you add cheap video to 
an 8080 or Z80 system, compared to the easy 6500 conversions we 
have looked at. There are several new hassles involved that can get 
in your way. 

In most cases, these hassles will take extra coding, a few more in
tegrated circuits, and very careful attention to your system timing. 
The bottom line is this : Cheap video should be able to run on most 
any 8080 or Z80 system, but it will take more effort, more code, and 
more parts to get comparable results. 

Let's see just what is involved. In this chapter, we'll look at the 
basics of 8080 cheap video operation, ending up with schematics for 
an adaptor you can put on a Heath HS computer memory card. 
We'll also look at some simple hardware mods that ease front-panel 
interaction and allow serial keyboard entry to your computer. In the 
next chapter, we'll look at the scan and cursor software involved. 

We'll assume your system is bus oriented and that your cheap 
video system is to be a piggyback add-on to an existing RAM plug-in 
card. We'll further assume the usual 2-MHz 8080 speed. We will 
a,so stick with the earlier address-mapped techniques. The newer 
scungy video ideas of earlier chapters can very much simplify and 
improve what we are about to show you. But, first things first. 

What we will show you has been tested only on the Heath 50-pin 
bus. It looks like it will also go on an S-100 bus, but we simply 
haven't tried it. 

Our main 8080 hassles are these : 
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( 1 )  The address bus has garbage on it at times. 
( 2 )  The program counter usually can change only once every 

two microseconds. This is only half as fast as we need for a 
reasonable number of characters or graphics chunks per line. 

( 3 )  Clocking and timing signals are totally different. 
( 4 )  Literal translation of scan programs will be far too slow. 

In general, we will get around ( 1 )  by latching and holding both 
address and upstream tap data lines using suitably spaced timing 
signals. We can beat ( 2 )  by adding a "speed doubling" circuit that 
creates the illusion of a once-per-microsecond program counter ad
vance. This illusion will appear only at the display memory and then 
only during a TVT scan. Hassle ( 3 )  goes away when we solve ( 2 ) .  
Finally, we can get scan software that is fast enough by using the 
powerful register-to-register commands of the 8080 or by going to 
brute-force ( all ROM, nonmodifying ) coding. 

On to the fine print. 

HARDWARE 

Suppose we have a normal H8 up and running, executing a string 
of no operations ( NOP ) from a plug-in RAM card. What will this 
timing look like? How can we trick the H8 into using the same sort 
of timing, with add-ons, to run a TVT 6%? Fig. 5-1 gives us some 
clues. 

A NOP takes two microseconds to do-actually slightly less than 
this on the H8. There are four CPU States ( Fig. 5-lA ) involved, 
taking around half a microsecond each. The object of these four 
states is to put the program counter on the address bus, read an 
addressed memory location, enter it into the CPU, and then act on 
the command. When the CPU finds out the command is a NOP, it 
will spend the tail end of the cycle essentially doing nothing. 

Our first hassle appears in Fig. 5-lB. We see that the address bus 
has the right information on it only three quarters of the time. The 
remaining one quarter of the time, the address bus has invalid infor
mation on it. Now, if we address a memory with the wrong address, 
we, of course, will get the wrong information out of the memory. 
Worse still, since the memory has its own access time to contend 
with, the amount of time that useful stuff comes out of the memory 
is even shorter than the time the address bus is valid ( Fig. 5-lC ) .  
So, the bad news is that both data and address have all kinds of 
holes in them and don't seem directly useable. 

There are some system-level signals that may help us out of this 
bind. Signal DBIN in Fig. 5-lD determines the time when the CPU 
must have valid data. But, this signal is not available on the system 
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bus and for a very good reason. Anyone who tries to use this signal 
will be cutting into the CPU's own processing time and degrading 
performance. Instead, two signals are derived for bus use. These sig
nals happen early enough that enables, decoding, settling times, and 
so on are complete before the CPU needs valid data. These signals 
are called Ml ( Fig. 5-IE ) ,  and MEMR ( Fig. 5-lF ) .  Ml starts after 

,------ 2µs -----.. 

4 I 

I I 
I I 
I I 

I 
I 

RIGHT 

I ACCESS TIME 
I 

_______ nL.------.;------

A CPU STATES 

B AD-DRESS BUS 

C RAM 

D DBIN 

E Ml 

F MEMR 

G ,J,2 CLOCK 

Fig. 5-1 . The HB is a typical 2-MHz system; these are the waveforms involved 
in reading a NOP command out of RAM. 

the address is valid but ends before DBIN. MEMR includes both 
the Ml and DBIN times. Unfortunately, both Ml and MEMR start 
before we are sure that the memory is outputting valid data. The 
theory here is that output enables and bus access can be taking place 
during the same time that the memory is still accessing itself, so 
long as everything ends up stable by the sta.!!_ of DBIN time . 

.A final waveform we will find useful is the <f,2 system clock shown 
in Fig. 5-lG. 

The absolute least thing we can get away with and still get cheap 
video on an 8080 is latching the upper four address lines. If we don't 
do this, all the commands out of our TVT instruction decoder 
PROM, including the row commands and the sync pulses, will have 
big holes chopped in them. 
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Fig. 5-2 shows a minimum 8080 to TVT 6% interface. In this cir
cuit, +5 volts, ground, blanking, the upstream tap, and the data bus 
are connected in the usual way. Address lines Al2 through Al5 are 
connected to a latch that catches the valid addresses. This is done 
on the leading edge of the memory read command, MEMR. 

FROM DISPLAY . a MEMORY ---j,----------------.....-4 
UPSTllEAM TAP 

Al2·Al5 

MEMR 

A0-A4 
DO-D7 

� 
DECODER 

74LSOO 

CS DISPLAY 
MEMORY 

TVT 6 518 

'SEE TEXT 

Fig. 5-2. Minimum 8080A-TVT 6% interface is limited to 2-microsecond 
character or chunk times. 

Our chip select output, CSO, is shown going to an AND gate that 
gives us an external negative logic OR combination of the old display 
memory chip select and the one needed for TVT scanning. A foil 
cut is involved here. The chip select input, CSI, is shown perma
nently enabled. Depending on your decode PROM, this can go to 
a TVT enable switch, can do nothing, or can be used as an internal 
chip select combiner, eliminating the external gate. 

The TVT is allowed to gain data bus control only during a scan 
and then only when the computer wants to read it. To do this, we 
use the computer's memory read command, MEMR, and NAND it 
with the decode enable, DEN, to get a suitable scan enable input, 
SEI. 

MEMR also goes to the clock input of the TVT 6%. But, since our 
load command in the TVT is derived from the falling edge of VCL, 
it is the trailing edge of MEMR that loads our video shift register. 
The time difference of 750 nanoseconds or so gives our character 
generator more than enough time to produce a valid output. 

Now, this is a quick and dirty circuit that you may want to try 
just to get some video out of your 8080 in a hurry. But, there are 

131 



several problems we still have to attack to get something good 
enough for normal system use. 

One minor hangup is that you may only have complements of 
your data bus or address bus available. We'll soon see how to change 
the coding in your Scan and Decode PROMs to get around this. 
The coding, of course, has to be changed anyway, since the 8080 
gets all bent out of shape when it receives 6502 commands. Inverters 
or inverting gates can also be used to invert bus, clock, data, or con
trol lines as needed. If you go the scungy video route via a port, you 
may be able to eliminate any need for high addresses. 

Our big hassle is that the character or chunk times will be two 
microseconds each, rather than just one. This means that, so far, 
even a 32 character line won't run at normal horizontal scan fre
quencies. Beating this particular hassle soundly about the head and 
ears is the key to practical cheap video on the 8080. 

But how? 

SPEED DOUBLING VIA A9 SWITCHING 

We want to get our chunk and character times down to a decent 
one microsecond. We can either ( I )  speed up the microprocessor, 
or else ( 2 )  do something else that creates the illusion of a microproc
essor speedup at the display memory and in the adaptor circuits. 

Speedup may be easy for you if you have a Z80, provided your 
display memory is also fast enough to not use the READY command. 
If you do run faster, you probably would like to latch the upstream 
tap data to make sure you have enough processing time for your 
character generator. While a simple speedup will work in some sys
tems, there is another way. 

The other way is called A9 stoitching. 
The object of A9 switching is to create the illusion of a once per 

microsecond address advance at the display memory. Fig. 5-3 gives 
details on how this works. We break our most signincant display 
space address line and connect it to a carefully timed 500-kHz 
square wave during a scan. For a 16 X 64 or a 12 X 80 alphanumeric 
display, this will be address line A9. 

Now, a 500-kHz square wave is low for one microsecond and high 
for another one. While all the regular addresses below A9 are chang
ing at their usual two microsecond rate, A9 is busy addressing one 
character or chunk location on the fJ.rst microsecond and another 
location on the second. Thus, we get characters or chunks out of our 
display memory at a one per microsecond clip. 

But why on earth use A9? Wouldn't it be simpler to use AO in
stead? If we do this, we would have to add an address multiplexer 
to all inputs of this display memory-a IO-pole, double-throw switch 
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or its three-state equivalent. This is obviously something we want 
to avoid if we are piggy-backing video onto an existing memory 
card. All A9 switching takes is a single foil cut and some add-on 
wires to the memory card. 

CALL 

A9 
A8 
A7 
AG DISPLAY 

AS 
MEMORY 

A4 
A3 
A2 
Al 
AO 

DURING A SCAN, ADDRESSES ADVANCE 
ONLY ONCE EVERY TWO MICROSECONDS, 
TOO SLOW TO OUTPUT CHARACTERS. 

(A) Normal 8080 operation. 

RET 

q 1- l µs 

CALL RET 

.M.fL A9 
500-kHz A8 SQUARE 
WAVE A7 

AG DISPLAY 
MEMORY 

AS 
A4 
A3 
A2 
Al 
AO 

DURING A SCAN. 500-kHz CLOCK ON A9 LINE 
PRODUCES NEW ADDRESS EACH MICROSECOND: 
CHARACTERS OUTPUT AT PROPER RATE. 

(B) A9 switched 8080 operation. 

Fig. 5-3. How to use A9 switching for speedup; 

There is a catch. It is a yeahbut rather than a gotcha. The char
acters and chunks are 1W 'longer in the display memory in sequential 
order if you use A9 switching. So, your cursor or conh·olling loader 
software has to have a few words added to complement A9 each 
successive location. 
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For instance, say your display memory starts at 000 000. The next 
character or chunk will be at 002 000. Your characters will follow in 
this order: 

1st character 000 000 
2nd character 002 000 
3rd character 000 001 
4th character 002 001 
5th character 000 002 
6th character 002 002 

1022nd character 003 376 
1023rd character 001 377 
1024th character 003 377 

Now, this sounds awful. But it works. And it is a rather simple way 
to double the apparent memory access speed of an 8080 so that we 
can get information out of RAM once per microsecond under block 
access. And all it takes is some extra hardware between the com
puter and the TVT, a few software words, and one extra foil cut on 
the memory. 

The hardware involved is shown in Fig. 5-4. The timing details are 
in Fig. 5-5. 

Two new D Hip-flops are added to our interface. The first delays 
and expands the MEMR signal to give us a controlled-phase 500-kHz 
square wave we can use for the speed doubling A9 address switch
ing. The second divides the system clock by two and is used to latch 
the video data and to provide a TVT clock. 

Waveforms A, B, C, and D are as before. Waveform E is a �  
clock, which has to be an inverted replica of the Heath bus cf>2 
clock signal. Waveform F shows the 500-kHz square wave that re
sults when we clock MEMR. Since the clocking is delayed from the 
MEMR leading edge, the flip-flop's output is wider than MEMR and 
turns out almost a microsecond long. This results in a square wave 
that is low for one microsecond and high for the next, locked to 
( but following ) MEMR. 

This particular Hip-flop is allowed to run only during a scan. It 
is held high by DEN otherwise. The uppermost two gates combine 
the old A9 information with the speed-doubling new A9 signal, act-
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ing as a single-pole, double-throw selector switch. During computer 
times, the display memory A9 line is connected to the computer. 
During scan microinstruction times, the display memory A9 line is 
connected so that it is low for one microsecond and high for the next. 

Waveform G shows the one-megahertz clock we get by dividing 
down <f,2. This clock is used to sample and latch the display memo1y 

BDBDA 

A9 A91 
SOURCE 

X cuT FOIL 

A9 TO DISPLAY !A9Xl 
MEMORY 

MEMR 

EXTERNAL 
INVERTER 

o2 

74LSOO 

74LSOO 

� �----------- DEN 
CLEAR 

Q 74LS74 

Q t--+------,------ CLDCK 

680 '7D 

I50 pf 

mm--H7-----10 Q l---------------•,-- m.Ais 

L__LJ 74LSl74 

UPi��EAM-�- ---------------� VDOVD7 

LLJ 74LS273 

FROM CS mum-·-:----�� 

.x °""°" :-I -------,,!.:_ 
======-- ::� 

TO DISPLAY _ _  _ MEMORY � 

Fig. 5-4. Speed-doubling 8080A-TVT 6% interface gives 1-microsecond 
character or chunk times. 

TVT 
6 5/8 
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2 3 4 A CPU STA TES 
I I I I I , 

[WRONGJ! RIGHT lfil,\vrfoNGJj 
I I 
I I 
I , I 

.__ ___ _,___ __ _.r D MEMR 

E c/J2 CLOCK 

I A9 = 0  -___,,,---....,.... A9 = I A9 = 0 F QT 

_J 

t 

LI 

t t 

LI U-
f-- 1 µs ---j 

Fig. 5-5. Speed-doubling waveforms. 

G Qil 

H ADDRESS 
LATCHING 

VIDEO DATA 
LATCHING 

K TVT VIDEO SHIFT 
REGISTER LOAD 

L SET II 

output immediately after the data is valid, and then latch again one 
microsecond later, well after the A9 change has been accepted. The 
first sample gives us an A9 = 0 data value, while the second handles 
the A9 = I case. The TVT's video shift register is clocked on the 
falling edge of this one-megahertz clock. Since there is a half micro
second delay between the leading and trailing clock edges, enough 
time is available for the character generator or the data-to-video 
converter to accept the latched video data and process it. 

Our A9 generating Hip-flop automatically initializes itself on 
MEMR since it is simply delaying this signal. But the clock dividing 
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flip-Hop could be in either state at the beginning of a scan microin
struction. Unless we somehow initialize this Hip-flop to the right 
state, we'll get garbage out of the display memory caused by sam
pling at the wrong times. 

We initialize this clock-dividing Hip-flop by inverting MEMR and 
using the leading edge to SET the divide Hip-flop to the desired 
state. This initialization is very important, since the usual CALL in-

��1-----1-.,,,-----------------� +5v 1 .1 .1 .1  
20 10 + I I I 

4·x o.os 

13  12 
14  

Q 15 
17 16 

Q 

CLRQ 
19 

74LS273 
OCTAL LATCH 

12 

+sv A4 SELECT 

+SV 

c__+_s
__,,
v�AJ SELECT {SEE FIG 6 51 

I -1 

------'--

I I I I 

I I 

r +5 V TO ALL IC"S 

Em�3-6 
--+-------------------------, 

Fig. 5-6. Schematic of 8080/cheap-video adaptor. 
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struction preceding the scan microinstruction has an odd number 
of clock cycles in it. 

TVT scan enabling and the display memory chip selecting are 
done the same way we did in the slower interface of Fig. 5-2. We 
enable the TVT Scan Enable Input ( SEI ) only during MEMR time 
to give us data for a scan microinstruction only when it is called for 
and only when the computer will allow data bus access. The display 
memory chip select is a negative logic OR of the computer's chip 
select and the CSO that the TVT provides. 

Our speed-doubling interface takes two foil cuts on the memory 
board, one on the A9 address line and one on the chip select line. 
All other connections are add-ons derived from signals available on 
a typical plug-in memory card. Five low-cost integrated circuits are 
involved. 

A more detailed schematic of an H8 to TVT 6% interface is 
shown in Fig. 5-6. This circuit can be built up any way you like. One 
possibility is as a small plug-in card that goes between your H8 and 
the TVT 6%. The TVT card plugs into the 8080 adaptor, and then 
the 8080 adaptor plugs into a new connector that piggybacks onto 
the H8-3 static RAM card. The video circuits can easily be mounted 
on the back of the existing RAM card. 

Fig. 5-7 shows a pictorial of the connections to your H8-3 RAM 
card, while Fig. 5-8 gives details on how and where to make the 

,,, ?J�1>: ·,:JOI I� 
(A) Address l ine A9. 

(B) Chip select l ine CE1 . 

Fig. 5-8. Two foil cuts needed on the HB-3 memory card. 
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two foil cuts involved on the address A9 and memory Chip Select 
( CS ) lines. 

Interconnection and mounting details will vary if you use one of 
the newer or denser RAM cards, or if you work with another 8080, 
8085, or Z80 system. 

FRONT-PANEL INTERACTION 

The H8 front panel works by interrupting a running program 
once very two milliseconds. If we try to run scan software and the 
front panel at the same time, the display will be badly tom up. So, 
we can either turn the front panel off during display times or else 
combine the front panel and the video scan into a single program. 
Just turning the front panel off is far simpler and usually all you will 
need. 

The H8 front-panel monitor does have a "turn the display off' 
software word. But this won't help us. While this command shortens 
the interrupt and keeps it from lighting the display, the interrupt 
still exists. 

One hardware solution is shown in Fig. 5-9. A new switch added 
to the front panel prevents timer-generated level 10 interrupts from 
happening. This, in turn, keeps the panel display off and the video 
display in one piece. This switch will be very handy during your ini
tial test and debugging of video displays. You should turn off the 
front panel only after you have a video display, and turn it back on 
before returning to other uses. The RST /0  command does bypass 
this switch so that you can reset under any conditions. 

This switch will most likely not be needed when your properly 
designed and debugged scan software is up and running. You prob
ably can eliminate it from the final use circuitry. 

The obvious question is how to use software instead. We have 
a good old DI or "disable interrupts" command in the 8080 instruc
tion set. Can't we simply use this? 

Unfortunately, there is one very noisy gotcha that may keep you 
from doing this-unless you are careful. 

If you try an immediate DI command in an H8 program, the 
speaker will latch on and stay on. That little beep you get when you 
hit the GO key-or any other key-needs two more interrupts a�er 
your program starts. No interrupts, no stopping. The two interrupts 
time out a four-millisecond tick for the horn circuit. 

So, a rule : 

The H8 front-panel monitor needs a few milliseconds after it 
is exited before you can disable any interrupts. If you disable 
an interrupt too soon, you will lock the speaker on. 
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(HB FRONT PANEL) 

3 DISABLE 
INT 10 

'K(D 
0 @ 443-54 NC 

10 CUT FDIL 470{) ADD 
12 9 SWITCH 

DS Q VF n_ @ ADD 
IC102 RESISTOR 

CLK I I  
443-6 160 µs 

13  

(A) Schematic. 

(HB FRONT PANEL) 
LED LED LED 

I I 
LED 

101 102 I 103 104 

(8) Pictoria l .  

Fig. 5-9. A switch for temporarily defeating the HB front-panel display is 
useful for TVT debug and checkout. 

You can use the DI command to turn off the front panel. But you 
must delay at least five milliseconds a�er your program starts, or the 
speaker won't quit. Thus, one properly placed software word is all 
you need to get full front-panel and video-display compatibility. 

A KEYBOARD SERIAL ADAPTOR 

If you have an H8-2 parallel interface card, it should be fairly easy 
to attach most any old ASCII keyboard and encoder. You can do 
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this in much the same way we did on the parallel KIM inputs in 
The Cheap Video Cookbook. 

But, the H8-2 card is an expensive option, and you might not al
ready have one on hand. More likely, you will be using the H8-5 
serial interface card instead, since you need this one for the usual 
cassette and remote terminal uses. 

Most ASCII keyboards and encoders provide only a parallel ( all 
the bits at once ) output. To enter a serial port, we have to convert 
this parallel word into a serial ( one bit at a time ) sequence. A sim
ple keyboard serial adaptor is shown in Fig. 5-10. 

The circuit can use the transmitter half of most any old UART. 
UART stands for Universal Asynchronous Receiver Transmitter. We 
first looked at these way back in Chapter 7 of the TV Typewriter 
Cookbook. You'll find this circuit easiest and cheapest when you use 
a modern, single-supply CMOS chip such as an lntersil IM6402 or 
IM6403. 

The keyboard serial adaptor works by borrowing power from the 
H8-5 serial interface and feeding +5 volts and optionally -12 volts 
to your existing keyboard. The parallel outputs and a normally high 
keypressed strobe are routed to the inputs on the transmitter side of 
the UART in the adaptor. The same UART borrows a 16x baud 
clock from the H8-3. 

As many as five leads will be needed between your adaptor and 
the H8-5. One is ground, one or two are for power, one is for the 16X 
baud rate clock from computer to adaptor, and the final lead is the 
serial output that comes from adaptor to computer. 

Fig. 5-11 shows how to connect your adaptor to your H8-5, both 
pictorially and schematically. You can either hard-wire connections 
or add a new connector of your own. 

On your H8-5 board, integrated circuit IC122 is removed and re
placed with two jumpers inserted in the socket as shown. The pin 
11 to pin 13 jumper gives you direct access to the serial input in the 
computer's circuitry. The pin 6 to pin 7 jumper lets you use the key
board in a polled mode. This polled operation gives you a transpar
ent scan program and frees the interrupts for other uses. 

The H8 has to be software programmed to use your new adaptor. 
A simple test sequence that will enter the last pressed key into the 
accumulator and display it for you is shown in Fig. 5-12. 

The H8-5 is first initialized with a mode instruction. You can use 
312 and output it to port 373. This picks two stop bits, ignores parity, 
uses a seven-bit word, and runs with a 16X clock. Next, you continue 
to initialize the H8-5 by giving a command instruction to the same 
port. This time, use 004 and once again output it to port 373. This 
command instruction will enable only the receiver in the H8-5 inter
face. 
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Fig. 5-10. Adaptor for connecting a keyboard lo a serial computer input. 
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FROM 
KEYBOARD 

SERIAL 
ADAPTOR 

-18 V---------------- BUS PIN 2 

GND ---------------1-- BUS PIN 0.1 

OUT I 13 ,.-... 
..2J p __ ., 

IC122D 
(REMOVED) 

PIN 3 IC124 
(UART RECEIVER 

INPUT) 

BAUD ---------------- PIN 9 IC 1 16 
(16X. 600 BAUD) 

+5 V ----------------- +5 VOLT SOURCE 
(PIN 14 IC!33) 

FROM 
KEYBOARD 
SERIAL 
ADAPTOR 

+s v  
IN-SOCKET JUMPER 

/ 

�-.. �J --5 I n,.;----n' 'c--- INTERRUPT LINE 
� .. _., GATING IC129 

IC 122B 
(REMOVED) 

INT C 
Off 

(A) Schematic. 

w o106 
,. ,10, 

I I • • •  
• • • • •  • • • • • • • so • • 

600 • • 
300 • • •  

85-2026 

(B) Pictorial. 

� 
HB-5 SERIAL 1/0 CARD 

Fig. 5-1 1 .  Connecting keyboard serial adaptor to an HB-5 interface. 



After the mode instruction and the command instruction are 
routed to the interface, you are free to read characters. You do this 
by inputting from port 372. The final loop in the test program does 
this continuously. 

As you press a key, its ASCII value will appear in the left three 
digits of the "AF" Register display. For instance, a lower case "b" 
will read as 142, while an upper case "B" will read as 102. 

µP-8080A 
System-HS+ HB-5 

�040 1 00  
040 1 02 
040 1 04 
040 106 

Notes: 

1 1 0 
1 1 2 

Start-JMP 040 1 00  
End-RST/0 

MVIA 076 3 12  
OUT 323 373 
MVIA 076 004 
OUT 323 373 

Program Space 
040 1 00  to 040 1 1 3 

( 1 3  words) 

In itial ize mode instruction 
continued 

Initialize command instruction 
continued 

IN 333 372 Read keyboard 
JMP 303 ( 1 1 0)(040) Loop 

This test program displays a pressed key received via the Keyboard Serial 
Adaptor. To run the program, use: 

RST /O-REG-PC-ALTER-0-4-0-
1 -0-0-ALTER-REG-AF-GO. 

ASCII characters should appear as the three leftmost dig its on the display. 
For instance, "A" = 1 0 1 ,  "a" = 1 4 1 ,  "6" = 066, and "CR" = 015. 

( ) Denotes an absolute address that is relocation sensitive. 

Fig. 5-12. Keyboard serial adaptor test program. 

There are a few gotchas in this simple test program, so you'll want 
to improve it for actual use as part of a cursor. Note that this simple 
program continuously re-reads characters over and over again in
stead of just once per character. 

To beat this, there is a "character ready" ( R X RDY) flag avail
able that is set when the character first arrives and is reset as soon 
as the computer uses the character for the first time. 

To use a character only once, input from port 373, AND what you 
get with 002, and test the result. A nonzero result means you have 
a new character ready to enter. A zero result says you have already 
used the character on hand and should ignore it. 

The UART doing the transmitting ( in the adaptor ) and the one 
doing the receiving ( in the H8-5 ) must agree on the baud rate and 
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the baud clock factor. Usually, the H8-5 will be set on 600 baud and 
16X clocks with internal jumpers. If not, or if you are on a different 
system, be sure that the transmitting UART and the receiving UART 
are on speaking terms with each other. 

Note that your initialization of the rrwde and command words 
should be done only once after reset and before any input/ output 
activity. If you don't initialize, you'll get no characters at all, and if 
you continuously reinitialize, characters wi.ll -get dumped before you 
can use them. 

Your keyboard serial adaptor is very flexible. For instance, go over 
the data sheets, and you'll find a whole UART receiver unused on 
the low number pins. The -12 volt supply is an option. You can 
eliminate it if you already have -12 volts on hand or use a keyboard 
that doesn't need it. You can also use the old style UARTs that need 
-12 volts by removing the connections on pin 2 and jumpering to 
-12 volts. 

Should you use the IM6403, you can eliminate the 16X baud rate 
line by connecting a 3.58 MHz color tv crystal between pins 17 and 
40 while grounding pin 3. This will output characters for you at 
llO baud. Your computer's serial input will also have to be jumpered 
or programmed to use this new data rate. 

As shown, the keyboard serial adaptor is programmed to provide 
a permanent one in the transmitted ASCII bit number 8, is continu
ously enabled, has no parity, uses two stop bits, and has an eight-bit 
word length. You can change any or all of this by reprogramming 
the connections on pins 33 through 39 of the UART. Our circuit 
assumes the keyboard outputs positive logic and uses a narrow 
goes-to-ground-from-positive-high strobe that is low only when data 
is valid. The output is a simple TTL logic level. There is no need 
to convert to RS232 or Teletype current loops for a short interface 
connection. 
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Your Turn: 

Show how to use your  keyboard serial 
adaptor with only two wires between com
puter and keyboard, including all power 
supply connections. (HINT: Use the IM6403 
with a crystal and a CMOS encoded key
board. Change the current when you want 
to send a zero, and sense this current at 
the computer end.) 



Or, if you really want to get sneaky, you could try to figure out 
a way to have zero connections between your keyboard and your 
computer. One way you might do this would be to use ultrasonic 
or infrared transducers. 
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C HAPTER 6 

8080 Cheap Video -

Heath HS Software 

We now have some workable hardware for 8080 cheap video op
eration. Let's turn to the software we will need to get our scan pro
grams and cursor controllers. 

In this chapter, we'll stick to the older cheap video techniques of 
address mapping and subroutine scanning. We will also use an obvi
ous but inefficient brute-force program method to give us nonvola
tile scan programs that do not self-modify. Once you have scan pro
grams that work, it's a simple matter to go on to the newer scungy 
video ideas, to minimize address space use, to improve transparency, 
and to write short and efficient self-modifying programs. The strong 
input/ output commands in the 80.�0A, along with its 16-bit-wide 
register pairs, offer all sorts of new software opportunities for short 
and efficient cheap video software. 

If we use the old address mapping of The Cheap Video Cookbook, 
a typical computer memory map is shown in Fig. 6-1. A block of 
addresses from 6K to 60K is reserved for TVT use when the TVT is 
enabled. On the HS, this leaves the bottom 8K for the PAM monitor 
and operating system, and 16K for enough RAM for both a display 
memory and Extended BASIC. The uppermost 4K of addresses are 
also available as needed. 

Later on, we can dramatically minimize the address space needs 
by using the new scungy video ideas of Chapters 1 and 2. 

A quick look at the H8-3 memory board shows that only some of 
the address and data lines are available in their true form. Most of 
them are inverted. The data out buffer on this memory card must be 
disabled for the upstream tap needed by cheap video. This means 
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that the output of our Scan Microinstruction PROM ( if we use one ) 
has to drive the system data bus directly and thus must output in
verted ( negative logic ) data. We also see that address lines Al3, 
Al4, and Al5 aren't available except as complements. The s implest 
way out of this situation is to code our Decode PROM to respond 
directly to complemented addresses. 

377 377 

340 000 

300 000 

240 000 

200 000 

140 000 

100 000 

040 000 

000 000 

('' i�RJSYN'c '\ 

f scAN. Rovi/t� � ,,.. -·· . :. · . .... .. . :(SCAN. ROW 6 .f 
,.:.: · . , .  -, . .  ,· . .  _'. ; 

} SCAN ROW 5 :J � � · .. · .. ; ' . ,- , 

J(scA� �:0�' 4 '.] 

ff���N R9� Li: :;: -SCAN ROW 2 .. . 
·-· . .. - ·. ,·• 

\scAN ROW 1 :: · :- . : . , : .  · · ·. 

AVAILABLE FOR NORMAL USE 

• • • • • • • 

• • • • • • • • • • • • • 

AVAILABLE FOR NORMAL USE 

Fig. 6-1. HS address map for older cheap video system. 

Fig. 6-2 shows the H8 Decode PROM truth table, 658-HDS. We 
input lines Al2, Al3, Al 4, and Al5, along with a TVT enable using 
the old CSI line. This PROM outputs code to the row commands of 
the character generator, or else routes blanking and selection com
mands to a graphics data-to-video converter. The Decode PROM 
also outputs system controlling signals DEN, SEO, CSO, and the 
vertical sync VRF pulses. 

Since we are using complemented address inputs, this PROM 
runs "backwards" from the earlier PRO Ms. The net result of a "front
wards" PROM with true address inputs or a "backwards" PROM 
with inverted address inputs is the same. 
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INPUTS 

WHAT DOES THIS 
WORD DO? 

0 "" 
� 
0 NORMAL 
I VERTICAL SYNC 
2 LINE 7 SCAN 
3 LINE 6 SCAN 
4 LINE 5 SCAN 

0 5 LINE 4 SCAN 
� 6 LINE 3 SCAN 

LINE 2 SCAN z 7 u, ..... 8 LINE I SCAN > ..... 
9 BLANK SCAN 

10  NORMAL 
I I  NORMAL 
12 NORMAL 
13 NORMAL 
14 NORMAL 
1 5  NORMAL 
16 NORMAL 
1 7  NORMAL 
18 NORMAL 
19 NO�MAL 
20 NORMAL 

� 
21 NORMAL 

0:, 22 NORMAL 
� 23 NORMAL ci 
..... 24 NORMAL > ..... 25 NORMAL 

26 NORMAL 
27 NORMAL 
28 NORMAL 
29 NORMAL 
30 NORMAL 
31 NORMAL 

OUTPUTS 
Q8 Q7 Q6 Q5 Q4 Q3 Q2 Qi 

u, 
-' c.., 

u, u, 0:, 
-' "" ;;; 0:, z 2 "" u, -' .... "' 

ci.. ..... � u, "" ;:;:;- u, u, u, 
0 :::, 0 c.., "" z z z 

0 z 2 ;::: "" :::; :::; � "' � u, :'5 � '-" '-" 8 :c c.., 0 > c.., c.., 

co - - CJ CJ CJ CJ CJ CJ  
dO - - CJ - CJ CJ CJ CJ  
27 CJ CJ - CJ CJ  _ _ _  
26 CJ o • o o • • o 
25 CJ o • o o • o •  
24 CJ o • o o • o o  
23 o o • o o o • •  
22 o o • o o o • o  
21 o o • o o o o • 
20 0 0 • 0 0 0 0 0  
co • • 0 0 0 0 0 0  
co - - CJ CJ CJ CJ CJ CJ  
co • • CJ o o o o o  
co • • o o o o o o 
co - - CJ CJ CJ CJ CJ CJ 
co • • o o o o o o  
co • • 0 0 0 0 0 0 
co • • 0 0 0 0 0 0  
co • • 0 0 0 0 0 0 
co - - CJ CJ CJ CJ CJ CJ  
co • • 0 0 0 0 0 0 
co • • 0 0 0 0 0 0 
co • • 0 0 0 0 0 0  
co - - CJ O CJ CJ CJ O  
co • • o CJ CJ CJ CJ CJ  
co • • 0 0 0 0 0 0  
co - - O O O CJ CJ O  
co • • 0 0 0 0 0 0  
co - - CJ CJ CJ CJ CJ CJ  
co • • 0 0 0 0 0 0  

co • • 0 0 0 0 0 0 
co • • 0 0 0 0 0 0  

i658-HD8! 
PROM NUMBER 

CJ = "0" 
• = "I " 

!POSITIVE LOGIC) 

Use for TVT 6 5/8 on 
an 8080 system with 
inverted Al 2. Ai"J. Al4 .  
Af5 lines. 

CG line 2 is used as 
graphics blanking 
output. 

CG line 4 is used as 
graphics upper- lower 
chunk select output. 

Fig. 6-2. Truth table for optional 8080 Decode PROM having inverted address 
inputs (used on Heath HS). 
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Holding the CSI line positive disables the TVT and frees most all 
addresses for other uses. Grounding CSI enables the TVT scanning 
and reserves the needed address blocks for TVT use. This particular 
PROM coding needs an external AND gate for chip selection and 
combination. 

There are two types of Scan PROM coding we might like to use, 
depending on whether we are using "binary" line lengths or are re
packing "nonbinary" line lengths for maximum memory efficiency. 
Fig. 6-3 shows a Scan PROM coding intended for 64 character lines, 
but useable for 32 character lines, most graphics, and other lengths 
without memory repacking. This is numbered 658-HS64. We use a 
NOP to advance the program counter in the computer and a RET 
coding to return from the called scan microinstruction. Since we are 
outputting complemented data, these outputs are inverted. On the 
HS, address lines AO through A6 are available in true form, so we 
do not have to complement the address inputs. Thus, our scan 
PROMs run "frontwards" but output complemented code. 

We can use the 658-HSS0 Scan PROM truth table of Fig. 6-4 for 
memory repacked scans of 80 characters per line, three lines per 
page. Once again, this PROM coding is driven by true addresses 
and outputs complementary data directly to the HS data bus. 

Our address lines are connected differently on an 8080 system than 
on a 6502. Remember that we used every second address change on 
the 6502 to advance our Scan PROM one count. On an 8080 we use 
every address change to advance the Scan PROM one count, but 
we use A9 switching to get two characters out of memory per one 
Scan PROM count advance. Either way, the Scan PROM responds 
to an input address change once every two microseconds, and every
thing comes out even. 

This means that, in general on an 8080 system, the Scan PROM's 
inputs are usually connected to one address line less than usual for 
a 6502 system. Fig. 6-5 shows our address line management for an 
8080 adaptor. It also shows how two new switches can be added 
along with a gate to let you use either a 658-HS64 or a 658-HSS0 
Scan PROM on an 8080 system without needing any rewiring. Sev
eral examples will show how this address management works: 

* For 32 character lines using speed doubling, use PROM 658-
HS64 and set your switches as follows: A4 = "+," A5 = "+," 
and "32." 

* For 64 character lines using speed doubling, use PROM 658-
HS64 and set your switches to A4 = "A4," A5 = "+," and "32." 

* For 80 character lines using speed doubling and memory re
packing, use PROM 658-HSS0 and set your switches to A4 = 
"A4," A5 = "A5," and "64." 
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INPUTS 

WHAT DOES THIS 
WORD 007 

0 

0 
;;:, 

0 NOP 
I 
2 
3 " 

4 " 

5 
6 
7 
8 
9 " 

IO 
1 1  
12  
13 " 

14 " 

1 5  
16 " 

1 7  
1 8  " 

19 " 

2G 
21 " 

22 
23 
24 " 

25 
26 
27 " 

28 " 

29 " 

30 " 

31 RET 

OUTPUTS 

QB Q7 Q6 Q5 Q4 Q3 Q2 QI 

'-'-' 
0 

i':'i � <D = = = N a, = 
a, a, a, a, a, a, a, :c 0 0 0 0 0 0 0 0 

FF - - - - - - - -
FF  - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - • • - · 
FF • - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF _ _ _ _ _ _ _ _ 
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF • - • • • • • •  
FF • • • - - - - -
FF _ _ _ _ _ _ _ _ _  
FF - - - - - - - -
FF - - - - - - --
FF - - - - - - - -
FF • • • • • • • •  
FF • • • • • • • •  
36 o o • • o • • o 

i658-HS64\ 
PROM NUMBER 

CJ = "O" 
- = "l " 

(POSITIVE LOGIC) 

Use for TVT 6 518 on 
an 8080 system with 
true AO-A7 lines and 
inverted data bus. 
No repacking. 

Fig. 6-3. Truth table for optional 8080 Scan PROM having no repacking, true 
address inputs, and inverted data outputs. 
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INPUTS 

WHAT DOES THIS 
WORD 00' 

0 
:;: 

0 NOP 
I 
2 
3 " 

4 
5 
6 
7 
8 
9 

10 
1 1  RET 
12 NOP 
13 
14  
1 5  
1 6  
1 7  " 

1 8  
19 
20 
21  RET 
22 NOP 
23 
24 
25 " 

26 
27 
28 
29 
30 
31 RET 

OUTPUTS 

Q8 Q) Q6 Q5 Q4 Q3 Q2 QI 

u., 
Cl 

0 

� ::;; = = ..,. .., � a, 0 "' "' "' "' "' "' 
::,:: Cl Cl Cl Cl Cl Cl Cl Cl 

FF • • • • • • • •  
FF • • • • • • • • 
FF • • • • • • • • 
FF • • • • • • • •  
FF • • • • • • • •  
FF • • • • • • • •  
FF • • • • • • • •  
FF • • • • • • • • 
FF _ _ _ _ _ _ _ _ 
FF - - - - - - - -
FF - - - - - - - -
36 o o • • o • • o  
FF • • • • • • • • 
FF - - - - - - - -
FF • • • • • • • • 
FF - - - - - - - -
FF - - - - - - - -
FF - - - - - - - -
FF • • • • • • • • 
FF • • • • • • • • 
FF - - - - - - - -
36 o o • • o • • o 
FF • • • • • • • • 
FF • • • • • • • •  
FF • • • • • • • •  
FF • • • • • • • •  
FF - - - - - - - -
FF - - - - - - - -
FF • • • • • • • •  
FF - - - - - - - -
FF - - - - - - - -
36 D D - - D - - D 

i 658-HS80i 
PROM NUMBER 

CJ = "O" 
- = "l " 

(POSITIVE LOGIC) 

Use only for 80 character 
repacked lines on an 8080 
system with true AO-A7 
lines and inverted data bus. 

Fig. 6-4. Truth table for optional SO-character 8080 Scan PROM. (True address 
inputs; inverted data outputs.) 
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In our first example, the upper half of a Scan PROM is cycled 
through in 16 counts lasting 32 microseconds. In the second example, 
the entire Scan PROM is cycled through in 32 counts lasting 64 mi
croseconds. In the final example, if we wanted to, the entire Scan 
PROM could be scanned in 32 counts lasting 256 microseconds. But 
with memory repacking and A9 switching, we only use slightly under 

ADDRESS 
LINES + (32) 

AG 
(AS) 

(64) 
+ (A4) 

AS 
AS SCAN + (A3) PROM 

A4 
A4 

(A2) 
A3 

A2 
(Al) 

Al ) = OLD TVT 6 5/8 CALLOUT. 
NOT MEANINGFUL IN 
8080 SYSTEM USE. 

AO 

ADAPTOR TVT 6 5/8 

Fig. 6-5. The Scan PROM address inputs on the TVT 6% have to be redefined 
for 8080 use. The gate and switches let you run ordinary or repacked memory 

PROMs without wiring changes. 

a third of the 80 line Scan PROM per scan, ending up with 10 counts 
per scan lasting 80 microseconds. 

Your Turn: 

Show the Scan PROM truth table and 
switch settings for an HS scan of 40 re
packed characters per l ine. 

Note that the Decode PROM can be eliminated by going the 
scungy video route of using a port to set the character generator row 
and sync lines. The Scan PROM can also be eliminated by selecting 
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one of the alternate routes to a scungy video display map outlined 
in Fig. 1-6. 

Let's stay with the old way for our software examples. 

TEST SOFTWARE 

Two useful test routines are shown in Fig. 6-6. Fig. 6-6A checks 
Scan PROM access and operation. If this test fails, you are either 
incorrectly picking up scan microinstructions or are missing them 
entirely. Erratic switching between 311 ( return ) and 000 ( no opera
tion ) means you have speed-doubling problems. All 000's means you 
are never activating the Scan PROM, while all 3ll's means you are 

A. To Verify That the Scan Microinstruction Is Alive and Well 

Read 

300 376 for 000 (NOP) 
300 377 for 31 1 (RET) 
301 000 for 000 (NOP) 

Either the HS64 or the HS80 Scon PROM may be used. 
The address switches may be in any position. 

B. To Pass Control to and From the Scan Microinstruction at a TV Horizontal Rate 

For Scan PROM HS64 

Se1 swi1ches 1o "32," A5 = " + ," and A4 = "A4." 

START-,-040 1 00  CALL 3 15  010 320 
Lo40 103 JMP 303 100 040 

Scan seventh dot row 
Repeat 

For Scan PROM HSBO 

Set switches to "64," A5 = "A5," A4 = "A4." 

START--.-040 100 
Lo40 1 03 

CALL 3 1 5  030 320 
JMP 303 100 040 

Scan seventh dot row 
Repeat 

This wi l l  display continuous vertical stripes that correspond to the seventh dot 
row of a random character load. The front panel should be swi1ch disabled 
during viewing times. 

H8 scan time is 63 microseconds for a horizontal scan frequency of 1 5.898 kHz. 
There is no vertical sync in this test program. 

Fig. 6-6. Two test routines useful in 8080/TVT debugging. 
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permanently trying to return from a scan microinstruction call. This 
particular test works with either HS64 or HS80 Scan PROMs and 
can have the address switches in any position. 

Your Turn: 

Why? 

Don't ever try going beyond this test if the test faffs. If you cannot 
read the proper return from a scan microinstruction, no way will it 
execute, and anything else you add in the way of software or time 
or effort will only compound the hassle. 

The test sequence in Fig. 6-6B lets you transfer control of the H8 
from computer to TVT scanning and back again. Note that the test 
coding differs for each Scan PROM and that each Scan PROM has 
to have the address switches set as shown. 

The scanning process is adjusted to output a tv horizontal scan 
at normal scan frequencies. In a completely working system with a 
disabled front panel, you'll get a continuous series of vertical stripes. 
This corresponds to the seventh dot row of a random character load. 
A wildly wrong horizontal scan frequency usually means the wrong 
switch settings or the wrong Scan PROM. Vertical stripes that have 
teeth in them may be caused by erratic data latching or improper 
speed-doubling operation. 

While these two tests appear trivially simple, don't overlook them 
as major debug aids. If these two won't go, no other software will 
run, either. 

SELF-MODIFYING VERSUS BRUTE-FORCE SCANS 

The obvious next thing to do is take the old 6502 scan software 
programs and literally translate them, replacing a CALL for a JSR 
and so on. But we really get into trouble in a hurry if we try this. 
First off, some commands will be longer or shorter than their 6502 
counterparts, messing up the critical horizontal-edge to horizontal
edge timing. But, worse yet, the execution time of an 8080 working 
with literally translated 6502 commands is p-i-t-i-f-u-1-1-y s-1-o-w. 

So slow that the critical timing loop may take over 30 microsec
onds, compared to the 21 used in the 6502. Which makes the long 
horizontal lines so long we don't want to even think about using 
them. 

One solution is to make the 8080 into an 8080 rather than an imi
tation 6502. You can do this using the fast register-to-register trans-
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fer commands and get your loop times down only slightly longer 
than those in the 6502 programs. 

But is this really what we want in an 8080 system? Remember 
that on a bare-bones KIM-1 our back was to the wall in finding room 
for a scan program. We had to get by with the absolute minimum 
length scan programs-in order to get any video at all. One apparent 
result of this restriction was that our early scan code was self-modi
fying. This meant that the scan program computed its next set of 
memory locations rather than looking them up. Which, in turn, 
meant that these early scan programs had to be in RAM during final 
operation, at least on a KIM. 

Usually our 8080 systems have enough RAM and PROM available 
that we needn't worry too much about minimizing code. So, why 
not use brute-force coding that calls each scan address as it is 
needed? We can store the whole scan program in ROM or PROM 
this way and never have to load it again. Or worry about it bombing 
when something bad happens in RAM. 

Brute-force coding will also be much faster. It will be much easier 
to write, modify, and debug. But, as usual, there is a price. Brute
force coding can be much longer than self-modifying coding. On a 
one-line display, this turns out to be a no-hassle 43 words versus the 
30 words we needed on a KIM with self-modifying code. But, on a 
long and involved program such as a 24 X 80 double stuffed scan, 
it could take 600 or more words of code to get us by. Still, that's 
only a little over a quarter of a 2716 EPROM and no real big deal 
these days. 

Let's use this somewhat primitive brute-force approach to gener
ate a simple one-line display and then apply it to a 12 X 80 scan 
program. 

1 x 56 SCAN PROGRAM 

Fig. 6-7 shows a brute-force scan program for a I-line, 56 charac
ter, no-interlace 8080/TVT 6% display. Each successive dot row is 
called by a scan subroutine as it is needed. We start in 040 100 with 
a short blank scan to get us off on the right foot. Then we sequen
tially call dot rows 1 through 7 of the characters to be displayed. 
This live scanning is followed by a vertical sync pulse. After this, a 
word is loaded in the accumulator ( 365 ) that sets the number of 
blank scans. As many blank scans as needed are generated in turn, 
Each time a blank scan is completed, the accumulator word is dec
remented until the word hits zero. At that time, the program jumps 
to the top line blank scan and repeats for the next field. 

Unlike a 6502, an 8080 can take an even or an odd number of half 
microseconds to complete an instruction. In most scan programs, 
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some equalization will be needed to make up for this half-micro
second .jitter. The command MOV AA or "move the accumulator to 
itself" takes 2.5 microseconds and is a benign instruction. This lets 
us shift timing by half a microsecond if used once and by one micro
second if used twice. This is the purpose of those strange "177" in
structions in the program. 

In step 040 147, we disable the interrupts. This turns off our front 
panel but does so late enough that we will not lock the speaker on. 

Since this code is not self-modifying, you can put it in your choice 
of RAM, ROM, PROM, EPROM, or E2PROM. Naturally, you'll 
want to check things out in RAM first before committing yourself 
to permanent code. 

Your Turn: 

Show the coding needed for 1 x 32, 1 x 64, 
and 1 x 80 scans 

As a hint that will save you lots of trial and error or bunches of 
calculations, keep your blank initial scan nine counts short of the 
live scans, and keep the retrace blank scans five counts short of your 
live scans. A stationary or near-stationary hum bar is picked up 
by adjusting 040 134 as needed. A more obvious route to shorter 
scans is to simply use the 1 X 56 and load blanks as needed in unused 
character locations. 

TV RETRACE HASSLES 

Calling and returning from a subroutine takes around 13.5 micro
seconds on a typical 8080. Two of these microseconds are spent on 
the live scan, leaving us with a retrace time of 11.5 microseconds. 
Since the H8 is slightly faster than this, our available retrace time 
is something like 11.2 microseconds. 

Naturally, we would like to keep our retrace time.s as short as pos
sible. This lets us put more characters on the line for standard hori
zontal rates, or lets us run long character lines with more nearly nor
mal horizontal frequencies. 

But eleven microseconds may not be enough time for your monitor 
or tv set to get cleanly from the end of one line to the beginning of 
the next. For most monitors and some tv sets, this eleven microsec
onds will be just barely enough. 

If you are having trouble displaying all the characters, here are 
some options that may help you: 
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µP---80B0A Stort-JMP 040 100 Displayed 340 004 to  340 037 
System-HB End-RST/0 342 004 to 342 037 

Program Spece 040 1 00  to 040 1 52 
(43 words) 

START- 040 1 00  CALL 3 15  0 17  1 40 Do short blank scan 
040 1 03 CALL 3 15  004 1 60  Scan dot row # 1  
040 1 06  CALL 3 1 5  004 200 Scan dot row #2 
040 1 1 1  CALL 3 1 5  004 220 Scan dot row #3 

040 1 1 4 CALL 3 15  004 240 Scan dot row #4 
040 1 1 7 CALL 3 15  004 260 Scan dot row #5 
040 1 22 CALL 3 15  004 300 Scan dot row #6 
040 1 25 CALL 3 15  004 320 Scan dot row #7 

040 1 30 LDA 072 000 340 Output vertical sync pulse 
040 1 33 MVIA 076 365 Load # of blank scans 

� 

1 35 CALL 3 1 5  01 1 1 40 Do blank scan 
40 1 40 DCRA 075 One less scan 

40 1 41 MOVAA 1 77 Equalize 2.5 m icroseconds 
040 1 42 JNZ 302 ( 1 35) (040) One more blank scan? 
040 1 45 MOVAA 1 77 Equalize 5.0 microseconds 
040 1 46 MOVAA 177 continued 

040 1 47 DI 363 Shut off horn 
040 1 50 JMP 303 ( 1 00) (040) Go to l ive scans 

Notes: 

TVT 65/a must be connected vie on BOBO adopter, end both the 65B-HDB end 65B-
HS64 PROMs must be in circuit for program to run. 

Horizontal frequency 15 . 1 74 kHz; vertical frequency 59.97 Hz. 2500 second 
hum bar. 

Address switches must be in "32," A5 = " + ," end A4 = "A4" positions. 

Character sequence goes 340 004; 342 004; 340 005; 342 005; 340 006; 342 006; 
340 007 . . .  

( ) denotes on absolute address that is program location sensitive. 

This program is not self-modifying and may be placed in  PROM or ROM. 

Mods; 

To relocate display space, use program j umpers on memory cord, or else change 
starting address of dot scans. 

To put both halves of display space c loser together, use A4 switch ing rather then 
A9 switching. 

(Continued on next page) 
Fig. 6-7. Program for a 1 -line, 56-character, no-interlace raster scan. 

159 



* Your simplest out is to adjust the display centering so that the 
first character is always legible. Always stop short of the maxi
mum display length as much as needed. * Use a longer than needed character line and put permanent 
blanks where they are called for. 

* Add equalization to lengthen each CALL sequence. While this 
is the obvious and cleanest route, it can add many words to a 
brute-force scan program. 

MORE CHARACTERS 

Our 1 X 56 scan has several obvious limitations. From this starting 
point, we'll want to add interlace, double stuffing, and lots more 
characters. 

The optimum number of characters or chunks per line seems to 
be 56 for an H8 system using A9 switching for speed doubling. This 

For double-heigh1 characters, repeat scan of each dot row twice. 

Flowchart: 

START (040 100) 

(040 100 - 040 127) 

(040 130 · 040 134) 

(040 135 · 040 141) 

YES NO 
(040 141 · 040 153) 

Fig. 6-7. Cont'd. Program for a 1-line, 56-character, no-interlace raster scan. 
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56 character length lets you use a standard horizontal frequency. 
You can display on either a color or a black-and-white set. 

But, there seems to be something magic about 80 character lines 
that appeals to people, despite the fact that this many characters are 
hard to read and are rarely, if ever, needed. So, to prove it can be 
done, we're going to show you how to do 80 character lines on your 
H8 and then put those lines on a tv with unmodified video band
width or over an rf modulator. But, remember that we'll have to run 
at a reduced horizontal rate, which will take width and hold modifi
cations to your small-screen, transformer-operated, PHOTOFACT-avail
able, black-and-white set. Further, your wrong choice of set could 
sing objectionably. 

12 LINES OF 80 CHARACTERS 

A brute-force, interlaced, double-stuffed 12 X 80 scan program 
appears in Fig. 6-8. You can easily modify it for 24 X 80 or even 
36 X 80 displays if you like. With the double stuffing, the 12 X 80 
display uses slightly less than one-third of the H8 throughput time. 
By going to suitable transparency techniques, you can save ½ of the 
computer time to transparently run other programs such as Extended 
BASIC. 

We've shown you this scan program with its memory space at 340 
010 to 343 377. This assumes you have at least two RAM cards in 
your H8 and have put this particular one "out on top" with the 
"56K" jumper on the memory card. You may want to relocate things 
later, but this is a handy place to- start. 

The TVT does place certain use restrictions on the 340 000 to 360 
000 computer address space, since any activity here also gives you 
a vertical sync pulse that might disrupt an enabled display. You can 
use this space for a display memory RAM. You should not use this 
area for the scan program or the computer stack. If you do use this 
page for display memory RAM, you will have to watch your cursor 
program carefully if transparent character entry is important to you. 

You'll find the 12 X 80 program shown in two separate fields. We 
have an even field that puts down the even dot rows of all the char
acters and an odd field that puts down the odd dot rows of all the 
characters. When they are combined, you end up with an interlaced 
and double-stuffed frame. Having the two fields separate is handy 
for debug. By jumping a field back on itself, you can display all-even 
or all-odd fields to fix coding errors or make format changes. 

The scan program runs just about the same way the earlier 1 X 56 
one did. We do a short blank scan. Then we put down the even dot 
rows of all the characters. Then we equalize and do a late vertical 
sync pulse, at the same time taking up one entire extra horizontal 
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µP-BOB0A Start-RUN 040 1 00  Displayed-340 0 1 0  lo 343 377 
System-HB End-RST/0 Program Space-040 1 00  lo 042 007 

(455 words) 

Even Field: 

START -,-040 1 00  CALL 3 15  023 1 40 Do short blank scan 

040 1 03 CALL 3 15  010 1 40 Scan dot row 0, character l ine l 
040 106 CALL 3 15  0 10  200 Scan dot row 2, character l ine 1 
040 1 1 1  CALL 3 15  010 240 Scan dot row 4, character l ine 1 
040 1 1 4 CALL 3 15  0 10  300 Scan dot row 6, character l ine 1 
040 1 1 7 CALL 3 15  010 140 Do blank scan 

040 1 22 CALL 3 15  060 140 Scan dot row 0, character l ine 2 
040 1 25 CALL 3 15  060 200 Scan dot row 2, character l i ne 2 
040 1 30 CALL 3 15  060 240 Scan dot row 4, character l i ne 2 
040 1 33 CALL 3 15  060 300 Scan dot row 6, character l ine 2 
040 1 36 CALL 3 1 5  060 1 40 Do blank scan 

040 1 4 1  CALL 3 1 5  1 30 1 40 Scan dot row 0, character l i ne 3 
040 1 44 CALL 3 15  1 30 200 Scan dot row 2, character l ine 3 
040 1 47 CALL 3 15  1 30 240 Scan dot row 4, character l ine 3 
040 1 52 CALL 3 15  1 30 300 Scan dot row 6, character l ine 3 
040 1 55 CALL 3 15  1 30 1 40 Do blank scan 

040 160 CALL 3 15  2 10  1 40 Scan dot row 0, character l ine 4 
040 1 63 CALL 3 15  2 10  200 Scan dot row 2, character l ine 4 
040 1 66  CALL 3 15  2 10  240 Scan dot row 4, character l i ne 4 
040 1 7 1  CALL 3 1 5  2 1 0  300 Scan dot row 6, character l i ne 4 
040 1 74 CALL 3 1 5  2 1 0  1 40 Do bla'nk scan 

040 1 77 CALL 3 15  260 1 40 Scan dot row 0, character l ine 5 
040 202 CALL 3 15  260 200 Scan dot row 2, character l ine 5 
040 205 CALL 3 15  260 240 Scan dot row 4, character l ine 5 
040 210  CALL 3 15  260 300 Scan dot row 6, character l ine 5 
040 2 13  CALL 3 15  260 1 40 Do blank scon 

040 2 1 6  CALL 3 15  330 1 40 Scan dot row 0, character l ine 6 
040 22 1 CALL 3 15  330 200 Scan dot row 2, character l ine 6 
040 224 CALL 3 15  330 240 Scan dot row 4, character l ine 6 
040 227 CALL 3 15  330 300 Scan dot row 6, character l ine 6 
040 232 CALL 3 15  330 1 40 Do blank scan 

040 235 CALL 3 15  01 0 14 1  Scan dot row 0 ,  character l i ne 7 
040 240 CALL 3 15  0 10  201 Scan dot row 2, character l ine 7 
040 243 CALL 3 15  010 241 Scan dot row 4, character line 7 
040 246 CALL 3 15  010 301 Scan dot row 6, character l i ne 7 
040 251 CALL 3 15  01 0 14 1  Do blank scan 

040 254 CALL 3 15  060 141  Scan dot row 0,  character l ine B 
040 257 CALL 3 15  060 201 Scan dot _row 2, character l ine B 
040 262 CALL 3 15  060 241 Scan dot row 4, character l ine B 
040 265 CALL 3 15  060 301 Scan dot row 6, character l ine B 
040 270 CALL 3 15  060 141  Do blank scan 

Fig. 6-8. Program for a 12-line, SO-character-per-line, 
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040 273 CALL 3 15  1 30 1 41 Scan dot row 0, character l ine 9 
040 276 CALL 3 15  1 30 201 Scan dot row 2, character l ine 9 
040 301 CALL 3 15  130 241 Scan dot row 4, character l ine 9 
040 304 CALL 3 15  1 30 301 Scan dot row 6, character l ine 9 
040 307 CALL 3 15  130 141  Do blank scan 

040 3 1 2  CALL 315 2 IO  1 4 1  Scan dot row 0 ,  character line 1 0  
040 315 CALL 31 5 2 10  201 Scan dot row 2, character l ine 1 0  
040 320 CALL 315 2 10  241 Scan dot row 4, character l ine JO  
040 323 CALL 315 2 10  301 Scan dot row 6, character l ine 10  
040 326 CALL 3 15  2 10  14 1  Do blank scan 

040 331 CALL 315 260 1 41 Scan dot row 0, character l ine 1 1  
040 334 CALL 315 260 201 Scan dot row 2, character line l I 
040 337 CALL 3 15  260 241 Scan dot row 4, character l ine 1 1  
040 342 CALL 3 15  260 301 Scan dot row 6, character l ine 1 1  
040 345 CALL 3 15  260 1 41 Do blank scan 

040 350 CALL 3 15  330 1 4 1  Scan dot row 0 ,  character line 1 2  
040 353 CALL 3 15  330 201 Scan dot row 2, character l ine 1 2  
040 356 CALL 3 15  330 241 Scan dot row 4, character line 1 2  
040 361 CALL 315 330 301 Scan dot row 6, character l i ne 1 2  
040 364 CALL 315 330 1 41 Do blonk scan 

040 367 MVIA 076 006 Delay 48.5 microseconds 

[ 
040 371 DCRA 075 continued 

040 372 JNZ 302 (371 )(040) continued 

040 375 LDA 072 000 340 Output //VERTICAL SYNC// pulse 
041 000 CALL 3 15  363 140 Do short blank scan 

041 003 LDA 072 000 000 Deloy 6.5 microseconds 

041 006 MVIA 076 1 75 load # of vertical blank scans 

[ 
041 010 CALL 3 15  015 1 40 Do //BLANK VERTICAL SCANS// 
041 013 DCRA 075 One less blank scan 

041 0 14 MOVAA 1 77 Equalize 2.5 microseconds 

041 015 JNZ 302 (010)S04 1 ) Repeal blank scans if not done 

041 020 MOVAA 1 77 Equalize 5 microsl'conds 

041 021 MOVAA 1 77 conti nued 
041 022 DI 363 Shut off horn 

[ 
041 023 JMP 303 ( 100)(041 } Jump to odd field 
(041 026 to 041 077 ore spores} 

Odd field; 

041 100 CALL 315 023 140 Do short blank scan 

041 103 CALL 3 15  010 160 Scan dot row 1 ,  character l ine 1 
041 106 CALL 315 010 220 Scan dot row 3, character l ine I 
041 1 1 1  CALL 3 15  010 260 Scan dot row 5, character l ine 1 
041 1 1 4 CALL 315 010 320 Scan dot row 7, character l ine 1 
041 1 1 7 CALL 3 15  0 10  1 40 Do blank scan 

041 1 22 CALL 3 15  060 160 Scan dot row 1 ,  character l ine 2 
041 1 25 CALL 3 15  060 220 Scan dot row 3, character line 2 
041 1 30 CALL 315 060 260 Scan dot row 5, character line 2 
041 1 33 CALL 3 15  060 320 Scan dot row 7, character l ine 2 
041 1 36 CALL 315 060 140 Do blank scan 

(Continued on next page) 
full-interlace, double-stuffed TVT 6% raster scan. 
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041 14 1  CALL 3 15  1 30 160 Scan dot raw 1 ,  character l ine 3 
041 1 44 CALL 315 1 30 220 Scan dot row 3, character l i ne 3 
041 1 47 CALL 315 1 30 260 Scan dot raw 5, character l ine 3 
041 1 52 CALL 3 15  1 30 320 Scan dot raw 7, character l ine 3 
041 1 55 CALL 315 1 30 1 40 Do blank scan 

041 1 60  CALL 3 15  2 10  1 60  Scan dot raw 1 ,  character l ine 4 
041 1 63 CALL 315  2 10  220 Scan dot raw 3, character l ine 4 
041 1 66  CALL 3 15  2 10  260 Scan dot raw 5, character l ine 4 
041 1 71 CALL 3 15  2 10  320 Scan dot row 7, character l ine 4 
041 174 CALL 3 15  2 1 0  1 40 Do blonk scan 

041 1 77 CALL 3 15  260 1 60  Scan dot row 1 ,  character l ine 5 
041 202 CALL 3 15  260 220 Scan dot row 3, character l ine 5 
041 205 CALL 3 15  260 260 Scan dot row 5, character l ine 5 
041 2 10 CALL 3 15  260 320 Scan dot row 7, character l i ne 5 
041 2 13  CALL 3 15  260 1 40 Do blank scan 

041 2 16  CALL 3 15  330 160 Scan dot row 1 ,  character l i ne 6 
041 221 CALL 3 15  330 220 Scan dot row 3, character l ine 6 
041 224 CALL 3 15  330 260 Scan dot row 5, character l i ne 6 
041 227 CALL 315 330 320 Scan dot row 7, character l ine 6 
041 232 CALL 3 15  330 1 40 Do blank scan 

041 235 CALL 3 1 5  0 1 0  1 61 Scan dot row 1 ,  character l ine 7 
041 240 CALL 3 1 5  0 1 0  221 Scan dot row 3, character l ine 7 
041 243 CALL 3 1 5  010 261 Scan dot row 5, character l ine 7 
041 246 CALL 3 15  0 10  321 Scan dot row 7, character l ine 7 
041 251 CALL 3 15  0 10  14 1  Do blank scan 

041 254 CALL 3 1 5  060 1 61 Scan dot row 1 ,  character l ine 8 
041 257 CALL 3 15  060 221 Scan dot row 3, character l i ne 8 
041 262 CALL 3 15  060 261 Scan dot row 5, character l ine 8 
041 265 CALL 3 15  060 321 Scan dot row 7, character l ine 8 
041 270 CALL 3 15  060 14 1  Do blank scan 

041 273 CALL 3 15  1 30 1 61 Scan dot row 1 ,  character l ine 9 
041 276 CALL 3 15  1 30 221 Scan dot row 3, character l ine 9 
041 301 CALL 3 15  1 30 261 Scan dot row 5, character l ine 9 
041 304 CALL 3 1 5  1 30 321 Scan dot row 7, character l ine 9 
041 307 CALL 3 1 5  1 30 1 41 Do blank scan 

041 3 1 2  CALL 3 15  2 10  1 61 Scan dot row 1 ,  character l ine 1 0  
041 3 1 5  CALL 3 15  2 10  221 Scan dot row 3, character line 1 0  
041 320 CALL 3 15  2 10  261 Scan dot row 5, character l ine 1 0  
041 323 CALL 3 15  2 10  321 Scan dot row 7, character line 1 0  
041 326 CALL 3 15  2 10  1 4 1  Do blank scan 

041 331 CALL 3 15  260 1 61 Scan dot row 1 ,  character l ine 1 1  
041 334 CALL 3 15  260 221 Scan dot row 3, character l ine 1 1  
041 337 CALL 3 15  260 261 Scan dot row 5, character l ine 1 1  
041 342 CALL 3 1 5  260 321 Scan do1 row 7, character l ine 1 1  
041 345 CALL 3 15  260 1 4 1  Do blank scan 

041 350 CALL 3 15  330 16 1  Sean dot row 1 , character I i  ne  12  
041 353 CALL 3 15  330 221 Scan dot row 3, character l ine 1 2  
041 356 CALL 3 15  330 261 Scan dot raw 5, character l ine 1 2  
041 361 CALL 3 1 5  330 321 Scan dot raw 7, character l ine 1 2  
041 364 CALL 3 1 5  330 14 1  Do blank scan 

Fig. 6-8. Cont'd. Program for a 12-line, BO-character-per-
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041 367 LDA 072 000 340 Output //VERTICAL SYNC// pulse 
041 372 MVIA 076 1 75 Load # of vertical blank scans 

C' 
374 CALL 3 15  0 15  1 40 Do I /BLANK VERTICAL SCANS// 

041 377 DCRA 075 One less blank scan 
042 000 MOVAA 1 77 Equalize 2.5 microseconds 
042 001 JNZ 302 (374)(041 ) Repeal blank scans if not done 

042 004 MOVAA 1 77 Equalize 5 microseconds 
042 005 MOVAA 1 77 continued 
042 006 DI 363 Shut off horn 
042 007 JMP 303 ( 1 00) (040) 

Notes: 

TVT 65/s must be connected via an 8080 adaptor, and bolh lhe 658-HDB and 658-
HSB0 PROMs must be in circuit for the program lo run. 

Address switches must be i n  "64," A5 = "AS," and A4 = "A4" positions. 

Horizontal frequency = 1 1 .  1 91 kHz. Vertical frequency = 60.006 Hz. 1 66 second 
hum bar. 

This program is not self-modifying ond may be placed in PROM or ROM. 

Characler sequence goes 340 000; 350 000; 340 001 ;  350 001 ; 340 002; 
350 002; 340 003 . . . .  

) denotes a n  absolute address that i s  program location sensitive. 

Flowchart: 

040 100 

040 100· 
040 J66 

040 367-
041 007 

041 010-
041 014 

041 015-
041 015 

START 

DD 0.1.4.6 
LIVE SCANS 

EVEN FIELD DOD FIELD 

line, full-interlace, double-stuffed TVT 6% raster scan. 

041 100· 
04 1 J66 

041 J67-
041 373 

041 374-
041 000 

041001-
041011 
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scan time. Then we do the usual blank vertical scans, completing the 
field. 

When the field is finished, we jump to the odd field, do a short 
blank scan, and then put down all the odd dot rows of all the char
acters. After this, we do an early vertical sync pulse and then go on 
to the usual number of vertical blank scans. The scan sequence re
peats by then jumping to the start of an even field. 

The early and late vertical sync pulses differ by half a horizontal 
line. When you combine this half a line with the extra horizontal 
line picked up only in the even scan, you end up with an interlaced 
scan of 373 whole lines taking one 30-hertz frame. This 30-hertz 
frame consists of two 60-hertz fields of 186.5 lines each. 

The 658-HS80 Scan PROM lets you repack the 80 character lines 
so you can use your display memory space efficiently. Fig. 6-9 shows 
how the characters are arranged in RAM. While this looks like a 
royal mess, a few extra cursor words are all we need to straighten 
things out. This is more than a reasonable tradeoff for letting us do 
long lines with an 8080 in the first place and freeing up 600 or so 
words of system RAM for other uses. 

Your Turn: 

* Show the coding for 24 x 80, 32 x 80, 
1 6  x 56, 32 x 56, 1 6  x 64, and 32 x 64 
scan programs. 

* Show ways of very much shortening the 
1 2  x 80 scan program while staying 
PROM compatible. Try: 
-Using only one verti cal blanking se

quence, and minimizing blank se
quences and unused code words. 

-Using indi rect JSR commands. 
-Using 1/0 commands to free address 

space. 
-Using interrupt mapping. 

Note that you will use the HS64 PROM for 64 and shorter char
acter lines and most graphics. The HS80 PROM is usually reserved 
for 80 character lines. You can do 40 character lines with the HS64 
without any repacking, or else you can go to a specially coded HS40 
PROM that uses repacking. Or, you can ultimately go the scrungy 
video route and eliminate all the PROMS altogether. 
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g �  
0 0 

340 t <I 

341 i <I 

342 1 uj 

la 2a 

la 8a 

lb 2b 

3a j:d 4a Sa 6a 

9a jy:j 10a lla 12a 

3b l <l 4b Sb 6b 

343 ..,l .,.d.___1_b_....,_ __ sb_....,_ __ 9b _ _,j ... :..,d __ 1_ob_.......__1_1b ____ 1_2b _ _. 

ONE CHARACTER LINE UNUSED 

CHARACTER SEQUENCE IS ababab . .  

Fig. 6-9. Display memory map for 12 X 80 scan. 

8080 CURSOR SOFTWARE 

Many of the ideas we have already used for our previous cursors 
will carry over the 8080 cursor design. One new hassle we'll pick up 
is the straightening-out process needed to undo the A9 speed dou
bling. But, this is more than offset by the easier and simpler code 
you get by using all the available 8080 registers, particularly the 16-
bit-wide HL register that is ideal for cursor location storage. 

Let's look at a simple cursor that ties the keyboard input to an 
8080 display. We'll use the I X 56 display to keep things simple. 
You'll find the program shown as Fig. 6-10. 

For convenience, we've left this program in several pieces, omitted 
a visible cursor, and have done only "good enough" equalization. 
While you can use this program for a one-line point-of-sale terminal, 
as a deaf communicator, or in a prompting environment, chances are 
that you'll want to pick up these bits and pieces and then combine 
them with the best of the earlier cursors to do your own thing. 

Our main scan sequence is pretty much the same as the old I X 56 
scan program of Fig. 6-7. We've added some words at the start that 
initialize our H8-5 serial interface so that it will accept a keyboard 
input by way of the keyboard serial adaptor. Our brute-force scans 
are called for next, as needed to give us a line of characters. 

After the characters are down, we test to see if a new key has been 
pressed. If not, we go on and output a vertical sync pulse, do the 
blank vertical retrace scans, and then jump up and repeat everything 
for the next field. Note that we do NOT re-initialize the serial inter
face each time. Instead, we simply loop back to the start of the next 
field. 
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µP-8080A Start-JMP 040 l 00 Displayed 340 004 ta 340 037 
System-HS End-RST/0 I 342 004 to 342 037 

Program Space 040 1 00  to 040 341 
Registers Used - B, H, L 

Main Scan Sequence: 

� 040 1 00  MVIA 076 3 1 2  In itialize MODE for HB-3 
040 1 02 OUT 323 373 continued 
040 1 04 MVIA 076 004 Initial ize COMMAND for HB-3 
040 1 06  OUT 323 373 continued 

040 1 1 0 CALL 3 1 5  0 17  1 40 Do short BLANK SCAN 
040 1 1 3 CALL 3 1 5  004 1 60  Scan Dot row # 1  
040 1 1 6 CALL 3 1 5  004 200 Scan Doi row #2 
040 1 2 1  CALL 3 1 5  004 220 Scan Dot row #3 

040 1 24 CALL 3 1 5  004 240 Scan Dot row #4 
040 1 27 CALL 3 1 5  004 260 Scan Dot row #5 
040 1 32 CALL 3 1 5  004 300 Scan Dot row #6 
040 1 35 CALL 3 1 5  004 320 Scan Dot row #7 

040 1 40 MVIB 006 364 Load number of blank scans in B 
040 1 42 IN 333 373 Is a new key pressed? 
040 1 44 ANI 346 002 Mask keypressed bi! 

'°40 1 46 JZ 3 1 2  ( 1 54) (040) No, continue scan 

I 040 2201---040 1 5 1  CALL 3 1 5  (220)(040) Yes, go to cursor 
040 1 54 CALL 3 1 5  01 5 1 40 Do equal izing BLANK SCAN I 040 1 57 LDA 072 000 340 Output vertical sync pulse 

/ 040 1 62 MOVBA 1 70 1 70 Get number of blank scans back 

[

040 1 64  CALL 3 1 5  01 1 1 40 Do BLAI\JK SCAN 
040 1 67 DCRA 075 One less scan 
040 1 70 MOVAA 1 77 Equalize 2.5 microseconds 
040 1 71 JNZ 302 ( 1 64) (040) Do another blank scan? 
040 1 74 MOVAA 1 77 1 77 Equal ize 5 microseconds 

040 1 76 DI 363 Shut off horn 
:40 1 77 JMP 303 ( 1 10 ) (040) Go to new field 

Cursor 
Return 

Cursor Processing Subroutine: 

=--040 220 MOVAH 1 74 Get upper cursor address 
040 221 AN I 346 375 Mask A9 out 
040 223 CPI 376 340 Is upper page address valid? 

�
40 225 JZ 3 1 2  (233) (040) Yes, OK lo continue 

40 230 CALL 3 1 5  (260) (040) No, clear screen via subroutine 
Lo40 233 MOVAL 1 75 Get lower cursor address 

040 234 ANI 346 037 Pu! it on the screen 
040 236 MOVLA 1 57 Replace lower cursor 

Fig .6-10. Program for a 1 -line, 56-character TVT 6% 
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040 237 IN 333 372 Get character 
040 241 CPI 376 01 5 Is it Carriage Return (Erase)? 
040 243 JZ 3 1 2  (260) (040) Yes, clear screen via subroutine 

1040 �00 l-040 246 CALL 3 1 5  (300) (040) No, enter character via subroutine 

040 251 RET 31 1 Return to scan program 

(040 251 through 040 257 ore spores; not used) 

�40 260 CALL 3 1 5  (320) (040) Go to clear screen subroutine 
040 263 MVIB 006 331 Equalize # of blank scans 

I 040 1 541--040 265 RET 
remaining 

3 1 1 Return to process ing 
(EXIT) 

Enter Character and Increment Subroutine: 

� 040 300 MOVMA 1 67 Store character at cursor location 
040 
040 
040 

040 
('[XIT 1 I- 040 

040 

lmII!- 040 

301 
302 
304 

305 
307 
3 1 0  

3 1 1  

MOVAH 1 74 
XRI 356 
MOVHA 1 47 

ANI 346 
RNZ 300 
INXH 043 

RET 3 1 1 

Clear Screen Subroutine: 

[ffi@---- 040 320 LXIH 041 

[� 
323 MVIA 076 

040 325 CALL 3 1 5  
040 330 MVIA 076 

040 332 CMPL 275 
040 333 JNC 302 
040 336 LXIH 041 

( EXIT l--040 341 RET 31 1 

Notes: 

Get upper cursor word 
002 Change address A9 

Replace upper cursor word 

002 Is address A9 now zero? 
No, return 
Yes, increment HL 

(cursor address) 
Return to processing 

(004) (340) Home cursor 
040 Load space 
(300) (040) Enter space via ECI subroutine 
040 Is it the end of the screen? 

continued . . .  
(323) (040) No, odd more spaces 
(004) (340) Yes, home cursor 

Return to processing 

M 65/s must be connected v ia on 8080 adaptor, and both the 658-HD8 and 658-
HS64 PROMs must be in circuit for program to run. Character entry via a keyboard, 
a keyboard serial adaptor, and the H8-3 serial interface cord. 

Al l  characters and al l  control commands ore entered on the screen, except for 
carriage return (CR), which c lears the screen. 

Horizontal frequency is 1 5. 1 74 kHz; vertical frequency is 59.976 Hz. 2500 second 
hum bar. 

Address swi tches must be in "32," A5 = " + , "  and A4 = "A4" positions. 

Character sequence goes 340 004; 342 004; 340 005; 342 005; 340 006; 342 006; 
340 007 . . . .  

8080 raster scan wilh integrated minimum cursor. 
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Now, if a key has been pressed, we jump to the new Cursor Proc
essing subroutine at 040 220 through 040 251. This cursor processing 
subroutine first checks to make sure the HL register is holding a 
valid cursor location. If it isn't, the screen is erased and the cursor 
fixed before anything ungood is allowed to happen to other programs 
in the machine. 

\,Ve then get a character and test it to see if it is a CR, or carriage 
return. If it is a CR, we erase the screen and home the cursor. CR 
was chosen over CAN in this example as it seems more appropriate 
for a one-line display. You can, of course, use any decoding you like. 

This program is not self-modifying ond may be placed in PROM or ROM. 
Register "B" is used for temporary storage; registers "HL" are used to hold the 
cursor address. 

To shorten number of characters displayed for a Iv with l imited width, use 
040 337 val ue of 005 or higher. 

( ) denotes an absolute address that is program location sensitive. 

Flowchart: 

MAIN SCAN 

START 

(100·106) 

)142,146) 

1157·161) 

(164,167) 

(300·311) 

CURSOR PROCESSING 

ALL LOCATIONS 
PREFIXED 040·XXX 

1320·341) 

CLEAR SCREEN 
& 

HOME CURSOR 

1260·265) 

Fig. 6-10. Cont'd. Program for a 1-line, 56-character TVT 65/s 8080 
raster scan with integrated minimum cursor. 
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If any key but the carriage return was pressed, the character gets 
entered. This is done by way of an enter-character-and-increment or 
ECI Subroutine. This ECI subroutine is somewhat fancier than the 
ones we used before, since we have the A9 switching to contend 
with. Some new rules and a few extra code words take care of this 
for us. 

Remember that the A9 switching was used to let us get characters 
out of the 8080 fast enough to be useful. To do this, the display char
acters are out of order. Specifically, for our 1 X 56 display, the char
acter sequence goes like this : 

1st character 
2nd character 
3rd character 
4th character 

55th character . . . . .  
56th character . . . . . 

340 004 
342 004 
340 005 
342 005 

340 037 
342 037 

Now, every time we enter a character, we want to go on to the 
next one. So, we first change A9. To do this, we use an Exclusive OR 
002 of the H register. This will automatically make A9 a one for a 
particular character, a zero for the next character, and a one for yet 
the next character, and so on. 

If A9 goes from a zero to a one, we need do nothing further. But, 
if A9 goes from a one to a zero, we need to move onto the next pair 
of character slots in memory. To do this, we increment the HL regis
ter which contains the cursor. 

So, we change A9 every new character but increment our HL 
cursor only every second character. And, all the A9 switching mess 
gets magically eliminated with nothing but eight or so program 
words. 

Your Turn: 

Show an a l l-the-bel ls-and-whistles cursor 
for a 24 x 80 display, i nc luding a vis ible 
cursor, fu l l  equal ization and transparency, 
al l  cursor motions, and the usual good ies. 

As with the 6502 systems, there is virtually no limit to how fancy 
your cursor programs can get. All it takes are extra words of machine 
language code to do most anything you can dream up. 
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CHAPT ER 7 

Lower-Case Hardware 

For Your Apple I I  

With a few simple modifications and some new software, you can 
plug a TVT 6% Lower Case Module "A" into an Apple II. 

These simple changes turn your Apple II into a combined upper
and lower-case computer and can cost you as little as $10. Your new 
lower-case ability frees up your Apple to do things like word proc
essing, text editing, typesetting, generating mailing lists, writing 
form letters, and so on. The modifications take two extra integrated 
circuits added to the "breadboard" area already on the Apple. If you 
like, you can get by with only add-on wires and no foil cuts. 

The change-only-the-character-generator approach doesn't tie up 
or restrict blocks of ROM, RAM, or graphics display memory. What 
we are about to show you is also totally invisible-your Apple II 
stays an upper-case machine until you specifically ask for some 
lower-case output. Software does the switchover at any time, and the 
regular Apple II keyboard is used for both upper and lower case. 

There are two minor limitations to this conversion. If you still 
want to be able to reverse video, you may have to add a changeover 
switch that gives you a choice of reverse video or lower case. You'll 
also find that lower-case characters will be more attractively flashed 
with software rather than hardware. The method we'll show you 
should work on many other terminals and computers, if they use a 
new style 2513 character generator and have a full 8-bit-wide dis
play memory. 
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SOME DETAILS 

Just adding lower case to any old computer or terminal sounds 
simple enough. Plug in an upper- and lower-case combined charac
ter generator, and you are home free, right? 

Well, not really. First and foremost, you have to want to do some
thing useful with your new lower-case characters. While they are 
nice to look at for displays and some games, unless you have a 
printer or other output that needs and uses lower case, you really 
haven't gained very much. If you want the new characters, make 
sure you have some way to get them out of the machine. So, an im
portant rule is to make sure you have some use for lower case before 
you go to the trouble of providing it. 

An obvious problem that immediately crops up is the keyboard 
and its encoder electronics. The Apple II has an upper-case-only 
keyboard. They used an old National chip for the encoder. This chip 
is strictly upper case only, compared to the usual 2376 with its choice 
of coding options. The Apple keycaps, particularly those on the "M"' 

and the "P," will also limit how you can use the existing keyboard. 
And there are no spare keys to speak of. 

We'll show you how to use software to trick the existing Apple II 
keyboard into giving us lower case when and where we want it. The 
software secret is to use the Escape key as a shift lock for lower case. 
More on this later. 

Another problem is created by the firmware in the Apple II. The 
operating systems and monitor are needed for machine language, 
the miniassembler, for Integer BASIC, and for APPLESOFT. 

All four of these languages demand upper case only. And the firm
ware is happy to provide it. In fact, most of the sequences go to a 
lot of trouble to make sure that everything is upper case. Put in 
lower case, and the sequences will convert it back for you. Even the 
winking cursor forces an upper-case-only output. So, even if you 
force feed your Apple from a new lower-case keyboard, the internal 
:firmware will try to change it all back to upper case anyway. 

The way around all this is to use some new software that bypasses 
the firmware when and if we need lower case. This is a key to full 
alphanumerics. We have to make sure that everything we do stays 
fully invisible and appears to be upper case only, unless we specifi
cally call for the new characters. 

Our modifications meet these goals : 

* The existing keyboard is used without any changes. 
* Apple hardware changes consist of two new integrated circuits 

in the breadboard area, and a plug-in module. No foil cuts are 
needed. 
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* Lower case is completely invisible until it is called with soft
ware. * No hi-res graphics or large blocks of ROM or RAM are tied up. 

Let's see just how we can go about all this. Fig. 7-1 shows the old 
and the new bit assignments for the Apple II display memory, or 
"DL" bus. The lower six bits ( DLO--DL5) are used for the ASCII 
character code, arranged in the usual order. The next bit is DL6. 
It's used to flash the screen. Screen flashing is most often used for 
the cursor, but it is also handy for alarm or error messages. 

The final bit is DL7. It was originally used to reverse the screen 
display. This gives you black characters on a white background, and 
is n6rmally used for emphasis. 

Lines DL6 and DL7 are not independent. You cannot flash a white 
screen. You can only flash a black screen. The truth table ( before 
modification ) for these two lines looks like this :  

DL7 
0 
0 
1 
1 

DL6 
0 
1 
0 
1 

Screen 
Black characters, white background 
Flashing character, black background 
White character, black background 
White character, black background 

If it weren't for the interaction between these two bits, some capi
tal letters would always flash with the existing Apple II firmware. 

The obvious thing to do is make DL7 equal to the seventh ASCII 
line needed for your new character generator. But there doesn't seem 

FLASH SCREEN 

DL7 

REVERSE SCREEN 
(0 = REVERSE) 

DL6 

FLASH SCREEN 

DL7 

LOWER CASE 
FLAG 

(0 = LOWER CASE) 

DL6 

DL5 DL4 DL3 DL2 

ASC I I  CHARACTER 
BITS 80-85 

(A) Before adding lower case. 

DL5 DL4 DL3 DL2 

ASCII CHARACTER 
BITS 80-85 

(B) After adding lower case. 

Dl l 

Dll 

Fig. 7-1. Bit definitions of Apple II character "DL" bus. 
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to be any reasonable way to do this and still have invisible operation 
when you don't want lower case. Instead, we use DL 7 as a lower
case flag. If DL7 is a O AND if DL6 is a 0, then we want lower case 
out of our character generator. Otherwise, we want everything to 
stay just the way it was. Our new truth table looks like this : 

DL7 DL6 Screen 
0 0 White lower-case characters 
0 1 Flashing characters 
1 0 White upper-case characters 
1 1 White upper-case characters 

Once again, the reason we do this in a nonobvious and seemingly 
complicated way is to keep compatibility with everything that is 
already working in your Apple II. 

The hardware modifications involved are simple and cheap, but 
you should not attempt them if you aren't good at adding wires to 
a printed circuit board, reading socket pins, and so on. There are 
three things involved in the hardware changes :  

* The character generator is replaced with one that also generates 
lower case. 

* A new integrated-circuit gate is added to decode lower case 
for the character generator. 

* A new integrated-circuit gate is added to prevent lower-case 
characters from appearing as black on white. 

The first change is done using a TVT 6% Module "A." This con
sists of an $8 upper-and-lower-case Motorola MCM6674 character 
generator mounted on a small adaptor card that plugs into the exist
ing 2513 character-generator socket. The second two changes involve 
15r integrated circuits added on new sockets in the Apple bread
board area. One direct IC-to-IC wire is used to eliminate the need 
for any foil cuts. 

The schematic of the lower-case modification for the Apple II is 
shown in Fig. 7-2. Character generator A5 is unplugged and replaced 
with a TVT Module "A" that carries a new upper-and-lower-case 
MCM6674P character generator. A new wire routed to pin 23 of A5 
carries the new seventh ASCII bit, A6, needed for the dual-case 
operation. 

The logic rules for this new lead tell us to make A6 the comple
ment of A5 for upper case, numerals, and punctuation, but to make 
A6 a 'T' for lower case. This lower-case condition happens when 
DL6 and DL 7 are both zeros. 

A new 74LS02 quad NOR gate integrated circuit is put in the 
breadboard area at All to do this A6 logic conversion for us. The 
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VA ------;;,.:,;� 
vB ----
vc ------=�-

DLO -----;-
DL1 ----
DL2 ---�
DLJ ------;�� 
DL4 ----;�,;;;;;,i 
DL5 -----;-;;;,;;;,i 

DL6 
FLASH 
DL7 

+5V  

TOPSIDE 
PIN-TO-PIN 
JUMPER 

ASCII BIT 6 
A l l  = 74LS02 

ADDED TO 
BREADBOARD 

AREA 

B i l .  813 = EXISTING IC'S 

+5 V - PIN 14 ¾- - PIN 7 

@Al3 = i4LSOO 
ADDED TO 

BREADBOARD 
AREA 

Fig. 7-2. Schematic of Apple II lower-case modifications. 

gate outputs a "l" if DL6 and DL 7 are both "O," and otherwise out
puts the complement of DL5. The reasons behind this logic are ap
parent if you study the ASCII coding involved. 

If we simply changed the character generator and added a quad 
NOR gate, we would get invisible normal operation and lower case 
when we called for it. The only hassle involved is that the lower case 
would appear as reverse video, with black characters on a white 
background. To beat this final problem, we add a second integrated 
circuit in the breadboard area. Al3 outputs a signal for us that is 
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DO NOT PLUG AN UNMODIFIED TVT 
MODULE "A" INTO AN UNMODIFIED 

• 
.___

A
_

P
_
P
_
L
_
E

_
II
_
I 

________ __, 

INSTEAD . . .  
• Leave pins 1 and 1 2  off Module "A" during assembly 

. . .  or . . .  

• Bend pins 1 and 1 2  of Module "A" u p  and out of the road 

. . .  or . . .  

):I 
V 

* Cut pins 1 and 1 2  of Module "A" flush with its circuit board 

. . .  or . . .  

* Use a PC layout for Module "A" that floats pins 1 and 1 2  

. . .  o r  . . .  

• Cut the foi l  o n  the dead-end supply l ines going lo pins 1 and 1 2  of character 
generator A5 on your Apple I I .  

Fig. 7-3. Several routes to module "A" compatibility with Apple II. 

low only when the flashing condition of DL6 = 1 and DL 7 = 0 takes 
place. Otherwise, a 'T' is output and forces the normal white-on
black screen display. 

Note that the original DL 7 connection going to pin 6 of Bl3 has 
to somehow be broken. This can be done by cutting foil, but a safer 
and more reversible way is to bend pin 6 of Bl3 out of its socket, and 
make a direct topside wire connection. 

There is one final detail we must attend to in the modification for 
lower case. The Apple II still applies unused negative voltages to 
pins 1 and 12 of the character generator. This probably dates from 
the days when some 2513's needed these supply voltages, or else it 
is a hedge should a different part be needed. At any rate, an unmod
ified TVT Module "A" will short out the power supplies if it is 
plugged into an unmodified Apple II! Fig. 7-3 shows several ways 
out of this bind. Anything that keeps a short off the -5-volt and 
-12-volt lines will work. 

HARDWARE CHANGES 

As with just about anything in the new computer world, there's 
both hardware and software involved. If you make only the hard
ware changes we are about to look at, your Apple II will still behave 
just like it did before, with the only exception being the loss of 
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screen reversal. To actually use lower case, we have to add new soft
ware as well. 

Our new software examples will be in the form of short integer 
BASIC programs and sequences. Once you decide what you really 
want to do with your lower-case Apple, you can use these sequences 
as they are, can integrate them into your working programs, or can 
convert them up to APPLESOFT or down to machine language. 
We'll be giving you more than enough software to get you started. 

Fig. 7-4 repeats the details of the TVT Module "A" from The 
Cheap Video Cookbook ( Sams Catalog No. 21524). We have 
changed the callouts around to match the Apple's and have elimi
nated pins 1 and 12 from the module to eliminate the supply short
ing problem. 

Assembly of your Module "A" goes like this : 

Carefully inspect the circuit board for opens, solder bridges, 
etc. Try tinning one of the runs on the board. If there is any 
problem with easy solder adhesion, carefully clean all the 
areas to be soldered with an ordinary pink eraser. A void 
handling the board, as it will make soldering more difficult. 
Set your PC board bare side up with the notch in the upper 
left-hand corner. Insert a 0.1 -µ,F disc ceramic capacitor in 
the two middle, left-most holes. Solder the capacitor in 
place. Clip and save the excess leads. 
Use one of the leads left over from the previous step to 
provide a jumper in the two middle, right-most holes. 
Use the other remaining lead to provide a jumper immedi
ately to the left of the one you just installed. Solder both 
jumpers in place. 
Add an 18-pin integrated circuit to the remaining middle 
holes. If the socket has orientation marks or notches on it, 
point these toward the capacitor. 
Shorten one of the 12-pin strips so that it is only 10 pins 
long. Center this strip above the socket. The long end of the 
pins and the spacer go on the bare side; the short pin side 
goes to the foil. Solder in place after making sure that the 
strip is flat and that one hole remains unused at each end 
of the strip. 

( .  Add a 12-pin strip to the remaining 12 holes at the bottom. 
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Be sure this strip is flat before soldering and that it points 
the same direction as the previous strip. 
Carefully study Fig. 7-4D, and add the following four wire
pencil connections to the FOIL SIDE : 

( ) IC pin 12 to module pin 4 
( ) IC pin 13 to module pin 5 



( ) IC pin 15 to module pin 7 
( ) IC pin 16 to module pin 8 

NOTE: Be sure you understand the pin numbering before 
you start. On the foil side, the connector pins run counter
clockwise. The pins on the 18-pin IC socket run clocktoise. 
The end jumper and capacitor holes are not counted. There 
are no module pins at locations 1 and 12. 
Check the previous step. Your four connections should form 
a "cross within a cross" that reverses the sequence of five 
side-by-side pad pairs. 

( ) Insert a Motorola MCM6674P character generator into the 
module, putting the notch at the capacitor end. You may 
have to gently force the pins slightly together by rotating 
the IC against a table top or bench. 

( Store your completed module in protective foam. 

This completes assembly of your Module "A." 

Chart 7-1 . What You WIii Need to Add Lower Case 
to an Apple I I  

Parts: 
1 - TVT Module "A" lower case plug-in with floating pins 1 and 12 

(Fig. 7-4) 
2 - 14-pin Integrated-circuit sockets 
1 -74LS02 quad low-power Schottky TTL NOR gate 
1 - 74LSOO quad low-power Schottky TTL NAND gate 
1 - Length of #24 solid, insulated wire, around two feet long 
1 - Length of electronic solder suitable for PC board use, around two 

feet long 

Tools: 
Phi l l ips screwdriver 
¼" nutdriver (optional) 
Needle-nose pliers 
Diagonal cutting pl iers 
Wire stripper 
Small soldering iron 

Chart 7-1 gives a list of the tools and parts you will need for your 
Apple II modifications. If you know how to solder on a printed
circuit board, and are familiar with PC socket numbering, the 
changes should be cheap and easy to do. If you aren't into this sort 
of thing, or if chopping and channelling a $1000 computer is against 
your religious convictions, have somebody else do the work for you. 

Your conversion can go like this: 

( Turn your Apple II off and remove supply power. Remove 
all video cables the line cord, and all cassette cables. 
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Upper- and Lower-Case 

Parts List 

l -MCM667 4 Character Generator (Motorola) 
1 -1 8-pin low-profile IC socket 
1 -0. 1 -µF disc ceramic capacitor 
2-1 2-pin strips (AMP 1 -640098-2) 
1 -circuit board "A" 
2-jumpers made from capacitor leads 
4-jumpers made with wiring pencil 

-solder 

'cc 
A6 

AS 

A4 QI 11  

Al Q1 

A1 QJ 

Al Q4 

AO QS 

RSJ 

cs 

6674 

------
--

1 9116" 

14CMI 

CHARACTER GENERATOR NOTCH AS SHOWN 

(A) Schematic. (B) Foi l  pattern. 

Fig. 7-4. Construction 
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Alphanumeric Module 
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How It Works 

ASCI I  code is input on pins AO through A6. R l ,  R2, 
and R4 row commands are input from Apple VA, VB, 
and VC timing. Dot matrix code is output to video shift 
register at Ql through Q5. Chip select is permanently 
enabled. Cursor winking is external and done by soft
ware or reversing video after serial conversion. 
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I 
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(C) Pin side. (D) Foil side. 
details of module "A." 

WIRE PENC IL 
JUMPER 141 
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( ) Lift the lid of the Apple II. You do this by pulling sharply 
up first left of rear center and then right of rear center to 
snap the Hedlok fasteners. Set the lid aside. 
Carefully unplug any remaining rf modulator cables, game 
paddles, other I/O connections, and any plug-in cards, 
making a careful note of where they go and how they are 
oriented. 

( ) Place the Apple II upside down on a bench that is covered 
with a rug or a foam pad. 

( ) Remove the four semirecessed Phillips-head screws at the 
bottom front ( Fig. 7-5 ) .  Set them aside in a safe place. 

NOTE TAB
'\__ 

9 (:B IL..._ ___ ...c::::;;;i._ ________ _____.l (:B 10 

DO NDT ALLDW TOP AND BOTTOM 
OF APPLE II TO PHYSICALLY 
SEPARATE UNTIL KEYBOARD 
CONNECTOR IS UNPLUGGED 

1 7  
L J  

<:B (t) 
5 7 

�----------------------------- ------

l 2 4 

'- @ @) 
----
@) 

Fig .. 7-5. To disassemble your Apple II, remove only the screws shown here. 
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( Remove only the six outermost Phillips-head screws from 
the bottom ( Fig. 7-5 ) .  There should be two at extreme left, 
two at extreme right, and two at extreme rear. Set these 
screws aside. Do not remove any other screws! The out
side six screws may be a slightly different color than the 
others. 

( While you are carefully holding the top and bottom of the 
computer tightly together, turn the computer over so that 
it is right side up. 
Gently lift up the front of the computer only far enough 
that you can see inside. Note the keyboard connector that 
plugs into location A7. Gently remove this connector from 
the main computer board end. 

( Check the rear of the main circuit board by the VIDEO 
jack. If an rf modulator or something else is plugged into 
the four-pin connector at Kl4, carefully remove it. 

( At this point there should be nothing preventing you from 
removing the top of the case. Remove the cover and set it 
aside. 

AlO 

L _ _  J 
10 

, - 7  , - - 7  EXISTING B13 

(B1 1) (B12) 0 r 7  
I I 

I L _J  

L _ _  J L _ _J 
0 

r.1 
0 r, 1 . 1 SPEAKER 

I I L J 
L _J  

0 
0 0 0 0 0 0 

0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;; 

L_J 
0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

1 1  1 2  13 14 

Fig. 7-6. Topside pictorial o1 lower-case modi1ications. Jumper shown 
eliminates need 1or 1oil cut. 
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Important Note: The pins on the keyboard connector and 
the unprotected speaker cone are easily damaged. Be 
gentle! 

Note how the integrated ·circuits are numbered by column 
and alphabetized by row. Verify that 

( ) There is a 2513 character generator at A5 
' ( ) There is a breadboard area at All through Al4 
\ ( ) All integrated circuits have code notches and dots 

that line up pin 1 with white dots on the board. 
Unplug the power supply connector. Pry gently against the 
plastic clips on either end of the socket to release them. 
Remove the 6-32 nut and washer in the center of the main 
computer board near FS. 
Unplug the speaker connector. 
Note there are six white nylon board supports. Be sure to 
note the one at J9. 
Gently squeeze the support at Al with your needle-nose 
pliers until the barb releases the board. Lift the board up 
only far enough to free it from the barb. 
Release the other barbs, one at a time, starting with Al4, 
followed by J9, Kl4, K9, and finally Kl. 
Remove the circuit board from the computer. Set all the 
computer parts aside except for the circuit board. 
Study Fig. 7-6. Add a 14-pin integrated-circuit socket to 
All, so that it straddles the uppermost breadboard row, 
starts in the third hole from the left ( two holes show at 
socket left ) and has any notches or dots oriented to the left. 
Tack the IC socket in place at pins 1 and 8. Then remelt 
these pins while pushing down on the socket to make sure 
it is solidly seated. Solder all 14 pins from the foil side. 
Skip two holes and add a second 14-pin integrated-circuit 
socket immediately to the right of the first one. It should 
also straddle the upper two rows and should have seven 
holes visible on the right and two holes visible between 
the sockets. 
Plug a 74LS02 into the left-most socket at All, making sure 
the code dot and notch go to the left as shown. 
Take a 74LSOO and carefully bend pin 8 that so it sticks 
straight out. Now plug this 74LS00 into location Al3, mak-
ing sure the code dot and notch go to the left as shown. 
Carefully remove the 74LS02 in socket Bl3. Then bend pin 
6 of this integrated circuit straight out. Replace this inte-
grated circuit in its socket, making sure the code notch and 



dot point down toward you, just like all the others in that 
row. 
Prepare a 1 ¼-inch ( 32 mm) wire by stripping ¼ inch ( 3 
mm) of insulation from each end. This should be a solid 
wire, preferably #24. 
Solder this wire between the two "flying" pins, pin 8 of Al3 
and pin 6 of Bl3. 
Turn the board upside down and provide the following 
connections, each time picking a reasonable length of wire 
and stripping ¼ inch ( 3 mm) from each end. When solder
ing to existing pads, butt the wire against the pad after tin
ning it. Do not place the wire beside the pad where it can 
contact the next pad over. Note that integrated-circuit pins 
count clockwise from the foil side. See Fig. 7-7. 

( ) Ground wire 7 / All to 7 / Al3 to ground at green 
capacitor Al4. Do not connect to the wide foil. 
Connect only to the capacitor lead. 
+5-V supply wire 14/ All to 14/ Al3 to +5 at green 
capacitor Al4. Do connect to wide foil. 

( ) ASCII bit 6 output wire 23/ A5 to 1/ All. 
( ) Short bare jumper 2/ All to 3/ All to 4/ All. 
( ) Short bare jumper 5/ All to 13/ All. 
( ) Short bare jumper 6/ All to 10/ All. 
( ) DL5 input wire from 22/ A5 to 11/ All and 12/ All. 
( ) DL6 from 5/BB to 9/ All to 9/ Al3. Be very careful 

(FOIL SIDE) 

finding 5/BB. Note the square foil pad on all pin 
#l's of the integrated circuits. 

DL 7 from 7 /BS to 8/ All to 13/ Al3 and 12/ Al3. 

0 

ASC I I  BIT 6 :  

0 · 0 · 0 

0 0 
DL5 

. . . . .. :)it24 : 13 21/ : 
(AS) • • • ••• • •••ea o 

12 I 
APPLE II 

Fig. 7-7. Bottom-side pictorial of lower-case modifications. 
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( ) Short bare jumper 10/ Al3 to ll/ Al3. 
Inspect all the previous connections for possible shorts 
against adjacent pins. 
Remove character generator A5 from the computer and store 
it in protective foam. If you have no other foam, use the 
other side of the foam holding module "A." 
Plug module "A" into A5 so that the notched corner is lo
cated at A4. See Fig. 7-8. 

(APPLE I I ) 

KEYBOARD 

17 17 17 "' 
1 74166 1 (\ \9- �;;4- -7 I I 174LS251 u (_ _____ _J 

LJ .  • L_J. L_J • 
3 4 5 6 8 

Fig. 7-8. Correct positioning of module "A." 

Vigorously shake the board to make sure no wire ends re
main on the board. This completes the actual modifications. 
Gently place the board back onto the nylon supports on the 
computer bottom. Press down until each barb grabs its por
tion of the circuit board. 
Replace the 6-32 washer and nut in the center of the board. 
Plug the power supply connector and the speaker back into 
their respective sockets. 

) Set the top back onto the computer. 
) Gently lift the top and plug in the keyboard connector at 

location A 7, KEYBOARD. Make sure that pin I aligns with 
the white dot and that no pins are bent, and that no pins 
stick out either end of the socket. Check the keyboard end 
of this ribbon cable to make sure it is also firmly seated. 
Reconnect the rf modulator to the 4-pin VIDEO connector 
if you have one. 
While you are firmly holding the top and bottom of your 
computer together, carefully turn it upside down onto the 
rug or foam pad on your bench. 
There is a metal hook at the back of the computer. Make 
sure this hook goes into its matching slot in the plastic top 
( Fig. 7-5 ) .  



( ) Replace the rearmost two Phillips screws. Do not tighten 
completely. Note that these are flathead screws without 
washers. 
Replace the center front two Phillips screws. Do not tighten 
completely. Note that these are binder head screws with 
lock washers. 

( ) Replace the remaining two binder head screws at the front. 
( ) Replace the remaining four flathead screws, two on each 

side. 
( ) Tighten all screws. 
( ) Replace the game paddles, rf output leads, 1/0 cards, and 

1/0 connectors, exactly as you found them. 
Replace the cover. Tuck the front end under the top of the 
computer and then carefully align the cover. Then press 
firmly down with the heel of your hand, first at left rear, 
then at right rear, until the Hedlock fasteners snap into 
place. 
Replace the video and cassette connectors and line cord. 

This completes the modification of your Apple II to lower case. 

INITIAL CHECKOUT 

Here's how to check your modification to make sure it is working: 

( ) Switch the computer to off and then plug it in. 
( ) Very briefly switch the computer on and then back off again. 

The power supply should click only once, and the POWER 
light should come on. If the power supply continuously 
clicks or if the POWER light doesn't come on, you have a short 
somewhere. Backtrack and find out where. 

( Now switch the computer on only long enough to press the 
RESET key. The speaker should beep. If the speaker does not 
beep, STOP and find out why. 
Check out your display with an integer BASIC program of 
some sort. You should have a completely normal display, all 
upper case and white on a black background. Some of the 
punctuation may be slightly different, such as larger periods 
and commas. 

( ) Look ahead and load the integer BASIC program of Fig. 
8-4. RUN this program. All the letters should appear as 
lower case on the lower line, repeating over and over again. 
Numerals and punctuation should appear normally. As this 
is a simple test program used for debugging, don't worry 
about things like the missing cursor and the lack of scrolling. 

187 



( Type a CTRL "A." You should get a capital letter A. Type 
a CTRL "B." You should get a capital B. 
Type a CTRL "C." What happens? Why? 

Your Turn: 

Why doesn't the App le l i ke to display a 
capital "C" when you hit CTRL-C? 

This completes your checkout. Should you have problems, isolate 
the trouble to the likely area. For instance, if you can't light the 
POWER lamp or if the power supply continuously clicks, look for 
shorts caused by not floating pins 1 and 12 of module "A," solder 
blobs or two-pad shorts, or integrated circuits plugged in wrong. 
Note that an unconnected power supply will also continuously click. 

Your module "A" generates the characters for you. It receives its 
lower-case control signal from All. The screen-reversal inhibiting is 
done by Al3. Should anything in the way of hassles show up, isolate 
things to the source. 

If you want to get back to upper case only, just put the old char
acter generator back, remove All, Al3, and Bl3, and then put the 
new 74LS02 back in slot Bl3. If you are an old pro at PC work, 
you can put the topside wire on the bottom by cutting the foil going 
to pin 6 of Bl3. This is not recommended until .after you have de
bugged your lower case. 

Later, we'll see how you can add a switch to give you a choice of 
reverse screen or lower case. 

If you are going to do anything useful with your lower case, you'll 
have to add some software that calls for the lower case when it is 
needed. Let's turn to the software development next. 
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C H AP T ER 8 

Lower-Case Software 

For Your Apple I I  

Your Apple II hardware mods of the last chapter will do nothing 
for you until you add some lower-case software to activate the new 
hardware. How much you need in the way of software depends on 
what you want to do with your new lower-case ability. If you are 
only going to use lower case for annotation of a game here or there, 
very little new will be needed. Most likely, your lower-case software 
will have to interact with any floppy discs or printers you have on
line, and you'll want an extensive editing capability. So, let's look 
at three different levels of software involvement. First, we'll use the 
absolute minimum we need to get anything lower case at all on the 
screen. Then, we'll show you something that lets you fill the screen 
with mixed upper and lower case and provides a working carriage 
return, scroll, and so on. Finally, we'll check into a heavyweight full 
lower-case editing program that lets you put any character you want 
anywhere on the screen, without the prompts and with full and easy 
editing. From here on, you'll be on your own to interact with what 
you really want to do with your new lower-case ability. 

We will use Integer BASIC for our software. This is easy but 
risky. Cursor and entry programs are best written in machine lan
guage, since they can be very fast and very efficient when done this 
way. Integer BASIC may end up too slow for some things, particu
larly for repeatedly inserting and deleting characters. But Integer 
BASIC is very flexible and very easy to use. It's also very easy to 
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change. So, we'll use the Integer BASIC route. If things turn out a 
bit slow, we can pull some of the stunts in the green Apple book to 
speed things up. Or, once you know exactly what you want, you can 
go the machine language route. 

We will note in passing that there are simple and elegant machine
language cursor and entry manipulations already in the Apple moni
tor. These are available for call to an Integer BASIC program. But, 
many of these sequences demand upper case only and are restrictive 
in how you access them. So, we will avoid using what is already on 
hand-unless these sequences clearly and simply speed things up for 
us without creating more hassles than they solve. 

Lower Case: 

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

\ a b C d e f g h i i k I m n 0 

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

r s t u V w X y z { I 
} "' p q I . . . 
CURSOR � 

Upper Case: 

1 28 1 29 1 30 1 3 1  1 32 1 33 1 34 1 35 1 36 1 37 1 38 1 39 1 40 141  1 42 1 43 

@ A B C D E F G H I J K L M N 0 

1 44 1 45 1 46 1 47 1 48 1 49 1 50  1 5 1  1 52 1 53 1 54 1 55 1 56 1 57 1 58  1 59 

p Q R s T u V w X y z [ \ l t -

Numerals: 

1 60  1 61 1 62 1 63 1 64 1 65 1 66  1 67 1 68  1 69 1 70 17 1  1 72 1 73 1 74 1 75 

I ,, # $ % & ( ) 
. 

+ 
' I spc ' 

1 76 1 77 1 78 1 79 1 80 1 81 1 82 1 83 1 84 1 85 1 86  1 87 1 88 1 89 1 90  191  

0 1 2 3 4 5 6 7 8 9 : ; < = > ? 

Use software only to flash lower case. 
To flash upper case or numerals, subtract 64 from decimai va lue or use software. 

Decimal numbers not shown are redundant. 
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DIRECT ENTRY 

The minimum software route to displaying lower case is to simply 
POKE the value of the character into the place you want it to go on 
the screen. This is very limited if you want to put down more than 
a few ·characters at once. 

We'll shortly see what the decimal memory locations of every 
point on the display are. For instance, we'll find out that the bottom 
line of the screen goes from decimal 2000 at the left to decimal 2039 
at the right. 

Fig. 8-1 shows the correct character codes for all the characters 
as they are to be stored in memory. For instance, say you want to 
put a character on the bottom line, third from the left. For an upper
case "A," use POKE 2002, 129. For a lower-case "a," use POKE 2002, 
33, and so on. 

The missing numbers in Fig. 8-1 are repeats of the characters al
ready shown. A POKE in the range of 64 to 127 will Hash an upper 
case character or letter. I haven't found a good hardware way to Hash 
lower case, so we will use software for flashing or winking cursors. 
More on this later. 

FOUR UTILITY SEQUENCES 

It's far more desirable to get your characters from the keyboard 
than to extract them from memory or use POKE commands. Before 
we look at the lower-case keyboard entry stuff, let's pick up some 
Integer BASIC utility sequences that may be very handy for us. Four 
of these sequences are shown in Fig. 8-2. 

First, and most important, we have to be able to read the keyboard 
without using a carriage return for every character. Fig. 8-2A shows 
how to do this. The Apple II keyboard is located at decimal -16384. 
If a key is pressed, the number at this location will exceed decimal 
127, and the value will correspond to the selected key. 

We'll call the look at the keyboard CHAR, short for character. We 
keep looking at the keyboard with the PEEK command. If we ever 
get a CHAR that is more than 127, this means a key has been 
pressed, so we save the value of CHAR. Then we reset the keyboard 
strobe with the PO KE ( -16368) , 0 command shown. Be sure to 
always reset the keyboard after you read it. Your value for CHAR 
is the decimal equivalent of the pressed key. It can be used in the 
next step of your program or saved until needed. After you are done 
with this particular key, jump to 200 to await a new closure. 

You can print the decimal values of all the keys simply by adding 
a PRINT CHAR command ( Fig. 8-2B) . This will display the value 
of each key as it is pressed. The results of this for all the keys are 
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A. TO READ THE KEYBOARD: 

200 CHAR = PEEK (-1 6384): IF  CHAR < 1 27 THEN 200: 
POKE (-1 6368),0· 

This sequence stays at 200 until a key is pressed. Key value before strobe 
reset appears as CHAR. 

B. TO PRINT THE DECIMAL VALUE OF A PRESSED KEY: 

200 CHAR = PEEK (-1 6384): IF CHAR < 1 27 THEN 200: 
POKE (-1 6368),0: PRINT CHAR: GOTO 200 

This sequence stays at 200 until a key is pressed. Key decimal value is 
displayed for each new key pressed. CTRL C slops the action. 

C. TO STOP A PROGRAM WITHOUT SCROLLING OR PROMPTING: 

600 GOTO 600 

This trap holds the screen and prevents scrol l ing or prompting. To get 
out of the trap, use CTRL C. 

D. TO MEASURE THE SPEED OF AN INTEGER BASIC SEQUENCE: 

100 FOR N = 1 TO 1 0000  
200 (((((SEQUENCE GOES HERE))))) 
300 NEXT N 

The execution time in milliseconds equals one-tenth the number of 
seconds from RUN until the speaker beeps, m inus the time (about 1 
mi l l isecond) to run with no step 200. 

Fig. 8-2. Some Integer BASIC utility sequences for the Apple II. 

shown you in Fig. 8-3. You'll find this chart handy to decode the 
various control functions. We see that the Apple II keyboard has no 
apparent way to provide lower-case characters, as well as the upper
case "- and [. Control characters NUL, FS, GS, RS, and US are also 
not immediately available. Upper case ] is hidden as a shifted M 
and is used as the APPLESOFT prompt. 

One of the more infuriating things that happens when you are 
building a display editing program is that you put something some
where, and then the BASIC throws in a scroll and a prompt, moving 
everything up screen. To temporarily defeat the return to BASIC, 
just use a trap like the 600 GOTO 600 shown in Fig. 8-2C. Your pro
gram will stick in the trap until you release it. This gives you the 
chance to watch part of a program to make sure it is doing what you 
want it to. To release your trap, use CTRL C. You must, of course, 
eliminate all traps from your final program. 
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NORMAL SHIFT CTRL NORMAL 
1 (177) ! (161) 1 (177) A (193) 
2 (178) • (162) 2 (178) S (21 I) 
3 (179) # (163) 3 (179) D (196) 
4 (180) $ (164) 4 (180) F (198) 
5 (181 ) % (165) 5 (181 ) G (199) 
6 (182) & (166) 6 (182) H (200) 
7 (183) ' (167) 7 (183) J (202) 
8 (184) ( (168) 8 (184) K (203) 
9 (185) ) (169) 9 (185) L (204) 
0 (176) 0 (176) 0 (176) ; (187) 
: (186) : (186) �,�:H�ii)� 

W'+m.4!il�� 
Z (218) 
X (216) 

W (215) W (215) C (195) 
E (197) E (197) V (214) 
R (210) R (210) B (194) 
T (212) T (212) N (206) 
y (217) Y (217) M (205) 
U (213) U (213) , (172) 
I (201) 1 (201) • (174) 
0 (207) 0 (207) I (175) 

SPACE (160) 

REPEAT, SHIFT & CTRL ACT ONLY ON OTHER KEYS. 
RESET IS oiRECT ACTING. m'.@,i:@.ej = CONTROL COMMAND. 

SHIFT CTRL 
A (193) •sp�'1\i!if1 
S (211 )  );QQ3'.(147Jt 
D (196) i(EOT/13}r/ 
F (198) !iAt�ii}4i; 
G (199) ,\'BEl'-(135)!': 
H (200) l\z;Bt\136.f 
J (202) :�i'.LFi(f38l) 
K (203) tf?:Y!.(IJ9lt 
L (204) J¾',ffFJlAQ)� 

+ (171) ; (187) 
�IJs -(J36t� �2'B}{1��1'.: 
�NAR (149l;ti ;fl�Kj149ft 

Z (218) '.:!iUB/(154) 
X (216) ·, CA.NJ152l 
C (195) � :ETX'i,l}}), 
V (214) f;;,sv

f
i)1so1, 

B (194) �STX?,J13Qi° 
t (222) !t{SO (142)'f 
] (221) �i�R.J141.f' 
< (188) ' (172) 
> (190) • (174) 
? (191) I (191) 

SPACE (160) SPACE (160) 

VALUES SHOWN ARE BEFORE STROBE RESET. FOR ASCII EQUIVALENT, SUBTRACT 
DECIMAL 128. 

--

Fig. 8-3. Decimal codes for the Apple II keyboard. 

Suppose something we do turns out too slow. How can we find 
out how fast our BASIC is working for us? Fig. 8-2D shows the way 
to measure the execution time of any BASIC sequence. What you do 
is repeat the sequence over and over for 10,000 times in a loop. The 
number of tens of seconds it takes to execute the sequence will equal 
the number of milliseconds the sequence actually took. This is easily 
timed with a kitchen clock or a stopwatch. Be sure to subtract out 
the millisecond it takes for the timer loop to cycle with nothing in
side the loop. 

Hopefully, you will never need this speed measurer. But, if ever 
you have characters getting ignored or have things taking far too 
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long in your particular program, this how-fast-is-it program can 
often show you what is holding up the works. 

A LOWER-CASE TESTER 

Fig. 8-4 shows a simple program that reads the keyboard and puts 
lower-case characters on the bottom line of the display for us. The 
program has only one feature-it is short. This makes it handy for 
initial tests. But since it lacks a cursor and a way to print upper case, 
and it prints all machine commands on the screen, we'll really need 
better stuff for anything but checkout. 

1 00  FOR CURS = 2000 TO 2039 
1 1 0 CHAR = PEEK (-1 6384): IF CHAR < 1 27 THEN 1 1 0 
1 20 POKE (-1 6368),0 
1 30 IF CHAR > 1 92 THEN CHAR = CHAR - 1 60  
140 POKE CURS.CHAR 
1 50 NEXT CURS 
160 GOTO 1 00  

This s imple program puts lower-case characters o n  the bollom display 
l i ne. Numerals ond punctuation appear normally. Use this program 
only for hardware checkout. CTRL-C restores normal BASIC operation. 

Fig. 8-4. A lower-case test program. 

The program is a simple loop that progresses across the bottom 
line addresses 2000 to 2039. We read the keyboard in llO, until a 
key is pressed. Then we reset the keyboard. If the character has a 
value greater than decimal 192, we subtract 160 from it to convert 
it to lower case. For instance, an upper case "A" will have a CHAR 
value of 193, per Fig. 8-3. Subtract 160 from this to get 33, the lower 
case "a" needed in Fig. 8-1. We then load the character onto the dis
play in the cursed position. Incrementing the loop with the NEXT 
CURS instruction in 150 moves us across the screen, while the 
GOTO 100 in line 160 resets us to the beginning of the line. 

A USEFUL DISPLAY PROGRAM 

. Let's add some stuff to the program in Fig. 8-4 that will make it 
more useful. \Ve can scroll at the end of the line to move things pro
gressively up on the display. We can decode a RETURN to do the 
same thing. And, if we can only figure out some way to get both 
upper- and lower-case characters out of an upper-case keyboard, we 
are home free toward a simple way to get continuous upper- and 
lower-case messages displayed. 
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To trick the keyboard into being something it is not, we'll use the 
ESCAPE key. We'll set the program up so that under "normal" con
ditions, you get all lower-case characters. If you hit ESCAPE once, 
only the next character will be capitalized. This is just like hitting 
SHIFT momentarily on a regular typewriter. 

If you hit ESCAPE twice in a row, the keyboard will lock into an 
upper-case-only mode. This is just like using the LOCK on a regular 
typewriter. If you are LOCKed into upper case, hitting ESCAPE 
one more time gets you into lower case once again, just like hitting 
SHIFT after LOCK on an ordinary typewriter puts you back into 
lower case. Since we are using software, our ESCAPE commands 
apply only to the alphabet-everything else stays the same. 

This may sound complicated, but it's really simple to use. When 
and if your Apple II is to have mixed upper and lower case, just use 
ESCAPE instead of SHIFT to shift the alphabet. Everything else 
stays the same. 

The software behind this is simple enough. We have a variable 
called SHIFT and a variable called LOCK. Every time a character is 
entered, it attempts to reset SHIFT to zero and is allowed to do so 
if LOCK is also a zero. The ESCAPE logic goes like this : 

When an ESCAPE key is sensed . . .  
1. First you check to see if LOCK was a "l." If LOCK was a "l," 

this means you want to relea�e all caps, so you simply make 
LOCK a "O" and SHIFT a "O'' and go on to the next key. 

2. Then you check to see if the previous key was also an ESCAPE. 
If it was, SHIFT must be a "l," since no intervening character 
had a chance to reset SHIFT back to "O." We then make LOCK 
a 'T' and go on to the next key. 

3. If you got this far, SHIFT and LOCK must both be "O." This 
means you either want to capitalize only one letter, or else that 
another ESCAPE will follow to lock. So, make SHIFT a "l" 
and then go on to the next key. 

The new, improved program is shown in Fig. 8-5. This enters full 
alphabet characters sequentially on the bottom line for us, with 
full scrolling and carriage return. SHIFT is used for everything al
ready on the keycaps, while ESCAPE is used to pick upper, lower, 
or mixed cases. Once again, one ESCAPE capitalizes only the next 
character. Two ESCAPEs capitalize everything until a third ES
CAPE resets back to lower case. 

The program works the same way the one in Fig. 8-4 does. Line 
100 indexes us across the bottom of the screen, while 110 reads the 
keyboard for us. 

Line 120 tests for carriage RETURN and calls for a scroll if one 
is needed. Line 130 tests for ESCAPE and then does the shift lock 
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10 REM THIS APPLE INTEGER BASIC PROGRAM DISPLAYS LOWER CASE\ 
CHARACTERS. USE ESC TW)CE FOR SHIFT LOCK. USE ESC ONCE FOR 
SHIFT OR RELEASE. 

100 FOR CURS = 2000 TO 2039 
1 10 CHAR = PEEK (-1 6384): IF CHAR < 1 27 THEN 1 1 0: POKE (-1 6368),0 
1 20 IF CHAR = 1 41 THEN 1 80 : REM CR 
1 30 IF CHAR = 1 55 THEN 190 : REM ESC 
1 40 IF CHAR > 1 92 AND SHIFT = 0 THEN CHAR = CHAR - 192 
1 50 POKE CURS, CHAR 
1 60  I F  LOCK = 0 THEN SHIFT = 0 
1 70 NEXT CURS 
1 80 CALL -91 2: GOTO 1 00: REM SCROLL 
190 IF LOCK = 0 THEN 200: LOCK = 0: SHIFT = 0: GOTO 1 1 0: REM RELEASE 

LOCK 
200 IF SHIFT = 0 THEN 210: LOCK = 1 :  GOTO 1 1 0: REM SET LOCK ESC #2 
210 SHIFT = 1 :  GOTO 1 10: REM SHIFT ON ESC #1 

This program may be used to fi l l the screen with combined upper- and 
lower-i::ase text via bottom-line entry. SCROLL and RETURN work. There is 
no visible cursor and no upper screen access. 

Fig 8-5. A lower-case display program. 

processing in lines 190-210. If shift is not locked, line 140 converts 
to lower case. Line 150 enters the characters on the screen. 

Your Turn: 

What does l i ne 1 60 do i n  Fig. 8-5? Why is 
it needed? 

Line 170 tells us to pick the next character location to the right. 
If this happens to be off the screen to the right, we drop out of the 
loop, do a scroll, and start over. 

A FULL-PERFORMANCE LOWER-CASE EDITOR 

The previous Gee-Whiz programs are handy to put lower case on 
an-Apple II. But, what we really may want is some full editing sys
tem that lets us 

* Put any character anywhere on the screen 
* Move around anywhere we like 
* Insert and delete characters and lines * Justify ragged or flush right 
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* Have lines longer than 40 characters 
* Be able to transfer into and out of floppy * Be able to provide hard copy output 
* Have an attractive cursor for all characters 
* Have no BASIC prompts or unwanted 

scrolls messing up the screen. 

Let's look at some of the bits and pieces that will be helpful to 
build an editor and display system. Then we'll show you a medium
complexity display editor that lets you wander around the screen 
with a vengeance. From there, you should be able to pick up just 
about as fancy a text editor as you care to. 

Apple Display Memory Locations 

The Apple people were among the first to recognize the incredible 
power and economy of using main memory also as a display mem
ory. They do this by sharing each clock cycle so that the computer 
gets the memory for half a microsecond and the dedicated system 
timing gets the memory for display uses on the other half. 

As you find out pretty fast when you try to stuff things onto the 
screen, the memory locations are not sequential, and they are not all 
in one piece. How can we find what goes where? 

The Apple II has two display pages, one residing at decimal 1024 
to 2047 and a second page immediately above. Only the first page is 
normally used. Fig. 8-6 shows a hex map of the Apple II display 
memory locations. Their mapping is somewhat similar to the memory 
repacking done on the KIM systems in The Cheap Video Cookbook. 
Apple chose to stuff three lines per each half of a 6502' s page of 256 
words. 

Apple uses a 40-character horizontal line numbered left to right 
from O to 39. They use a 24 row vertical field numbered top to bot
tom from O to 23. 

Fig. 8-6 is fine for all us machine-language freaks. But integer 
BASIC works in decimal numbers, and it's not at all obvious what 
goes where. So, Fig. 8-7 is a remapping of the Apple II screen show
ing what portion of the memory goes where on the screen, in decimal 
numbers. For instance, decimal character location 1706 is the third 
character from the left on the fourteenth line down from the top. 

These sure are strange numbers! They were picked to simplify the 
internal Apple II system timing. As you can see, if you just try to 
sequentially put stuff on the screen, you'll put down the top line, 
then the ninth line down, then the seventeenth. Then you'll lose 
eight characters down the drain somewhere. Then onto the second, 
tenth, and eighteenth lines. Then iose eight more characters. Messy, 
yes. But a great hardware simplification. 
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$00 28 50 

I LO I u I 

l2 LIO 

l4 ll2 

! L6 i ll4 

,/' 
c ___ _ _ 

78 80 AS 
m (ti u 1 

L18 U!J L3 

L20 i@I LS 

l22 l7 

/ ---
... (..;H.:.:.0---JIL......:H.:.:.1 ___.Q ... ,J�(i-i/1if1 H38 ,- �;9-J 

LEFT SCREEN RIGHT SCREEN 

L9 

Lil 

Ll3 

dO F8 FF 
! ll7 II PAGE 04 

Ll9 Ed PAGE 05 

L21 mu PAGE 06 

ll5 L23 Jm PAGE 07 

UNUSED LOCATIONS 

LO IS � LINE 
L23 IS ll.QI!Q.!! LINE 

Fig. 8-6. Display memory locations ot Apple II shown as hex map. 

So, as a general rule, if you can't use hardware to simplify soft
ware, then you use software to simplify hardware. One or the other 
works every time. 

VO 

V2 

V4 

V6 

vs 

VlO 

Vl2 

Vl4 

Vl6 

·via 

V20 

V22 

HO H39 
1024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1063 

1 152 1 19 1  

1 280 1319 

1408 1447 

1536 1575 

1 664 1703 

1792 1831 

1920 1959 

1064 1 103 

ll92 1231 

1320 1359 

1448 1487 

1 576 1615 

1704 1743 

1832 1871  

1960 1999 

1 104 1 143 

1232 1271 

1360 1399 

1488 1527 

1616 1655 

1 744 1783 

1872 1 9 1 1  

2000 2039 

LOCATIONS NOT 
ON SCRHN -
1 144 1 1 51 

1272 · 1 279 

1400 · 1407 

1528 · 1 535 

1656 - 1663 

1784 - 1791 

1912 1919 
2040 · 2047 

EACH HORIZONTAL 
ROW IS NUMBERED 
SEQUENTIALLY FROM 
LEFT TO RIGHT. 

Fig. 8-7. Display memory locations of Apple II shown as decimal locations. 
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A programmer would like to have a variable H for the horizontal 
position with a O to 39 range and a variable V for the vertical posi
tion ranging from O to 23. Obviously, we need a way to get from the 
H and V locations to the magic display memory addresses. 

The Apple II monitor does this in the firmware with a disgustingly 
elegant sequence starting at hex $FBC1 and called BASCALC. 
BASCALC takes the H value in $24 and the V value in $25 and puts 
the result BASL in $28 and BASH in $29. Thus, the programmer 
uses H and V, while the machine hardware gets to use BASL and 
BASH, and everybody is happy. 

Unfortunately, quite a bit of PEEKing, POKEing, pushing, and 
shoving is involved to call this sequence from Integer BASIC. In
stead, let's find a BASIC way to generate the right addresses. 

Fig. 8-8 shows the math needed to find a particular address on the 
screen. The formulas are in three parts, depending on what third of 
the screen you happen to be on. To find a screen location, just use 
one of these formulas, and the results should agree with Fig. 8-7. 

You can, of course, program these formulas into Integer BASIC. 
And it's a fun thing to do. But we need something faster and simpler. 
Fig. 8-9 shows a table-lookup way to do the same thing. What we 
do is store the leftmost address for the 24 lines as an array of values 
called B ( V) , meaning "Base address for line #V." To this, we add 
the horizontal value and get a result CURS that has the correct dis
play address for a given H and V. 

Note that there are two ways to enter the program. The first time 
you enter, you have to set up the B ( V) array and initialize all the 
values. It's recommended you do this every time you clear the screen 
to make sure this table is intact. After you are sure the table is prop-

For Lines 0-7: 

H = Horizontal Position O (Left) to 39 (Right) 
V = Vertical Position O (Top) to 23 (Bottom )  

Address = 1 024 + ( 1 28* V )  + H 

For Lines 8-1 5: 

Address = 1 064 + ( 1 28*(V - 8)) + H 

For Lines 1 6-23: 

Address = 1 1 04 + ( 1 28*(V - 1 6)) + H 

Fig. 8-8. One method of calculating Apple II display addresses. 
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Initial 
enter - 1 000  

1 0 1 0  

1 020 

1 030 

Usual 
enter - 2000 

201 0  
2020 

DIM B(64) 
B(0) = 1 024: B( 1 )  = 1 1 52: B(2) = 1 280: _B(3) = 1 408: 
B(4) = 1 536: B(5) = 1664: 8(6) = 1 792: B(7) = 1 920 
B(8) = 1064: B(9) = 1 1 92: B(10) = 1 320: 8(1 1 )  = 1 448: 
B(12)  = 1 576: B( 13)  = 1 704: B( 1 4) = 1 832: B( 1 5) = 1 960 
B(1 6) = 1 1 04: B( 17) = 1 232: B( 1 8) = 1 360: B(19) = 1 488: 
B(20) = 1 6 1 6: B(2 1 ) = 1 744 : 8(22) = 1 872: 8(23) = 2000 

IF V > 23 THEN V = 23: IF V < 0 THEN V = 0 
IF H > 39 THEN H = 39: IF H < 0 THEN H = 0 
CURS = 8(V) + H 

For cold start, enter and i n it ial ize sequence at 1 000. 

To find a location after i n it ialization, enter at 2000. 

CURS wi l l  carry the correct display location to the instruction following 2020. 

Fig. 8-9. An integer BASIC sequence to find Apple II display memory locations. 

erly stashed, you can enter at 2000 and do the simple one-line CURS 
calculation shown at 2020. It is very important to be sure that the 
V and H values are in fact on the screen. Otherwise, you might end 
up POKEing a character into memory somewhere off the screen, 
plowing up a program or some operating system. This is why you 
should check H and V ( lines 2000 and 2010) immediately before 
you use them. 

A Software Cursor 

There doesn't seem to be an obvious way to keep Apple II com
patibility and be able to use the hardware cursor to wink lower 
case. So, a software cursor can be used instead. Fig. 8-10 shows how 
to combine your keyboard scanning with a cursor routine that winks 
any character on the screen by replacing the character with a solid 
box, repeating a few times a second. 

A single loop is used to both provide a cursor and test for pressed 
keys. If no key is pressed, the loop continues. 

On the first trip through the loop, the cursed character is tempo
rarily saved and is then replaced with a box cursor. On the 12th trip 
through the loop, the box cursor is removed and replaced with the 
saved character. On the 24th trip through the loop, the sequence 
repeats. 

So long as no key is pressed, a winking cursor appears on the 
screen. When a key finally gets hit, the cursor is immediately erased 
and replaced with the correct character. If things happen to be on 
the second half of the loop, the character simply replaces itself. At 
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NO 

DISPLAY 
CHARACTER 

FOR 
N LOOPS 

DISPLAY 
CURSOR FOR 

N LOOPS: SAVE 
CHARACTER 

TEST 
KEYBOARD 

YES 

ENTER 
CHARACTER 

NO 

RESTORE 
SAVED 

CHARACTER 

LOCATE 
NEW 

CURSOR 

YES 

DO CTRL 
ACTION 

Fig. 8-10. Flowchart for an editing display that combines a winking software 
cursor within the keyboard testing loop. 

any rate, when we are sure we have a pressed key, we make sure 
the cursor goes away. 

The key is then tested to see if it is a character or a machine com
mand. If it's a character, it gets entered. If it's a machine command, 
the command gets acted on if it is valid and ignored if not. 

The new cursor location is found only after character entry or 
machine command actions are complete. The program then jumps 
back to the main loop, testing for pressed keys and winking the 
cursor. Cursor winking speed is software adjustable. 

One interesting feature of the combined cursor and keycheck loop 
is that the cursor always goes ON the instant after a new location 
appears. This is much cleaner looking and easier to follow than the 
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aliasing that sometimes takes place with rapid motions of a hard
ware-blinked, asynchronous cursor. 

A FULL DUAL-CASE EDITING SYSTEM 

Fig. 8-11 shows a medium-complexity full editing system that puts 
upper- and lower-case characters anywhere you want on the screen, 
with full cursor motions. Features included are upper and lower 
case, clearing, normal entry, cursor right-left-up-down, carriage re
turn, scrolling, erase to end of line, erase to end of paragraph, lower
case shift, and shift lock. Four hooks are provided to interact with 
your disc or hard-copy system, or to add other features. It's a simple 
matter to add all the bells and whistles you want. 

In 100 through 200, we set up the base address file for our screen 
address finder. These values are rechecked every time the screen is 
erased. Step 140 gives us a clear screen on startup and when called 
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10 REM EDITING DUAL CASE DISPLAY SYSTEM FOR APPLE I I  
20 REM CLEAR = CTRL X CURSOR RIGHT = RIGHT ARROW 

SHIFT = ESCAPE CURSOR LEFT = LEFT ARROW 
LOCK = ESCAPE X2 CURSOR UP = CTRL A 

30 REM UNLOCK = ESCAPE CURSOR DOWN = CTRL B 
RETURN = RETURN ERASE EOL = CTRL D 
HOOKS = CTRL Q,R,S,T ERASE EOP = CTRL W 

100 DIM 8(64): REM SET UP BASE ADDRESS TABLE 
1 1 0 B(O) = 1 024: B( 1 ) =  1 1 52: B(2) = 1 280: 8(3) = 1 408: 

B(4) = 1536: 8(5) = 1664: 8(6) = 1792: B(7) = 1920 
8(8) = 1 064: B(9) = 1 192: B(10) = 1 320: B(l l ) = 1 448 

120 B( 12) = 1 576: B(1 3 )  = 1704: B( 14) = 1 832: B(15) = 1960 
8( 1 6) = 1 1 04: B(17) = 1 232: B(18) = 1 360: 8(1 9) = 1 488 
B(20) = 16 16: B(2 1 )  = 1 744: 8(22) = 1 872: B(23) = 2000 

1 40 CALL -936: H = 0: V = 0: REM CLEAR SCREEN; HOME CURSOR 

1 60  IF V > 23 THEN V = 23: IF V < 0 THEN V = 0 
170 IF H > 39 THEN H = 39: IF H < 0 THEN H = 0 
180 CURS = B(V) + H: REM FIND CURS ADDRESS AFTER VALID V,H 

200 CCNT = 0 
2 10  CCNT = CCNT + 1 
220 IF CCNT > 1 THEN 240: CSTR = PEEK (CURS) 
230 POKE (CURS), 63: REM SAVE CHAR; WRITE CURSOR 

. 240 IF CCNT = 12 THEN POKE CURS,CSTR 
250 IF CCNT > 23 THEN CCNT = 0: REM UNWINK CURSOR 

260 CHAR = PEEK (-1 6384): IF CHAR < 1 27 THEN 2 10  
270 POKE (-1 6368),0: POKE CURS,CSTR 
280 IF CHAR < 1 60  THEN 1 000: REM CTRL KEY TEST 

Fig. 8-11 .  A full lower-case Apple II 



for. It uses the clearing sequence already in the monitor. Steps 160 
through 180 find valid cursor locations for us, starting with H and 
V positions. 

Our combination cursor loop and keyboard test appears in 200 
through 280. A cursor counting variable, CCNT, counts from O to 24 
for us. On count 1, the character being cursed is stored temporarily 
as CSTR. The cursor box ( an ASCII 63, DEL ) is loaded in its place. 
On CCNT count 12, the original character is replaced. On CCNT 
count 24, the cycle repeats. Meanwhile, the keyboard has been 
checked for a pressed key 24 times. You can think of CCNT as a 
divide-by-24 counter that is clocked by the keyboard testing. By 
changing the numbers, you can change the winking rate and the 
ratio of cursor to character time. 

Once a key is pressed, we reset the keyboard strobe and make 
sure the cursed character has been put back where it belongs. Step 
270 does this for us. Then, in 280, we test for CTRL keys. 

300 IF (CHAR > 192 AND SHIFT = 0) THEN CHAR = CHAR - 1 60: REM 
LOWER CASE ONLY IF UNSHIFTED CAPITAL LETTER 

3 10  IF LOCK = 0 THEN SHIFT = 0: REM RETURN TO LOWER CASE IF UNLOCKED 

400 POKE CURS, CHAR: REM ENTER CHAR 
410 H = H + I :  IF H < 40 THEN 160: H = 0: REM ADJ H POS 
420 V = V + I :  IF V > 23 THEN CALL -912 :  GOTO 1 60: REM 

ADJ V POS; SCROLL IF OFF SCREEN 

1 000 POKE 36,H:  POKE 37,V: REM TRANSFER HV TO MONITOR FOR EOS 
10 10  IF CHAR = 1 52 THEN 100: REM CLEAR AND HOME ON CTRL X 
1020 IF CHAR # 1 41 THEN 1 030: H = 0: V = V + I :  IF V > 23 THEN CALL -91 2: 

REM CARRIAGE RETURN. SCROLL IF OFF SCREEN. 
1030 IF CHAR = 1 36 THEN H = H - I :  REM BACKSPACE ON ARROW 
1040 IF CHAR = 1 39 THEN H = H + I : REM ADVANCE ON ARROW 
1 050 IF CHAR = 1 29 THEN V = V - I :  REM CURSOR UP ON CTRL A 
I 060 IF CHAR = 1 30 THEN V = V + I :  REM CURSOR DOWN ON CTRL B 
1 070 IF CHAR = 1 55 THEN 2000: REM ESCAPE SH IFT SEQUENCE 
1080 IF CHAR # 1 32 THEN 1090: FOR HI = H TO 39: POKE (B(V) + H ),63: 

NEXT H I : REM ERASE TO END OF LINE ON CTRL D 
1090 IF CHAR = 15 1  THEN CALL -958: REM MONITOR ERASE EOS ON CTRL W 
1 1 00 IF CHAR = 1 45 THEN 160: REM SPARE HOOK ON CTRL Q DCI 
1 1 1 0 IF CHAR = 1 46 THEN 1 60: REM SPARE HOOK ON CTRL R DC2 
1 1 20 IF CHAR = 147 THEN 160: REM SPARE HOOK ON CTRL S DC3 
I 1 30 IF CHAR = 1 48 THEN 160: REM SPARE HOOK ON CTRL T DC4 
I 140 GOTO 160: REM RESUME KEYBOARD SCAN ON UNUSED CTRL COMMAND 

2000 IF LOCK = 0 THEN 2010: LOCK = 0: SHIFT = 0: GOTO 1 60: REM RELEASE LOO 
201 0 IF SHIFT = 0 THEN 2020: LOCK = I :  GOTO 1 60: REM SET LOCK ON 

SECOND ESCAPE 
2020 SHIFT = 1 :  GOTO 160: REM SHIFT ON FIRST ESCAPE 

editing display system. 
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If the pressed key happens to be a character, step 300 decides 
whether lower or upper case is to be displayed. Step 310 releases 
shift after a capital letter unless_ the shift is locked. 

Actual character entry takes place in 400, while the cursor is ad
justed in 410 and 420. If we go off-screen to the right, H is reset to 
0 and V is incremented down-screen by one. If V goes off-screen, 
we call for a scroll, using the firmware scroll sequence in the moni
tor. After repositioning the cursor, the program returns to the main 
cursor and keycheck loop by jumping to 160. At this time, the cursor 
starts winking in the new location. 

CTRL keys are processed in steps 1000 to 1040. Most are obvious. 
Step 1000 is needed so you can use the firmware erase-to-end-of
screen in the monitor; this step transfers the BASIC H and V values 
to the slots in the monitor where they are needed. Unfortunately, 
the monitor's erase-to-end-of-line firmware sequence doesn't seem 
to be as useful ( it doesn't calculate its own base address ) ,  so this 
shorter erase sequence is done on our own in step 1080. 

The spare hooks are shown in llO0 through ll30. Simply replace 
160 ( return-to-keyboard-loop ) with the location you need for access 
to your disc, printer, or other program. Around a dozen other hooks 
can be added, just by picking new CTRL commands from Fig. 8-3. 
Remember that CTRL-C is excluded, as this gets you back to the 
Integer BASIC operating system. 

Should no valid CTRL key be found, the jump in ll 40 puts us 
back into the keyboard checking business. 

Steps 2000 through 2020 do the now familiar ESCAPE processing 
for the lower-case shift lock. As before, a single ESCAPE gives one 
capital letter. Two in a row locks us into capitals only. Should we 
be locked into capitals only, the next ESCAPE unlocks back to lower 
case. 

Some Bells and Whistles 

You can add just about anything you like to this editor program. 
For easy editing, you might like to add an additional keypad that 
generates all the motion commands with a single keystroke each. 
This heavyweight modification would be handy for word processing, 
typesetting, and so on. 

It's fairly obvious how you would add things like diagonal and 
cursor home motions, cursor OFF-ON, tabs, etc. To get into really 
fancy editing, you have to be able to add and delete characters. How 
you do this depends on the rules you choose to set up for your par
ticular system. Several full editors are available as software packages 
that may be of help to you. 

A simple example of a delete-character subroutine is shown in 
Fig. 8-12. Starting at the cursor plus one, every character on the line 
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4000 FOR H l  = H to 38 
401 0  CURM = B(V) + H l  
4020 POKE CURM, PEEK (CURM +1 ): REM MOVE ONE LEFT 
4030 NEXT H l  
4040 POKE (B(V)+39), 160; REM BLANK END CHAR 
4050 RETURN 

The subroutine starts at the cursed location and moves everything on its 
own l i ne left one character. The lost character is erased. 

Fig. 8·12. A BASIC subroutine to delete a single character on the 
Apple II display. 

is moved one to the left. When this is finished, the last character will 
be repeated twice. The duplicate end character is then erased. The 
repeated moves take place in the 4000 to 4030 loop, while the end 
character erasure happens in step 4040. This particular delete-char
acter sequence operates only on a single line. Lines farther down the 
screen are not affected. 

Inserting extra characters is a harder problem, since everything 
has to be shoved around the screen to make enough room. Once 
again, you have to pick the shoving rules you want to use for your 
particular editing needs. 

One possible insert-a-character subroutine is shown in Fig. 8-13. 
This uses a rule that says it will keep bumping characters until it 
finds a line whose last character is a space. Usually, this will be the 
line you are working on, but if not, characters will keep getting 
bumped until a space at the end of a line is found. Then the bump
ing stops and the rest of the screen stays the way it was. 

Here are the steps involved in this insert-a-character sequence : 
1. A check is made to find out how many lines are involved until 

one is found with a space at the end ( steps 3000 to 3040 ).  
2. Everything on the bottom-most line to be bumped is shoved 

one to the right. Remember that at least the rightmost charac
ter is a space on this line. 

3. There will be a double character at the left of the line, pro
vided it's not the one that had the cursor on it. This double 
character is replaced with the last character on the previous 
line ( 3160, 3170 ).  

4.  The process repeats as often as needed for all but the top line 
to be bumped. The loop is done with step 3100. 

5. The line with the cursor on it gets characters bumped only from 
the cursor to the end of the line and has no need to borrow a 
character from a previous line. The change in policy for the 
cursed line is handled by step 3110. 

6. Finally, everything will be bumped, but a duplicate character 
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will remain at the cursed location. This dupe is erased in step 
3190. 

This is a fairly simple inserter that works fairly well and reason
ably fast. If you don't like its rules, change them to suit yourself. 
The sequence is rather slow if you use it over and over again as you 
might while justifying a whole page of text. You should be able to 
speed it up bunches if you get into this sort of thing. The rule se
lected does have one possible bug in it-repeated insertions can 
swallow end spaces and run words together, as the next line bump
ing takes place with a character in the last slot and does not if a space 
is there. Requiring two spaces at line end may help. There are all 
sorts of other options, depending on what you want your particular 
editor to do. 

Your Turn: 

Add the fo l lowing bells and whistles to 
your ed it ing program : 

* Ragged justify right-in which whole 
words are never broken on the ri ght 
side of the screen and you can continu
ously type without carriage returns. 

* Flush justify right-in which everything 
ends up square on the right side of the 
screen as needed for typesetting. What 
hyphenation and short-l ine rules wi l l  
you use for this? 

* Variable character lines-in which you 
can go as long as 80 characters for text 
and form-letter editing. 

As a hint to longer lines, just select pairs of lines when they are 
needed, and act on these line pairs. Thus you should be able to out
put up to 80 characters for a business letter or a manuscript to your 
hard copy, while still viewing the results on a normal 40-character 
Apple screen. We'll leave the details up to you since the results are 
application specific. Have fun. 
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3000 V2 = 0: H2 = 0 
3010 FOR Vl = V TO 23: REM FIND FIRST END SPACE 
3020 CEND = PEEK (B(Vl + 39)) 
3030 IF CEND = 160 THEN 3100 
3040 V2 = V2 + 1 :  NEXT Vl 
3 100 FOR Vl = (V2 +V) TO V STEP -1 : REM: NEXT LINE 
31 1 0  I F  Vl = V THEN H 2  = H 
3120 FOR H l  = 38 TO H2 STEP - 1 : REM SHIFT A LINE 
3 1 30 CURM = B(Vl ) + H l  
3 140 POKE (CURM + l ), PEEK (CURM) 
3 150 NEXT H l  
3 160 IF Vl = V THEN 3 1 80: REM MOVE (Vl - l ) ,  39 TO Vl ,0 
3 170 POKE B(Vl ), PEEK (B(Vl - l )  + 39) 
3 180 NEXT Vl 
3 190 POKE (B(V) + H ), 160: REM: DELETE CHARACTER 
3200 RETURN 

The subroutine starts al the cursed location. II finds the first available l ine 
with a space al the end, and then moves al l  intervening characters as 
needed. The cursed character is then erased. 

Fig. 8-13. A BASIC subroutine lo insert a single character on lhe 
Apple II display. 

FURTHER HARDWARE MODS 

Some of the more popular Apple II software uses the screen re
versal feature. This software may not be reasonably displayed with 
the hardware mods we've shown you so far. The checkbook program 
is one example, where deposits are shown reversed as black-on-white 
numerals. Is there some way we can still run these programs and 
have lower case? 

One obvious way is to use a switch to select either screen reversal 
or lower case. Fig. 8-14 shows where this switch goes. Only an spst 
switch and a resistor need be added to the existing modifications. 
This switch can be mounted along the right side of the circuit board 
far enough to the rear that it is easily reached. A miniature slide 
switch held in place with double-stick foam should do the trick. 

The switchover works by providing a DL6 signal to All and Al3 
for upper case, and a logic "I" for screen reversal. If we provide 
DL6, we get lower case since All forces the lower case ASCII bit 6 
output, and Al3 inhibits screen reversal. If we provide a logic "I," 
lower case is inhibited, and reversal is allowed when it is called for. 

You put the switch in the REVERSE position for programs that 
need reverse video continuously displayed. You put the switch in 
the LOWER CASE position when you must display lower case. 
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5/B8 

t 
DL6 

"LOWER CASE" 

NEW SWITCH 

"REVERSE " 0 
NEW PULLUP 
RESISTOR 
I 

_......._,v..,...--o +5 V (14/Al l )  
4.7K 

DL5 

DL7 

ASC I I  
BIT 6 

o------- 7/813 
SCREEN 
REVERSE 

Fig. 8-14. A changeover switch and pullup resistor may be added to give 
choice of lower case or reverse video displays. 

Your Turn: 

The character generator in Module "A" 
also wi l l  d isplay CTRL characters if you 
make DLS and ASCI I  bit 6 both zeros. 

When would you want to display control 
characters? How can you do this? Can you 
el iminate the changeover switch and re
p lace it with a series of software flags that 
gives you everyth ing at once-reversal
ful l  case b l i nking-lower case--CTRL dis
p layed on command-and-invisibi l ity on 
existing software? 

Note that you can also use other character generators by suitably 
changing the pins around. There's also a lower-case 2513 you can 
piggyback onto the existing upper-case one. 
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You can also use your own character generator by burning your 
own 2716 EPROM like we did for the music display a few chapters 
back. This will take a different adaptor. 

Your Turn: 

Show how the EPROM Modu le "E" can be 
used on an Apple I I .  

The advantages of the EPROM are that you can get any character 
and lots of graphics symbols that you like on a hardware basis. For 
instance, instead of the awkward treatment of the descenders on the 
lower-case "g," "p," and so on, you could use 5 X 7 upper case for 
caps and 5 X 5 upper case for lower case. This can be both legible 
and attractive. 

There is one limitation to the 2716 when you use it with an only 
slightly modified Apple II. With the Apple II, only five output lines 
are used, with the remaining three being permanent blanks. Unless 
you rework the output video, your 2716 would be more suited to new 
characters than to graphics symbols that have to butt against each 
other. 

Apple II conversion kits, TVT 6% Module "A" 's, 
Cheap Video Cookbooks, and other cheap video stuff 
are available from: 

PAIA Electronics 
1020 West Whilshire 
Box 14359 
Oklahoma City, OK 73114 

( 405 ) 842-5480 
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EPROM MEMORY (2K X 8) 

PROGRAMMING VOLTAGE 

..------ OUTPUT ENABLE 
CHIP ENABLE 

271 6 
(Intel) 

TOP VIEW 

24 PIN DIP 

This single-supply, nonvolatile memory of 2048 words of eight bits each may 
be electrically programmed or reprogrammed, and may be erased with 
strong ultraviolet light. 

To read, apply +s volts ground to supply pins and +s volts to the program
ming input VPP. Bring output enable OE and chip enable CE low. Binary 
addressing of address lines AO through Al 0 selects one of the words. The 
selected word appears as data on outputs Q0 through Q7. 

To erase, apply short-wavelength ultraviolet light through the top quartz 
window, using a special lamp. Eye damage can result from uv light. 

To begin programming, bring OE high and CE low. Raise VPP to +25 volts 
from a source current limited to 40 milliamperes. Always apply VPP after 
supply power. Always remove VPP before supply power. 

To continue programming, apply the desired address to AO through Al 0. 
Apply the word to be programmed to Q0 through Q7 using these outputs 
as programming data inputs. Then, with data and address stable, bring CE 
high and then low again. The CE high time must be exactly 50 milliseconds. 

Chip Enable CE should be held low except for the SO-mil lisecond high pro
gramming time, once per address. Do NOT hold CE high. DO return VPP 
low at the end of programming. 

I n  the read mode only, CE may be brought high to float outputs for tri-state 
access. 

Access time is 400 nanoseconds. Supply current (read) is 60 milliamperes. 

Note that the Texas Instruments 271 6 is not a standard 2716. The Tl TMS 
2516 is equivalent to the industry standard 2716. 

(USED IN TVT MODULE "E") 
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6674 
(Motorolo) 

CHARACTER GENERATOR 
(5 X 7, Row Scan, Upper & Lower Case) 

TOP VIEW 
18 PIN DIP 

This circuit provides the dot patterns needed for raster scan display of char
acters_ It gives a 5 X 7 dot matrix of the full 1 28 character ASCII set. It is 
intended for normal tv row scanning. 

In usual operation, +5 volts and ground are applied to the supply pins, 
and the EN input is grounded. ASCI I  code is input to pins l through 7. Row 
timing is applied to pins 8, 1 0, and 1 1 .  A 000 row timing input outputs an 
all blank top row_ 001 outputs the top dot row, 0 10  the second, down to 1 1  l 
that outputs the bottom, or seventh dot row. 

Outputs are usually routed to a video shift register for serial conversion. 
The outputs are arranged so that the leftmost dot Q5 is nearest the output 
of the serial shift register. 

The character set includes 32 upper case, 32 numerics, 32 lower case, and 
32 machine command symbols. The lower case g, j, p, q, and y appear 
higher than the others so they will fit in the matrix. Machine command 
symbols usually are an arrow, a pair of small upper-case characters, or 
something similar. 

If the EN input is made high, the outputs are floated. A cursor may be pro
vided by using the stored cursor symbol DEL or by pulling the outputs high 
and raising EN. A blank output is provided by using the ASCI I  blank symbol 
· or by forcing the Rl, R2, and R4 line timing inputs to all zeros. 

Access time is 500 nanoseconds after all inputs are stable. Note that at least 
500 nanoseconds of delay must be provided before output information is 
accepted following any input change. 

Supply current is 1 30 milliamperes. 
(USED IN TVT MODULE "A") 
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APPE N D I X  B 

Pinouts of Selected ICs 
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214 

QUAD NAND GAU, TTL 
(14-PIN DIP. TOP VIEW) 



7405 
OPEN·CDLLECTOR HEX INVERTER, TTL 

1.lHIN DIP. TOP VIEW) 

TRIPLE AND GATE, TTL 
114-PIN DIP. TOP VIEW) 
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74LS74 
DUAL D FLIP-FLOP, TTL 
(14-PIN DIP. TOP VIEW) 

I 
PARALLEL INPUTS 

\ 



ENABLES 
EITHER LOW 
ACTIVATES 

OCTAL LATCH, TTL 
(20-PIN NARROW OIP. TOP VIEW) 

74LS541 
OCTAL BUFFER, TTL 

(20-PIN NARROW OIP. TOP VIEW) 

79L12 
-12-VOLT REGULATOR, LINEAR 

(T0-92. FRONT VIEW) 
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2513 
CHARACTER GENERATOR, NMOS 

(14-PIN DIP. TDP VIEW) 

2716 
EPROM, NMOS 

114-PIN DIP. TDP VIEW! 

I 

OUTPUTS �-

\ 



+3 TO +15V 

+ 3 T0 +1 5V  

ENABLE A4 A3 A2 Al AO 

INPUT ADDRESS 

/
OUTPUTS 

32 X 8 BIPOLAR PROM 
(16-PIN DIP, TOP VIEW) 

Q8 
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TIIIINSll!TIEII PAAAllEl INPUT 

6402 
UART, CMOS 

140-PIN DIP. TOP VIEW) 

Pllt 37 

0 • 
I 

I 

"" " 
' 
l ' 
I 

BITSX:HAA 

s ' ' ' 

JRAMSMITTIR 
SElilAL OATA 

OUTPUJ 

Otn'PUTS 

6674 
CHARACTER GENERATOR, NMOS 

(16-PIN DIP. TOP VIEW) 



A P P E N D I X  C 

Printed Circuit Patterns 
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12. 7CMI 
1_ 1 1116"�

, 

I 9/16" 
MCMI 

NOTCH AS SHOWN 

Fig. C-1 . Module A (Alphanumeric) foil pattern. 

Fig. C-2. Module E (EPROM) foil pattern. 
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Son Of 
Cheap 
Video 

Son of Cheap Video is a sequel to The Cheap Video Cookbook. Here 
you'll find brand new and greatly improved circuits to get alphanumeric 
and graphics video out of a microcomputer and onto an ordinary tele
vision set. 

Inside, you'll find details on a $7 complete video display system called 
"scungy video," and a $ 1  super-simple full transparency concept called 
"the snuffler." These new ideas are vastly simpler than the earlier cheap 
video circuits and much easier to adapt to many different micros. They 
also use far less address space and can eliminate the custom PROMs 
used in cheap video. 

Also inside · are complete details on do-it-yourself custom EPROM char
acter generaters, using a sophisticated, yet simple, music staff display as 
a detailed design example. We haven't forgotten the 8080/280 people 
this time;either. There are two chapters on 8080/280 operation, along 
with a cheap video system for the Heathkit H-8, and a versatile key
board serial adapter. 

Lower case for your Apple II using the existing keyboard and a cheap 
video module rounds out this assortment of hands-on hardware projects .  

Don Lancaster heads Synergetics, an electronics design and consulting firm. He has 
written many articles on electronic and computer applications, both for tech journals 
and hobby magazines. His nonelectronic interests include ecological studies, firefighting, 
cave exploration, tinaja questing, and bicycling. Don's other SAMS books include Active 
Filter Cookbook, The Cheap Video Cookbook, CMOS Cookbook, The Big CMOS Wall
chart (poster) , The Incredible Secret Money Machine, RTL Cookbook, TTL Cookbook, 
User's Guide to TTL (poster), and TV Typewriter Cookbook. 

Howard W. - Sams & Co., Inc. 
4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA 

$8.95/21723 ISBN: 0-672-21723-6 
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Custom Programmed 

Parts List 

1-271 6  EPROM, programmed as wanted 
1 -24 pin DIP socket 
1-24 pin DIP carrier 
1 -Circuit board "E" 
2-jumpers, bare, #24 solid wire 
3-jumpers, insulated, #24 solid wire 

-solder 
-flux remover 
-protective foam 

,., � SERIAL 

QO 
I 1 

A 

QI 10 

I ' ' 
01 

II 

03 
lJ I 4 

C 

04 
14 I 

05 
15 I 

Q6 
16 I 

07 
17 I 

GHO 12 

cl 
18 

OE 
20 

@ NC 
2716 

(A) Schematic. (B) Foil pattern. 

Fig. 3-10. Module "E" 

E 
EPROM Module 

How I t  Works 

8-bit character or chunk code is input on pins VD0 
through VD7. Corresponding 8-bit dot code appears 
on outputs A through H. Row inputs Rl , R2, and R4 
select dot row. · Input VD7 can act as cursor, font 
select, or upper /lower chunk select as desired. 
CURSOR input is grounded to provide display, made 
high to float outputs and output all-white box. 

. .  - • 
• • 
• • 
� !::l � 
• 

0, 
• 

� � 
• • 
' ' 
� � 

I 
• • 
• • 

BARE WIRE/ 
JUMPERS (2) 

(C) Bare side. (D) Foi l  side before mounting 
DIP carrier. 

Normal Settings: Cursor OFF; FAST clock; WIDTH set to EIGHT pulses 

construction details. 
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A 
Upper- and Lower-Case Alphanumeric Module 

Parts List 

l -MCM667 4 Character Generator (Motorola) 
1 -1 8-pin low-profile IC socket 
1 -0. 1 -µF disc ceramic capacitor 
2- 1 2-pin strips (AMP 1 -640098-2) 
1-circuit board "A" 
2-jumpers made from capacitor leads 
4-jumpers made with wiring pencil 

-solder 

'cc 
A6 

AS 

A4 QI 11 

Al Q1 

A1 QJ 

Al Q4 

AO QS 

cs 

6674 

1 9116" 

14CMI 

CHARACTER GENERATOR NOTCH AS SHOWN 

(A) Schematic. (Bl Foil pattern. 

24 • • 
• 
• 
• 
• 
• • 
• 
• 

How It Works 

ASCI I  code is input on pins AO through A6. R l ,  R2, 
and R4 row commands are input from Apple VA, VB, 
and VC timing. Dot matrix code is output to video shift 
register at Ql through Q5. Chip select is permanently 
enabled. Cursor winking is external and done by soft
ware or reversing video after serial conversion. 

6674 

9 10  

• 
• 
• 
• 
• 
• 
• 
• 
• 

IJ- -12 

,- -::9 _ _ _  10- - - �  

• ---- • 1 1  24- -] 

1 3 . ---- 0 

J UMPERS (2 ) > (12) 

(C) Pin side. (D) Foil side. 
Fig. 7-4. Construction details of module "A." 

WIRE PENC IL 
JUMPER 141 
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