
Assembly Cookbook
for the

AppleTM II/IIe
part one Don Lancaster

http://www.tinaja.com/ebooks//xxx.pdf

Assembly Cookbook
for the AppleTM II/IIe

(part one)

by

Don Lancaster

SYNERGETICS SP PRESS
3860 West First Street, Thatcher, AZ 85552 USA

(928) 428-4073 http://www.tinaja.com
ISBN: 978-1-882193-16-5

http://www.tinaja.com

8 Assembly Cookbook for the Apple II/IIe

Copyright c 1984, 2011 by Don Lancaster and Synergetics Press

Thatcher, Arizona 95552

THIRD EDITION

FIRST PRINTING 2011

All rights reserved. Reproduction or use, without

express permission of editorial or pictorial content,

in any manner, is prohibited. No patent liability is

assumed with respect to the use of the information

contained herein. While every precaution has been

taken in the preperation of this book, the publisher

assumes no responsibility for errors or omissions.

Neither is any liability assumed for damages resulting

from the use of the information contained herein.

International Standard Book Number: 978-1-882193-16-5

8 Assembly Cookbook for the Apple II/IIe

Contents

zero

Why you Gotta Learn Assembly Language . 9

Why Machine Language utterly dominates—Size—Speed—
Innovation and limit finding—Hardware elimination

one

What is an Assembler? . 25

Types of Assembler—How Assemblers Work—Which Assembler?—
Tools and Resources—Disassemblers—What Assemblers Won’t Do

two

Source Code Details . 57

Source Code File Formats—More on Operands—More on Pseudo
Ops›—Address Modes—Your Own Assembler

three

Source Code Structure . 93

Limitations on Program Structure—Assembler Listings—Startstuff—
Titles—Gotchas—Enhancements—Hooks—Actual Code

four

Writing and Editing Source Code (The OLD Way) 123

Program Styl—Unstyle—Writing "Old Way" Source Code—
Some Hints on Editing—Table Lookup—Speed Optimization

five

Writing and Editing Source Code (The NEW Way) 163

Source Code File Structure—-Line Numbeing Utilities—To Tab
or Not to Tab—Using Word Processors as Editors.

six

Assembling Source Code into Object Code . 177

Assembler Command—Assembly Listings—Error Messages—
Debugging—›Something Old, Something New

Assembly Cookbook for the Apple II/IIe 9

0

Why you gotta learn
Machine Language

Check into Softalk magazine’s listing of the "top thirty" programs for
your Apple. II or lie, and you’ll find that thirty out of thirty of this month’s
winners usually involve mac:hine language programs or support modules,
written by authors who use assemblers and who make use of assembly
language programming skills.

And, last month’s top thirty were also swept by machine language, thirty
to zip. And next month’s listings probably will be the same. Somehow, thirty
to zero seems statistically significant. There’s got to be a message there.

Yep.

So, on the basis of what is now happening in the real world, you can
easily conclude that…

The only little thing wrong with BASIC or

Pascal is that it is categorically impossible

to write a decent Apple II or lie program

with either of them!

Naturally, things get even worse if you try to work in some specialty
language, such as FORTH, PILOT, LOGO, or whatever, since you now have
an even smaller user and interest base and thus an even more miniscule
market.

What would happen if, through fancy packaging, heavy promotion,

10 Why You Gotta Learn Assembly Language

or outright lies, a BASIC or a Pascal program somehow happened to blunder
into the top thirty some month?

One of three things…
— maybe —

1. Word will quickly get out over the bulletin board systems and
club grapevines over how gross a ripoff the program is, and the
the program will ignominiously bomb out of sight.

— or —

2. A competitor will recognize a germ or two of an undeveloped
idea in the program and come up with a winning machine language
replacement that does much more much faster and much better,
thus running away with all the marbles.

— or, hopefully —

3. The program author will see the blatant stupidity of his ways and
will rework the program into a decent, useful, and popular
machine language version.

The marketplace has spoken, and its message is overwhelming…

If you want to write a best-selling or any

money-making program for the Apple II

or IIe, the program must run in machine

language.

OK, so it’s obvious that all the winning Apple II programs run in machine
language. But, why is this so? What makes machine language so great? How
does machine language differ from the so-called "higher level" languages?
What is machine language all about?

Here are a few of the more obvious advantages of machine language…

Fast
Compact
Innovative
Economical

Flexible
Secure
User Friendly
Challenging

Profitable

MACHINE LANGUAGE IS —

That’s a pretty long list and a lot of heavy claims. Let’s look at a few of the
big advantages of machine language one by one…

Assembly Cookbook for the Apple II/IIe 11

Speed

It takes from two to six millionths of a second, or microseconds, to store
some value using Apple’s 6502 machine language. Switch to interpreted
Integer BASIC or Applesoft, and similar tasks take as much as two to six
thousandths of a second, or milliseconds. This is slower by a factor of one
thousand.

The reason for the 1000:1 speed difference between interpreted "high
level" languages and machine language is that there are bunches of
housekeeping and overhead involved in deciding which tasks have to be
done in what order, and in keeping things as programmer friendly as
possible.

Now, at first glance, speed doesn’t seem like too big a deal. But speed is
crucial in many programs. Let’s look at three examples.

For instance, a word processor program that inserts characters slower than
you can type is a total disaster, for one or more characters can get dropped.
Even if it doesn’t drop characters, a word processor that gets behind
displaying stuff on the screen gets to be very infuriating and annoying. So,
word processing is one area where machine language programs are an
absolute must, because of the needed speed.

Business sorts and searches are another area where the speed of machine
language makes a dramatic difference. Several thousand items sorted in
interpreted BASIC using a bubble sort might take a few hours. Go to a
quicksort under machine language, and the same job takes a few seconds at
most. Thus, any business program that involves sorts and searches of any
type is a prime candidate for machine language.

Finally, there is any program that uses animation. Interpreted BASIC is way
too slow and far too clumsy to do anything useful in the way of screen
motion, game responses, video art, and stuff like this. Thus, all challenging
or interesting games need machine language to keep them that way.

But, you may ask, what about compilers? Aren’t there a bunch of very
expensive programs available that will compile BASIC listings into
fast-running machine language programs? Sure there are.

Most compiled code usually runs faster than interpreted code. But, when
you find the real-world speedup you get and compare it to the same
program done in machine language by a skilled author, it is still no contest…

Most programs compiled from a "higher

level" language will run far slower, and

will perform far more poorly, than the

same task done in a machine language

program written by a knowing author.

Some specifics. If you run exactly the worst-case benchmark program on
one of today’s highly promoted compiler programs, you get a blinding
speedup of 8 percent, compared to just using plain old interpreted BASIC.
Which means that a task that took two hours and fifty five minutes can now
be whipped through in a mere two hours and forty-two minutes instead.

12 Why You Gotta Learn Assembly Language

Golly gee, Mr. Science. Actually, most compilers available today will in
fact speed up interpreted programs by a factor of two to five. This is
certainly a noticeable difference and is certainly a very useful speedup. But it
is nothing compared to what experienced machine language authors can do
when they attack the same task.

A compiler program has to make certain assumptions so that it can work
with all possible types of program input. Machine language authors, on the
other hand, are free to optimize their one program to do whatever has to be
done, as fast, as conveniently, and as compactly as possible. This is the
reason why you can always beat compiled code if you are at all into
machine.

Another severe limitation of Applesoft compilers is that they still end up
using Applesoft subroutines. These subroutines may be just plain wrong
(such as RND), or else may be excruciatingly slow (such as HPLOT). Hassles
like these are easily gotten around by direct machine programming.

Some machine language programs are faster than others. Most often, you
end up trading off speed against code length, programming time, and
performance features.

One way to maximize speed of a machine language program is to use
brute-force coding, in which every instruction does its thing in the minimum
possible time, using the fastest possible addressing modes. Another speed
trick is called table lookup, where you look up an answer in a table, rather
than calculating it. One place where table lookup dramatically speeds things
up is in the Apple II HIRES graphics routines where you are trying to find the
address of a display line. Similar table lookups very much quicken trig
calculations, multiplications, and stuff like this.

So, our first big advantage of machine language is that it is ridiculously
faster than an interpreted high level language, and much faster than a
compiled high level language.

Size

A controller program for a dumb traffic light can be written in machine
language using only a few dozen bytes of code. The same thing done with
BASIC statements takes a few hundred bytes of code, not counting the few
thousand bytes of code needed for the BASIC interpreter. So, machine
language programs often can take up far less memory space than BASIC
programs do.

Now, saving a few bytes of code out of a 64K or 128K address space may
seem like no big deal. And, it is often very poor practice to spend lots of time
to save a few bytes of code, particularly if the code gets sneaky or hard to
understand in the process.

But, save a few dozen bytes, and you can add fancy sound to your
program. Save a few thousand bytes more, and you can add HIRES graphics
or even speech. Any time you can shorten code, you can make room for
more performance and more features, by using up the new space you
created. Save bunches of code, and you can now do stuff on a micro that
the dino people would swear was impossible.

Three of the many ways machine language programs can shorten code
include using loops that use the same code over and over again, using
subroutines that let the same code be reached from a few different places in

Assembly Cookbook for the Apple II/IIe 13

a program, and using reentrant code that calls itself as often as needed.
While these code shortening ideas are also usable in BASIC, the space saving
results are often much more impressive when done in machine language.

Machine language programs also let you put your files and any other data
that go with the program into its most compact form. For instance, eight
different flags can be stuffed into a single code word in machine language,
while BASIC normally would need several bytes for each individual flag.

Which brings us to another nasty habit compilers have.

Compilers almost always make an interpreted BASIC program longer so
that the supposedly "faster" compiled code takes up even more room in
memory than the interpreted version did. The reason for this is that the
compiler must take each BASIC statement at face value, when and as it
comes up. The compiler then must exactly follow the form and structure of
the original interpreted BASIC code. Thus, what starts out as unnecessarily
long interpreted code gets even longer when you compile it.

Not to mention the additional interpretive code and run time package
that is also usually needed.

A machine language programmer, on the other hand, does not have to
take each and every BASIC statement as it comes up. Instead, he will write a
totally new machine language program that, given the same inputs,
provides the same or better outputs than the BASIC program did. This is
done by making the new machine language program have the same
function that the BASIC one did, but completely ignoring the dumb
structure that seems to come with the BASIC territory.

The net result of all this is that a creative machine language programmer
can often take most BASIC programs and rewrite them so they are actually
shorter. As a typical example, compare your so-so adventure written in
BASIC against the mind blowers written in machine. When it comes to long
files, elaborate responses, and big data bases, there is no way that BASIC can
compete with a machine language program, either for size or speed.

Let’s check into another file-shortening example, to see other ways that
machine language can shorten code. The usual way a higher level language
handles words and messages is in ASCII code. But studies have shown that
ASCII code is only 25 percent efficient in storing most English text. Which
means that you can, in theory, stuff four times as many words or statements
into your Apple as you thought you could with ASCII.

You do this by using some text compaction scheme that uses nonstandard
code manipulated by machine language instructions. For instance, in Zork,
three ASCII characters are stuffed into two bytes of code. This gives you an
extra 50 percent of room on your diskettes or in your Apple. In the
Collossial Cave adventure version by Adventure International, unique
codings are set aside for pairs of letters, giving you up to 100 percent more
text in the same space. This means that this entire classic adventure text
now fits inside the Apple, without needing any repeated disk access.

Dictionary programs use similar compaction stunts to minimize code
length. If the words are all in alphabetical order, you can play another
compaction game by starting with a number that tells you how many of the
beginning letters should stay the same in the next word, and by using

14 Why You Gotta Learn Assembly Language

another coding scheme to add standard endings (-s, -ing, -ed, -ly, etc…) to
the previous word.

The bottom line is that machine language programs can shorten code
enough that you can add many new features to an existing program, can
put more information in the machine at once, or can cram more data onto a
single diskette.

Innovation—Finding the Limits

One really big advantage to machine language on the Apple II or lIe is
that it pushes the limits of the machine to the wall. We now can do things
that seemed impossible only a short while ago. This is done by discovering
new, obscure, and mind-blowing ways to handle features using machine
language code.

Some ferinstances…

With BASIC, you can get only one obnoxious beep out of the Apple’s
on-board speaker. Play around with PEEKs and POKEs, and you can get a few
more pleasant buzzes and low-frequency notes. This is almost enough to
change a fifth rate program into a fourth rate one.

Now, add a short machine language program, and you can play any tone
of any duration. But, that’s old hat. The big thing today is known as duty
cycling. With duty cycling done from a fairly fancy machine language driver,
you can easily sound the on-board speaker at variable volume, with several
notes at once, or even do speech with surprisingly good quality.

All this through the magic of machine language, written by an author
who uses assemblers and who posesses at least a few assembly language
programming skills.

The Apple II colors are another example. The HIRES subs in BASIC only
give you 16 LORES colors and a paltry 6 HIRES colors. But, go to machine
language, and you end up with at least 121 LORES colors and at least 191
HIRES ones on older Apples. The Apple lie offers countless more.

And that’s today. Even more colors are likely when the machine language
freaks really get into action.

Another place where limits are pushed by machine language is in
animation and HIRES plotting. You can clear the HIRES screen seven times
faster than was thought possible, by going to innovative code. You can plot
screen locations much faster today through the magic of table lookup and
brute-force coding. Classic cell animation is even possible.

Disk drive innovations are yet another example. Change the code and you
can load and dump diskettes several times faster than you could before. You
can also store HIRES and LORES pictures in many fewer sectors than was
previously thought possible. Again, it is all done by creative use of machine
language programs that are pushing the limits of the Apple.

A largely unexplored area of the Apple II involves exact field sync, where
an exact and jitter-free lock is done to the screen. This lets you mix and
match text, LORES, and HIRES on the screen, do gray scale, precision light
pens, gentle scrolls, touch screens, flawless animation, and much more.

All this before the magic of all the new cucumber cool 65C02 chips,

Assembly Cookbook for the Apple II/IIe 15

which can allow a mind-boggling animation of fifty times compared to
what the best of today’s machine language programmers are using. But
that’s another story for another time.

And, exciting as the pushed limits are, we are nowhere near the ultimate»

Today’s machine language programs are

nowhere near pushing the known limits

of the Apple II’s hardware

And, of course…

The known limits of the Apple II

hardware are nowhere near the real

limits of the Apple II hardware.

What haven’t we fully explored with the Apple II yet? How about gray
scale? Anti-aliasing? Three-D graphics displays? "Picture processing" for
plotters that is just as fast and convenient as "word processing"? Using the
Apple as an oscilloscope? A voltmeter? Multi-Apple games, where each
combatant works his own machine in real time? Scan length coded video?
That SOX animation speedup? Networking?

And the list goes on for thousands more. If it can be done at all, chances
are an Apple can help you do it, one way or another.

Getting Rid of Fancy Hardware

Machine language is often fast enough and versatile enough to let you
get rid of fancy add-on hardware, or else let you dramatically simplify and
reduce needed hardware. This is why machine language is economical.

For instance, without machine language drivers on older Apples, you are
stuck either with a 40-character screen line, or else have to go to a very
expensive 80-column card board. But with the right drivers, you can display
40, 70, 80 or even 120 characters on the screen of an unmodified Apple II
with no plug-in hardware. This is done by going to the HIRES screen and by
using more compact fonts. You can also have many different fonts this way,
upper or lower case, in any size and any language you like.

As a second example of saving big bucks with machine language, one
usual way to control the world with an Apple II involves a BSR controller
plug-in card, again full of expensive hardware. But you can replace all this
fancy hardware with nothing but some machine language code and a
cheap, old, ultrasonic burglar alarm transducer.

As yet a final example, by going to the Vaporlock exact field sync,
machine language software can replace all the custom counters eeded for a
precision light pen or for a touch screen. With zero hardware modifications.

In each of these examples, the machine language code is fast enough that
it can directly synthesize what used to be done with fancy add-on hardware.

So, our fourth big plus of machine language is that it can eliminate,
minimize, or otherwise improve add-on hardware at very low cost.

16 Why You Gotta Learn Assembly Language

Other Advantages

Those are the big four advantages of machine language. Speed, program
size, innovation, and economy. Let’s look at.some more advantages…

Machine language code is very flexible. Have you ever seen Kliban’s cartoon
"Anything goes in Heaven," where a bunch of people are floating around on
clouds doing things that range from just plain weird to downright obscene?

Well, anything goes in machine language as well. Put the program any place
you want to. Make it as long or as short as you want. "What do you mean I
can’t input commas?" Input what you like, when you like, how you like.
Change the program anyway you want to, anytime you want to. That’s
what flexibility is all about.

Machine language offers solace for the security freak.

I’m not very much into program protection myself, since all my programs
are unlocked, include full source code, and are fully documented. I, like
practically every other advanced Apple freak, fiendishly enjoy tearing apart
all "protected" programs the instant they become available, because of the
great sport, humor, learning, and entertainment value that the copy
protection mafia freely gives us.

And surprise, surprise. Check the Softalk score sheets, and you’ll find that
unlocked programs are consistently outselling locked ones, and are steadily
moving up in the ratings and in total sales. Which means that an
un-displeased and un-inconvenienced buyer in the hand is worth two
bootleg copies in the bush, any day.

Time spent "protecting" software is time blown. Why not put the effort into
improving documentation, adding new features, becoming more user
friendly, or doing more thorough testing instead?

But, anyway, if you are naive enough or arrogant enough to want to protect
your program, there are lots of opportunities for you to do so in machine
language. For openers, probably 98 percent of today’s Apple II owners do
not know how to open and view a machine language program. Not only are
you free to bury your initials somewhere in the code, but you could hide a
seven-generation genealogical pedigree inside as well. How’s that for proof
of ownership? And, the very nature of creative machine language
programming that aims to maximize speed and minimize memory space,
tends to "encrypt" your program. Nuff said on this.

Machine language programs can be made very user friendly. Most higher
level languages have been designed from the ground up to be designer
friendly instead. BASIC goes out of its way to be easy to learn and easy to
program. So, BASIC puts the programmer first and the user last. Instead of
making things as easy to program as possible, you are free in machine
language to think much more about the ultimate user, and make things as
convenient and comfortable as possible for the final user.

Machine language programming is challenging. Is it ever.

When you become an Apple II machine language programmer, you join an
elite group of the doers and shakers of Appledom. The doing doggers. This
is where the challenge is, and where you’ll find all the action.

And all the nickels.

Assembly Cookbook for the Apple II/IIe 17

Finally, there is the bottom line advantage, the sum total of all the others.
Because machine language programming is fast, compact, innovative,
economical, flexible, secure, and challenging, it is also profitable. Machine
language is, as we’ve seen, the only way to grab the brass ring and go with
a winning Apple II or lie program.

Should you want to see more examples of innovative use of Apple II and
IIe machine language programs, check into the Enhancing Your Apple II
series (Sams 21822). And for down-to-earth details on forming your own
computer venture, get a copy of The Incredible Secret Money Machine.

But, surely there must be some big disadvantages to machine language
programming. If machine is so great, why don’t all the rest of the languages
just dry up and blow away?

Well, there is also…

The Dark Side of Machine Language

Here’s the bad stuff about machine language…

Unportable
Tedious
Designer Unfriendly
Multi-Level
Hard to Change
Hard to Teach
Unforgiving
Ego Dependent

MACHINE LANGUAGE IS ALSO —

What a long list. A machine language program is not portable in that it
will only run on one brand of machine, and then only if the one machine
happens to be in exactly the right operating mode with exactly the right
add-ons for that program. This means you don’t just take an Apple II
machine language program and stuff it into another computer and have it
work properly on first try.

Should you want to run on a different machine, you have to go to a lot of
trouble to rewrite the program. Things get even messier when you cross
microprocessor family boundaries. For instance, translating an Apple II
program to run on an Atari at least still uses 6502 machine language coding.
All you have to do is modify the program to meet all the new locations and
all the different use rules. But when you go from the 6502 to a different
microprocessor, and all the addressing modes and op codes will change.

A lot of people think this is bad. I don’t. If you completely and totally
optimize a program to run on a certain machine, then that program
absolutely has to perform better than any old orphan something wandering
around from machine to machine looking for a home.

Machine language involves a lot of tedious dogwork. No doubt about it.
Where so-called "higher level" languages go out of their way to be easy to
program and easy to use machine language does not.

http://www.tinaja.com/ebksamp1.asp

18 Why You Gotta Learn Assembly Language

There are, fortunately, many design aids available that make machine
language programming faster, easier, and more convenient. Foremost of
these is a good assembler, and that is what the rest of this book is all about.

Machine language is very designer unfriendly. It does not hold your hand. A
minimum of three years of effort is needed to get to the point where you
can see what commitment you really have to make to become a really great
machine language programmer.

Machine language needs multilevel skills. The average machine language
program consists of three kinds of code. These are the elemental
subroutines that do all the gut work, the working code that manages the
elemental subs, and finally, the high level supervisory code that holds
everything together. In a "higher level" language, the interpreter or compiler
handles all the elemental subs and much of the working code for you, "free"
of charge. Different skills and different thought processes are involved in
working at these three levels.

This disadvantage is certainly worth shouting over…

THERE IS NO SUCH THING AS A

"SMALL" CHANGE IN A MACHINE

LANGUAGE PROGRAM!

Thus, any change at all in a machine language program is likely to cause
all sorts of new problems. You don’t simply tack on new features as you
need them, or stuff in any old code any old place. This just isn’t done.

Actually, shoving any old code any old place is done all the time, by just
about everybody. It just doesn’t work, that’s all.

Machine language programming is something that must be learned.
There is no way for someone else to "teach" you machine language
programming. Further, the skills in becoming a good machine language
programmer tend to make you a lousy teacher, and vice versa.

Machine language is unforgiving, in that any change in any byte in the
program, or any change in starting point, or any change of user
configuration, will bomb the program and plow the works.

Some people claim that machine language code is hard to maintain. But it
is equally easy to write a Pascal program that is totally unfixable and
undecipherable as it is to write a cleanly self-documenting machine
language program. The crucial difference is that machine language gently
urges you to think about maintainability, while Pascal shoves this down your
throat. Sideways.

Finally, machine language is highly ego-dependent. Your personality
determines the type and quality of machine language programs you write.
Many people do not have, and never will get, the discipline and sense of
order needed to write decent machine language programs. So, machine
language programming is not for everyone.

It is only for those few of you who genuinely want to profit from and
enjoy your Apple II or IIe. That’s a pretty long list of disadvantages, and it
should be enough to scare mostsane individuals away from machine
language. Except for this little fact…

Assembly Cookbook for the Apple II/IIe 19

NONE of the disadvantages of machine

language matter in the least, because

there is NO OTHER ALTERNATIVE to

machine language when it comes to

writing winning programs for your Apple

II or lie.

Or to rework the tired joke about the guy who slaved away all his
life in Florida and then retired to New Jersey…

Have you ever seen a machine language

program that was improved by rewriting

it in BASIC or Pascal?

Not that it won’t happen. It just isn’t very likely, that’s all.

Getting Started

Here is how I would have you become a decent machine language
programmer. First, you should write, hand-code, test, and debug several
hundred lines directly in machine language, without the use of any
assembler at all. The reason for this is that…

Before you can learn to program in

assembly language, you must learn how

to program in machine language!

So many assembler books and courses omit this essential first step! An
assembler is simply too powerful a tool to start off with. You must first know
what op codes are and how they are used. You must thoroughly understand
addressing modes and the different ways they are used.

There is a series of nine discovery modules found in Volume II of Don
Lancaster’s Micro Cookbook (Sams 21829) that will take you step by step
through most of the op codes of the Apple’s 6502 microprocessor.

After you have done your homework and can tell the difference between a
page zero and an immediate addressing command, and after you know
whether "page zero, indexed by Y," is a legal command on the Apple, then,
and only then, should you move up to a miniassembler, such as the
excellent one in Apple’s new BUGBYTER.

Then you run another few hundred lines of code through a miniassembler
to understand what an assembler can do for you. Finally, you go on to a full
blown assembler and learn assembly language programming.

The few tedious "front-end" hours spent doing everything "the hard way"
will be more than made up in the speed and convenience with which you
pick up assembler skills later.

This starting by hand, going to a miniassembler, and only then stepping

http://www.tinaja.com/ebksamp1.asp
http://www.tinaja.com/ebksamp1.asp

20 Why You Gotta Learn Assembly Language

up to a full assembler is the way I would have you become a winning
assembly language programmer.

Most people, though, will probably try…

For a SIXTH rate program—
 Write it in Pascal.

For a FIFTH rate program—
 Write it in BASIC.

For a FOURTH rate program—
 Write it in BASIC, but use a few
 PEEKs and POKEs.

For a THIRD rate program—
 Write it in BASIC, but use the CALL
command to link a few short
machine language code segments.

For a SECOND rate program—
 Write it in BASIC, but use the"&"
 command to link several longer
 blocks of machine language code.

For a FIRST rate program—
 Do the whole thing in machine
 language like you should have
 done in the first place.

SNEAKING UP ON REALITY —

The trouble with the "sneaking-up" method is that it takes you forever to
see how bad "higher level" languages really are, and you spend all your time
goofing around with second-rate code. But, the "sneaking-up" method does
eliminate some of the cultural shock of starting straight into machine
language programming from scratch.

Instead, start with and stay in machine language.

A Plan

This book is intended to show you what an assembler is and how to use
one to write profitable and truly great Apple II or lie machine language
programs. You will find the book in two halves. The first half is the "theory"
part that tells us all about what assemblers are and how to use them. The
second half is the "practice" part that will lead you step by step through
some practical ripoff modules of working assembly language code. Code
that is unlocked, ready to go, wide open, and easily adapted to your own
uses.

We start in chapter one by finding out what an assembler is and what it
does. We then check into the popular assemblers available today, along with
a list of the essential tools for assembler programming, some magazines, and
other resources.

Our examples will use Apple’s own newly overhauled and upgraded
EDASM macroassembler, first because it is the one I use,

Assembly Cookbook for the Apple II/IIe 21

and secondly because it is the de-facto standard for assembling Apple II
machine language programs. Many of the weakest features of EDASM get
eliminated in one swell foop simply by using Apple Writer IIe instead of the
original EDASM editor, and using the magic of WPL to help along your
macros.

At any rate, most of what happens here will apply to any assembler of your
choosing. We will provide source code on the companion diskette for either
EDASM or the S-C Assembler formats. Just be sure to tell us which one you
want. Either of these versions should be translatable to the assembler of your
choice.

Most Apple-based assemblers come in two parts. One part puts together the
story of what is to be done, while the second part takes the story and
converts it into working machine language code. Putting together the story
is called editing, while creating the machine language code is called
assembling. The story or script is more properly called the source code,
while the final program or module is usually called the object code.

Source code details are covered in chapter two, where we look into source
code lines, fields, labels, op codes, operands, and comments, finding out just
what all these are and how they are used. The structure of your source code
is outlined in chapter three, where we find the 16 essential parts to an
assembly language program, and how to use them. We also find out here
exactly why structure of any kind is inherently evil and why structure must
be avoided at all costs.

Today there are two good ways to write source code. The "old way" uses the
editor provided in the assembler package. We’ll cover the old way in depth
in chapter four.

The "new way" uses the power of a modern word processor to do your
source code entry and editing, and has bunches of potent advantages. Not
the least of which is that creating and editing source code is lots more fun
with a word processor, and that you can instantly upgrade a lousy
editor/assembler into a super-powerful one. Drag a supervisory language
such as WPL along for the ride, and you can do incredible macro-style things
that otherwise would be unavailable. Chapter five tells all.

At long last, in chapter six, we get around to actually assembling source
code into working object code. Here we also check into error messages,
debugging techniques, and things like this. And that just about rounds out
the theory half of the book.

The practice half includes nine ready-to-go ripoff modules that show you
examples of some of the really essential stuff that’s involved in Apple
programming. I’ve tried to concentrate on the things that are really needed
and really get used, such as a decent random number generator, a
state-of-the-art string imbedder, an option picker, a time delay animator,
two approaches to sound effects, a classic text handler, a rearranging
shuffler, and an empty shell source code builder. I have tried to keep the
programs and modules general enough and simple enough that they will
run on most any brand or version of Apple or Apple knockoff.

A stuffed-full and double-sided companion diskette is available with all the
source and object code used in the book. Source code is provided in your
choice of EDASM or S-C Assembler formats. Either way can be used as is, or
else easily adapted to most any present or future assembler of your

22 Why You Gotta Learn Assembly Language

choice. Naturally, this companion diskette is fully unlocked, easily copied,
and bargain priced.

No royalty or license is needed to use any of the ripoff modules in your
own commercial programs, so long as you give credit and otherwise play
fair. You can order this diskette directly from me by using the order card in
the back of this book. A feedback and update card is also included. An
aggressive and well supported voice hotline service is provided free with
your diskette order.

By the way, I’d like to do a really advanced sequel to this book that would
cover such things as the new 65C02’s with their literally millions of new op
codes and addressing modes just waiting for your use, review some really
old stuff like the Sweet Sixteen and the old floating point routines, check
into Apple organization and memory maps more, look into the lie’s fantastic
new opportunities, do many more ripoff modules, and lots of extra stuff like
this. Be sure to use the response card to tell me exactly what you want to
see, and which new ripoff modules should be included.

But, getting back to here and now, don’t expect this book to teach you
assembly programming, because assembly programming cannot be taught.
Assembly of machine language code has to be learned through great
heaping bunches of hands-on experience and lots of practice. Careful study
of other programs is also an absolute must. Hopefully, you can use this book
as a guide to show you the way through your own learning process.

Oh yeah. It is disclaimer time again. Apple II is a registered trademark of
some obscure outfit out in California. All of the usual names like Atari, Zork,
Scott Adam’s, VisiCalc, etc., are registered trademarks of whoever. Special
thanks to Bob Sander-Cedarlof of S-C Software for his thoughtful proofing
comments.

As usual, everything here is pretty much my own doing, done without
Apple’s knowledge or consent. Which, of course, makes it even better.

— Don Lancaster
Fall 1983

This book is dedicated to the secret of the red wall.

 May there always be one more.

Assembly Cookbook for the Apple II/IIe 25

1

What is an Assembler?

Virtually all the winning and truly great Apple II or lie programs written
today run in machine language…

The detailed, "ones-and-zeros," gut
level commands a microcomputer
must have to do anvthing.

MACHINE LANGUAGE —

For instance, if the Apple’s data bus is presented with the binary pattern
1010 1001 and then with 1011 0111, the 6502 microprocessor will fill its
accumulator with the value hexadecimal $87, equal to decimal 183. This is
done in the immediate addressing mode, as a two byte instruction.

If the previous paragraph looks like so much gibberish, you are not nearly
ready to even think about reading this book.

To continue, you must know about and must have used 6502 op codes,
and must completely and thoroughly understand addressing modes and
hexadecimal notation. Memory maps, working registers, and address space
must be second nature to you. You must also have already handwritten and
hand debugged several of your own machine language programs.

Once again, this book is about assemblers, and there is NO WAY you
should even think of using assemblers and assembly language until long

26 What is an Assembler?

after you have handwritten and then hand debugged not less than several
hundred lines of machine language code.

One place to pick up this machine language background is with the
discovery modules in Don Lancaster’s Micro Cookbooks, Volumes I and II.

If you have not done all your hex

homework, can’t tell immediate from

page zero addressing, or otherwise

haven’t paid your machine language

dues, then please…

 GO AWAY!

Now that the air is cleared, and the techno-turkeys have left, let’s sweep
up the worst of the feathers and continue. The trouble with machine
language programs, as you undoubtedly know by now, is that there is lots of
tedious dogwork involved in writing them.

It is rather hard to insert something new into a hand-coded machine
language program, since you’ll have to move everything down on your
programming form to make room for new stuff. Removing code creates the
opposite problem. Even a common beginner’s mistake such as the wrong
addressing mode can completely mess up your program. This can easily
happen if you have to substitute a 2-byte for a 3-byte instruction.

Calculating relative branches is a royal pain, particularly the forward ones
where you don’t quite know where you are headed. You must, of course,
eat, sleep, and breathe with your 6502 pocket card before you can do any
decent machine language programming. You have to know the exact
address you are going to jump to, and the exact length of your code, and
the exact starting point before the program will work. And you must, of
course, do everything in hexadecimal, even if you really want decimal
numbers or ASCII characters.

And those are just a few of the hassles. You probably have a lot more pet
peeves of your own. You can automate much of the dogwork involved in
machine language programming by going to an assembler…

Any tool that simplifies or automates
machine language programming.

ASSEMBLER —

Most often, an assembler is a program or a program system that you run
on your Apple II or lIe that helps you write machine language code.
Assemblers make the writing and debugging of machine language code
much easier, much faster, and much more fun. Assemblers also make it very
easy to change, or edit, already existing machine language programs.

Because assembly programs are very powerful tools, there are many new
skills that may be involved in learning how to use one. In exchange for this

http://www.tinaja.com/ebksamp1.asp

Assembly Cookbook for the Apple II/IIe 27

new learning effort, an assembler will make machine language programming
much faster and much more fun for you.

The tradeoff is some new effort now in exchange for lots of time saved
and use convenience later. Assemblers speak a special language that is
called, of all things, assembly language…

A "higher level" language that both
an assembler and a person wanting
to write machine language programs
can use and understand.

ASSEMBLY LANGUAGE —

The assembler itself is really one or more machine language programs set
up to interact with you as programmer and the Apple II or lie as computer.
The assembler goes between you and the machine and tries to speak to the
machine in machine language and to you in assembly language.

This is roughly similar to an interpreter program that can take BASIC
statements understood by a programmer and convert them into machine
language commands understood by the Apple II . An interpreter itself is, of
course, a machine language program. So is an assembler.

Thus, you can think of an assembler as a translator that changes "people
language" into "machine language." Assemblers use mnemonics…

A group of three or four letters that
form a "word" which both the
programmer and assembler uses.

MNEMONIC —

Typical mnemonics would include the command LDX, meaning "Please
load the X register," or ROL A, meaning "Please rotate the contents of the
accumulator to the left through the carry flag." You should, of course, be
already familiar with these mnemonics for 6502 op codes.

Assembiers will often add their own new mnemonics on top of the ones
already used by the 6502. An example would be the mnemonic ORG, telling
the assembler that "Here is the original ddress where I would like you to start
assembling code." More on these pseudo-ops later.

Mnemonics give us a shorthand way of communicating with an
assembler. We could say "1010 1001 1011 0111" and our 6502 would
know what we were talking about. But these ones and zeros sure get rough
on the programmer. We could instead say, "6502, would you please
immediately put the decimal value 183 into your accumulator?" This is
obvious to the programmer, but the 6502’s microprocessor would be very
puzzled over this strange gibberish.

An assembler compromises in making use of its mnemonics that are
understandable to both man and machine. The person uses LDA #$B7 or its
decimal equivalent of LDA #183 commands to speak to the assembler,

28 What is an Assembler?

and the assembler then recognizes and understands this to mean that the
machine language coding 1010 1001 1011 0111, or its hex equivalent of
$A9 $87, is to go into the final program.

Another very important assembler concept is called a label…

A name put on some value or some
address or some point in a program
to be assembled.

LABEL —

Labels are simply names you can put on things. For instance, you could
start your program with a label that says START. Other places in your
program could refer to that label. For instance, to repeat your program over
and over again, you could use an assembler command of JMP START as your
last line. When the assembler assembles the program, it finds out where
START really is and then figures out the right code to get you there. Or
maybe you want a forward branch that goes to code you labeled MORE. If
you don’t use a label, you must know the exact address you are branching
to, even if you have not gotten there yet. With proper use of labels, a good
assembler will automatically figure these things out for you.

Labels also serve as memory joggers and simplify moving programs
between machines. For instance, the Apple ll’s on-board speaker is located at
$C030. With a label, you can define, or equate, $C030 as SPKR. Every place
you see SPKR in a program, you can now remember what it is and exactly
what it does.

Another use of labels lets you move your program around in memory by
reassembling to a different starting address. If you insert or remove code
inside relative branches, those labeled branches will automatically lengthen
or shorten during the assembly process. If your branch goes to an absolute
address instead, the lengthened or shortened code will bomb, since the
branch now goes to the wrong place.

Labels are normally five to seven characters long, and can include
numbers or decimal points. Usually you have to start with a letter, and no
spaces are allowed. You should try to make all labels as meaningful as
possible.

There are lots of sneaky and elegant uses for labels. For instance, you can
use the label "C" for a carriage return. Or labels of G1# and DQ to produce a
musical note. Labels such as MSP1 can automate linking of messages and
message pointers. You can also do automatic address calculations by
combining labels with the upcoming operand arithmetic.

TYPES OF ASSEMBLERS

There are several different types of assemblers, depending on how fancy
they are, what they are intended to do, and where they put their final
machine language program results.

The simplest is the miniassembler…

Assembly Cookbook for the Apple II/IIe 29

An "automated pocket card" that
assembles one command at a time
directly into machine language.

MlNI ASSEMBLER- —

A miniassembler is the smallest and simplest assembler you can get. There
is a miniassembler built into the Integer BASIC code of your Apple, starting
at $F666. The miniassembler is available either as part of the Integer ROM
set, or as code booted onto a language card or into high RAM. The old
miniassembler has recently been upgraded and dramatically improved as the
BUGBYTER program, available as part of Apple’s Workbench series.

The system master diskette for Apple lIe will autoboot the miniassembler
code for you to power up. To activate it, type INT, followed by a CALL -151,
followed by F666G. Or, better yet, BRUN BUGBYTER.

At any rate, all a miniassembler does is let you enter a mnemonic. It then
converts that mnemonic to a machine language op code for you. For
instance, you tell the miniassembler 0800: LOA #$B7 and the miniassembler
whips out its own pocket card, and enters the code into the Apple as 0800:
A9 B7. Miniassemblers will automatically calculate relative branches for you,
although you often have to make a "guess" on your forward branches.

The use rules for the Apple miniassembler appear in the BUGBYTER
manual, and in the usual Apple guides and support books, so we won’t
repeat them. Be absolutely sure you use and understand the miniassembler
and all of BUGBYTER before you try anything heavier.

A miniassembler does not allow labels and does not let you write a coded
script ahead of time. You simply punch in one mnemonic at a time, and it
then changes the mnemonic to an equivalent machine language op code for
you. Miniassemblers do not give you a quick and easy way to "open up"
code to stuff another command in, or "close up" listings to remove
something no longer needed. You usually also must always work in
hexadecimal with a miniassembler.

There is no really useful way to put annotation, remarks, or comments
into a miniassembled program. While you are free to run your printer as you
use a miniassembler, there is no really good way to get a well documented
hard-copy record of what you are doing. By comments, we mean…

Remarks or notes added to the
instructions given an assembler.

Comments will be ignored by the
assembler, but are most useful to
people reading and using them.

COMMENTS —

Miniassemblers also assemble code directly into the machine for you. This
means that the code must go into a chosen place in your Apple where it is

30 What is an Assembler?

expected to run. Trying to assemble code into certain areas such as ROM is
futile, and trying to assemble into the stack, the text screen, or much of
page zero, will bomb your Apple. So, a miniassembler is normally used to
assemble code exactly where it is to run.

The BUGBYTER module is relocatable, so you can move it out of the road
of your intended assembly space.

Miniassemblers are compact and very fast. They are a giant step up from
writing your own machine language code by hand, and you always should
learn and use a miniassembler before you go on to anything fancier…

Before you attempt to use any fancier

assembler, be sure to write and debug

not less than several hundred lines of

machine language code by using a

miniassembler or on BUGBYTER.

The greatest use of miniassemblers is to drive home what the assembly
process is and how it works. They are also useful for quick-anddirty or very
short assembly jobs. But, since there is no way to make a script of what you
want to do, any later changes mean you have to miniassemble the whole
job over again. Worse yet, there’s no record of what you did. Our next step
up leads to a full assembler…

An assembler that includes all the
usual features, such as labels or
comments, and the ability to work
from a script that you edit and save.

FULL ASSEMBLER —

Full assemblers usually consist of a few related programs. One of these lets
you write a script, or a series of instructions. You can save this script to disk,
edit it, or rework it. A second part of the assembler then converts this script
into actual machine language code, and gives you a printed record of the
assembly process. Full assemblers use labels and make it easy to insert and
remove code at any place and any time. A full assembler is normally all you
need to write most machine language programs.

Full assemblers do let you put comments anywhere you like, provide for
"pretty printing" for easy readability, and give you a formal printed record.
There is also the macroassembler…

A full assembler that also is fully
programmable, letting you work
with pre-defined modules, and doing
other powerful tricks.

MACROASSEMBLER —

A macroassembler will not only accept mnemonics for you. For it can also

Assembly Cookbook for the Apple II/IIe 31

accept a pre-defined series of instructions, and then convert all those
instructions into individual mnemonics. A macro is…

A series of instructions or mnemonics
that will carry out some fancy "high
level" task.

MACRO —

For instance, with a full assembler, you would need a dozen mnemonics
to read a text file and print one character at a time. With a macroassembler,
you can design a macro that automatically will generate all the needed
mnemonics for you. You would name your macro something like PRNTX,
and just put the macro into the assembler where you wanted all the details.
At the same time, you can "pass variables" through to your macro.

A really great macroassembler will even let you use the message inside the
macro, such as PRNTX /Hit any key to continue./. Macros can be
instructions inset directly into your source code, can be disk-based modules,
or can be WPL routines used with "new way" editing. Which you use
depends both on your choice of assembler and your programming style.

Macros are a fun tool for the advanced programmer, and they really make
machine language programming fast and more understandable. But macro
features are really not essential. If your regular assembler has the ability to
insert routines from a disk and can do a limited amount of conditional
assembly, you can "fake" many of the macro features.

It is possible to do many macro-like tasks with a supervisory word
processor program, such as WPL. WPL is the word processor language that
works with Apple Writer II or 1/e. We’ll see WPL use examples when we get
to the chapter on "new way" editing.

Some assemblers also may give you a method to separate labels that can
be used anywhere in the program from labels that can only be used in one
small code portion. We call these global or local labels…

A label that can be used any place
in the entire program.

Global labels can only be defined
ONCE in a program.

GLOBAL LABEL —

A label that can be used in several
places in a program, each with
a usually similar, meaning.

Local labels can be defined as often
as needed, and will only affect a
small area of the program.

LOCAL LABEL —

32 What is an Assembler?

Not all Apple assemblers let you separate global and local variables,
although "new" EDASM gives you a way to do this. Thus, each time you use
some code module, you may have to pick a unique and different label name.
Obvious ways to beat not having a local label capability are to number labels
sequentially, such as START1, START2, START3, or to use creative
misspelling, such as PRINT, PRIMT, or PRENT.

Yet another way to classify assemblers is whether they generate
relocatable code or not…

An assembler that generates special
machine language code that will
reposition itself anywhere in memory
automatically before its use.

RELOCATABLE CODE ASSEMBLER —

Normally, your "typical" machine language program is only allowed to sit
at one exact place in memory and has only one legal starting address. This is
fine, if you always know where you want your program to go.

Dino machines often speak of virtual memory. One of the key features of
virtual memory is that any program or any program module can go at any
place in memory and still work. This gets real handy when you are tacking a
bunch of mix-and-match machine language modules onto the top of an
Applesloth program. Virtual memory is so powerful that you can easily think
of a dozen more ferinstances where it sure would be nice to put anything
anywhere and still have it work. For micros and personal computers,
relocatable code is a powerful idea whose time has come.

You can write machine language programs that can go anywhere in
memory, so long as the code never calls itself or refers to itself with any
absolute addresses. This means no absolute self-references such as loads or
stores, no jumps, and no subroutines. This would be a simple example of a
program that is self-relocating and can run anywhere. The disadvantage, of
course, is that you aren’t allowed to use most of the useful or interesting
6502 op codes when you try this.

Or, you can write a long and fancy machine language program that first
finds out where it is sitting in memory, and then changes itself so it will run
in its present location. The standard Apple II way of finding out where a
program sits is to jump to a subroutine in the monitor with a known
immediate RTS return, and then dig into the stack to find the calling
address. From this point, you can play games that selfmodify the rest of the
code so it works where it is sitting.

The Apple people have gone one step better, and now have "R" files.
These "R" files are relocatable code modules, that work with special loader
software to put a machine language module anywhere in memory. They do
this by dragging along a data table that lists everything that references
absolute locations. These locations are changed as needed.

If you want to use "R" files to make your machine language code
relocatable, then you have to use an assembler that can handle relocatable
code without choking on it.

Assembly Cookbook for the Apple II/IIe 33

Relocatable, or "R" files are nice for advanced programming concepts, but
let’s get back to some more simple mainstream stuff. Another way to classify
assem biers is by where they put the machine language program
theygenerate. You have a choice of inplace or disk-based assembly…

An assembler that assembles its
machine language code directly into
RAM memory.

IN-PLACE ASSEMBLER —

An assembler that assembles its
machine language code onto a disk
based file.

DISK-BASED ASSEMBLER —

An in-place assembler will directly assemble its machine language code
into the RAM of your Apple II or lie. This is fast and convenient. Often, you
can test your machine language program immediately.

There are several disadvantages to in-place assembly. You are limited to
shorter programs, since both the assembler program and the final machine
language code must fit into memory at the same time. The machine
language program may have to be moved so it can run, if the intended
place for the final machine language program conflicts with the code space
needed for the co-resident assem bier program.

A disk-based assembler reads a disk file as an input and generates a
different disk file as an output. The files can be much longer than the space
available in memory, since all the assembler has to do is keep a short stash of
labels and cross-references handy. Thus, you can easily write and assemble
very long programs with a disk-based assembler.

There are also no limits to where the final program code sits, since this is
code stashed on a disk, and not code stuffed into the machine. You can
easily assemble a program that must sit in the same space the assembler
does; can overwrite text screens; can work on page zero, the stack, or the
keyboard buffer. Final code is ready to use without any relocation.

The bad news here is that disk drives tend to be very slow, and that you
have a long song and dance to go through when you want to test your
machine language program, since you may have to get out of the assembler
program, and then load and run your machine language program. The
"test-modify-reassemble" round trip time can be much longer.

Newer DOS speedup tricks can ease the turnaround time. Another factor
that makes this long round trip time not too bad is that many programmers,
including myself, are running a printer most of the time that they are
assembling. This slows down an in-place assembler to where it is almost as
infuriatingly slow as a disk-based assembler can be. If you are using a slow
printer for quality output, there isn’t that much round trip time difference

34 What is an Assembler?

between an in-place and a disk-based assembler. A print buffer or a spooler
can speed things up a whole lot for either type of assembler. Some in-place
assemblers give you the option of assembling to disk, and vice versa. This
can give you the best of both worlds. Here’s two more terms for you…

An assembler where editing and
assembly routines are separate,
only one of which is loaded into the
machine at any particular time.

MODULAR ASSEMBLER —

An assembler where editing and
assembly routines can both be
present in the machine at once.

CO-RESIDENT ASSEMBLER —

Both have advantages. Modular assembly gives you more room for your
source code and possibly for in-place object code as well. The modular
routines can also be longer and fancier, since they have more "elbow room"
in which to work. Co-resident assembly is faster and shortens the
edit-assemble-test round trip time considerably. Sometimes you might get
involved with a cross assembler…

An assembler that is displeased or
otherwise unhappy with the inane
garbage it is being fed.

CROSS ASSEMBLER —

Uh, whoops. Computer error. Let’s run that one by again…

An assembler running on one system
but generates machine language code
for a different one, system, possibly
even for a different microprocessor.

CROSS ASSEMBLER —

If you are only using an Apple II to assemble 6502 machine language
programs that are only to run on an Apple II, then you will most likely never
need a cross assembler. Cross assemblers work on one machine but generate
code for a different one. For instance, you could use an Apple II to generate
machine language programs that are ready to run on simpler 6502
machines, such as the KIM, AIM, and SYM gang or for a 6502 controller
card. This gives you all the full resources of your Apple, including disk drives,
modem, printer, and such, to let you develop programs for other machines.
If you work with standards of these other machines, you can directly

Assembly Cookbook for the Apple II/IIe 35

download programs from the Apple to the target machine. Or else use serial
ports to exchange programs and data.

Other cross assemblers may work with different microprocessor families.
Thus, by going to the right kind of emulator software, you can use an Apple
to generate TRS-80 code, 68000 code, Macintosh routines, CRAY 1 code, or
anything else you like.

Many Apple-based assemblers will provide modules to let you do cross
assembly. The S-C Assembler modules in particular let you cross assemble
into dozens of different microprocessor CPUs or even into dinos.

That pretty much rounds out our survey of the types of assemblers that
you might find interesting or handy to use. Our main interest in the rest of
this book, though, will be in using a disk-based full assembler to generate
Apple II programs for Apple II or lIe use.

How Assemblers Work

A miniassembler works as if it were an "automated pocket card." You pick
a starting address, and start punching assembly language mnemonics into
the machine. The miniassembler then converts these mnemonics into the
correct op codes for you.

All the op codes are figured out automatically. Different address modes
are entered by special symbols following the mnemonics. Relative branches
are also automatically calculated, although you do have to take a guess at
forward branches and then "repair" the guess when you get to the place in
the program the branch is supposedly going to.

A miniassembler only works on one mnemonic at a time, and has no way
of remembering what it did before or anticipating what it will do in the
future. There are no labels, limited comments, and limited printed records.
There is no record of what goes into the miniassembler, unless you create
one yourself using some programming form or disassembly listing.

The miniassembler is an essential "go-between" step that should separate
your first hand-coded machine language programs from your use of a full
assembler. A miniassembler gives you insight into what the assembly process
is all about, drives home the need to understand address modes, and forces
you to become a better and more thoughtful programmer.

Serious programmers soon demand more than a miniassembler can
deliver. So they step up to either a full assembler or a macroassembler.

Both these work pretty much the same way. All a macroassembler does is
give you some more features and some extra bells and whistles to make your
programming efforts more legible and more convenient.

Think about how you hand code a machine language program. First you
decide what you want to do. Then you actually do the encoding process to
come up with the correct op codes and addresses.

Full assemblers work the same way. First you write a script that will tell the
assembler exactly what it is that you want done. Then you feed the script to
the assembler, and it takes the commands in that script, and then goes
ahead and tries to build a machine language program for you.

There are two stages involved in using an assembler…

36 What is an Assembler?

FIRST, you write a script or a series
of instructions telling the assembler
exactly what it is you want done.

SECOND, you send this series of
instructions to the assembler
so the assembler can use these
instructions to write your machine
language program.

TO USE A FULL ASSEMBLER —

You go to the assembler and say "Here is what I want done." The
assembler then takes this listing of what is to be done and then actually tries
to do it, generating you a machine language program.

The script, or series of instructions is called the source code…

The series of instructions you send
to an assembler.

Source codes are written as an
English text, but there are rules
that must be EXACTLY followed.

SOURCE CODE —

The assembler then reads your source code and tries to make some sense
out of it.

 you obey all the rules, the assembler will take the instructions in the
source code, and follow its built-in rules so it can generate a machine
language program for you.

This generated program is called the object code…

The machine language program
that the assembler produces for
you, following the instructions
in the source code.

OBJECT CODE —

You write a script called the source code. The assembler then takes the
source code and converts it into a machine language program called the
object code.

Source code is sometimes called the source file, and object code is
sometimes called the object file, particularly on disk-based assemblers.
Either way, the source is your script and the object is the machine language
result.

Assembly Cookbook for the Apple II/IIe 37

Like so…

 SOURCE CODE

 •
 •
 •
 LDA #$06
 STA $C093
 •
 •
 •
•

OBJECT CODE

 •
 •
 •
 A9 06
 80 93 C0
 •
 •
 •
•

ASSEMBLER

Source Codes are written
more or less in plain
English, following some
very exact rules.

(Usually a text file)

Working object code
is no different than
any other machine
language program.

(Always a binary file)

HOW TO TELL SOURCE CODE
FROM OBJECT CODE

The SOURCE CODE is a
series of instructions you
wrote that tells the
assembler what to do…

The OBJECT CODE is a
machine language program
or code module that the
assembler builds for you…

Should files or tables of data also be needed, a good assembler will also
produce these for you, starting with ASCII values or else a string of hex or
decimal numbers.

Note that the source code and the object code are totally different types
of beasties. The source code is a series of English-like instructions that you
wrote. The object code is the machine language program the assembler has
generated for you…

Source code files and object code files

are totally different.

 DON’T MIX THEM UP!

 Source code = your instructions

 Object code= assembly result

In the assembler we will be using in this book, the source code is usually
stored on the diskette as a text file. The object code, of course, must be
stored as a binary file since it is a runnable machine language program or
some part of one.

Other assemblers may instead store their source code as a binary file, as a

38 What is an Assembler?

text file, or may use some special format.But, no way will any source code
run as a machine language program, ever!

So…

Source and object code files MUST
ALWAYS have different names!

OBVIOUSLY —

The reason for this, of course, is that a source file is one thing (instructions
from you), and an object file is something entirely different {machine
language code the assembler generates). If you give these totally different
code files the same name, then you’ll get into the same troubles you would
if you put two identical names on any pair of files on the same diskette.

There are at least three ways you can name source and object files so you
can tell they belong together, yet still separately recognize them. One way
is to add something to the source name to say it is indeed a source file.

A second method is to add something to the object name to say it is
obviously an object file. The third route involves prefixes.

For instance, if you are working with a program called SNARF, you might
call your source code SNARF 1.0.SOURCE, and your object program SNARF
1.0. I like this route, since your final machine language program is properly
named for final use.

One other alternative is to call the source program SNARF 1.0 and the
object program SNARF 1.0OBJ0. This is the "default" way the 1.0.0BJO.
assembler we will use in this book does things, so apparently someone
somewhere must like this strange notation. Other assemblers might drop the
version count following ".OBJ".

Others prefer to use prefixes, such as S.SNARF for a source code file and a
B.SNARF for the binary object file. You should always keep track of the
version of a program by adding numbers to the name…

Add version numbers to all of your

programs, always making the latest

program have the highest number.

The usual way you do this is to call your updated programs SNARF 0.1,
SNARF 0.2, SNARF 0.3, and so on.Use tenths for small changes and routine
updates. Use tens or hundreds for major overhauls. For instance, you keep
adding SNARF 0.4, SNARF 0.5, and so on for any smaller changes or
improvements.

Should you "refocus" your program into something wildly different, start

over again with SNARF 10.0, SNARF 10.1, and so on.

Assembly Cookbook for the Apple II/IIe 39

NEVER overwrite the last working copy of anything you have…

NEVER overwrite the last good copy of

your source code!

ALWAYS add a new version number

higher than the previous ones.

Delete old code ONLY when it is many

versions behind and cannot possibly

have any more use.

In short, back everything up six ways from Sunday. Don’t throw
anything old away till you desperately need disk room. Even then, be very
careful and save a printed record. Sometimes when you think you are
"improving" source code, you may actually be destroying it, or else throwing
the baby out and keeping the bath water. There’s also the random glitch
that destroys a file. Either way, with no backup, you end up in deep trouble.

Most full assemblers will have a program that will make writing the
source code script easy and fun to do. This part of an assembly system is
usually called the editor. The editor is pretty much a word processor
program that is set up to exactly follow the rules needed by the part of the
assembly system that is to generate the machine language result for you.

The part of the assembly system that takes an edited source code script
and converts it into a machine language program is called the assembler…

EDITOR —

That part of an assembly system which

helps you create or modify source code.

ASSEMBLER —

That part of an assembly system which

takes the source code instructions and

converts them into object code.

This can get sticky fast, for "editor" can mean two different things and
"assembler" can mean two different things. When you are talking about the
big program, most people say "assembler" when they really mean "assembly
language development system." Two important parts of most typical Apple
assembly language development systems are a way to create and modify
source programs, called the editor; and another separate way, called an
assembler, to take the source code file and generate an object code file.

To further foul up the works, the editor part of the assembly language
development system is used both to create and modify source code files.
The process of using an editor to create a source code file is sometimes
called entry, while the process of using an editor to change an existing
source code file is sometimes called editing.

40 What is an Assembler?

You can also do your editing and entry with a word processor, in which
case you can call what you are doing anything you care to.

The context usually will help you out. An assembler is either the whole
development system, or else just that part of the development system that
does the actual assembly. An editor is either the whole module that lets you
create or modify a source code file, or else just thatpart of the program that
is actively involved in changing or correcting an existing file.

The way a full Apple assembler works is that you first use the editor part of
the development system to create a source code file. As a reminder, this
source code file is a series of English-like instructions. You might also use the
editor to change or correct existing source code.

The assembler reads the source code file several times. Each time is called
a pass, and most assemblers take at least two passes to complete the
assembly process. The as.sembler goes all the way through the source file to
find all the labels, all the definitions, and any forward branch references. It
saves this data in suitable tables or lists. Then, the assembler makes a second
pass to convert all these references into useful object code.

You first write source code, and then have the assembler assemble it for
you. Then you test the code. Should you not like the results, you go back
and change the source code to correct or improve.

The edit-assemble-test process goes round and round many times. It is
not unusual to need dozens or even hundreds of cycles through the works to
get what you finally want.

Most assembler programs will generate error messages for you. An error
message simply means that what you sent the assembler was so stupid that
it couldn’t figure it out. Naturally, you can feed the assembler perfectly
correct instructions that will still generate worthless or nonworking code…

The only thing a message of

"SUCCESSFUL ASSEMBLY: NO ERRORS"

tells you is that you have not done

something so incredibly stupid that the

assembler couldn’t figure out whatit was

you were trying to tell it to do.

It is very easy to successfully assemble

totally worthless code.

You will definitely be seeing much more on error messages. Will you ever.
The useful thing about error messages is that they will point directly to the
place in the source code where any problems were found that are so bad the
assembler can not, or at least should not, continue.

To recap, full assemblers and macroassemblers consist of at least two
related programs. One program, called an editor, lets you create a script or
source code file that explains what it is that you want done. Followed by a
second program, usually called the assembler, then makes the several

Assembly Cookbook for the Apple II/IIe 41

passes through the source code file, and converts these instructions into a
machine language code object file.

If the assembler finds any really bad problems, it will give you error
messages. Some of these errors will stop the assembler dead in its tracks;
others are just brought to your attention for a later repair. But, a lack of error
messages in no way means that your final machine language program will
work or that it will do what you want it to.

As we’ll find out later, you can also use a word processor as a "new way"
to create and edit source code, compared to the "old way" of using the
editor in the assembler package.

By the way, on non-Apple or non-6502 machines, an "assembler" may be
just that-a way to assemble programs with no provision whatsoever for entry
or editing of source code. Beware of this dino trap.

Which Assembler?

Very simply, there is no single "best" assembler for the Apple II or lIe, nor
is there likely to ever be one. You find a package that suits your needs and
your personal programming style, and then go with it.

Here are several of the more popular current Apple II and lIe assembly
development systems…

SOME APPLE II
AND IIe ASSEMBLERS

ALDS
 author unknown
 (Microsoft)

Apple EDASM Assembler
 by John Arkley
 (Apple Computer)

Big Mac
 by Glen Bredon
 (A.P.P.L.E)

Edit 6502
 by Ken Leonhardi
 (LJK Enterprises)

LISA
 by Randy Hyde
 (Lazer Systems)

S-C Macro Assembler
 by Bob Sander-Cedarlof
 (S-C Software)

The Cheap Assembler
 by John Cox
 (Thunder Software)

Apple Assembly System
 by Paul Lutus
 (Hayden)

Assembly System
 author unknown
 (Stellation Two)

Boothware 8073
 author unknown
 (Micro Basics)

Merlin
 Glen Bredon
 (Southwestern Data)

ORCAM
 by Mike Westerfield
 (Hayden)

The Assembler
 by Alan Floeter
 (MicroSparc)

Tempered Assembler
 author unknown
 (Avocet Systems)

42 What is an Assembler?

We will put all the addresses and phone numbers in Appendix B to keep
things orderly.

The Apple EDASM assember is really three different assembly packages.
"Old" EDASM was written by Randy Wiggington and has been around for
quite a while. There are two "new" EDASMs, both written by John Arkley.
One "new" EDASM is DOS 3.3e based. The second one is ProDOS based. All
three EDASMs are "alike but different some how." See Appendix A for a
summary of the key differences. Both "new" EDASM versions are available as
toolkits in Apple’s Workbench series.

Of the others listed here, Boothware 8073, Avocet’s Well Tempered
Assembler, and Stellation’s Assembly System are all specialized cross
assemblers, while most of the others are general-use full or macroassemblers.
Merlin is an enhanced commercial version of Big Mac.

The price of these assembly systems presently ranges from $22 to $400.
Very interestingly, the value of each of these assembly systems is almost
a perfect inverse of their pricing! Thus, the more you pay, the less you
get. I guess it was bound to happen sooner or later.

For someone else’s opinion of these programs, check into Peelings
Volume 3, Number 2, February, 1982. More current reviews are also likely to
appear in Peelings and lnfoworld as well as in all the usual Apple
magazines and review anthologies.

We are purposely not going to give you a blow-by-blow comparison of all
these different assemblers. Instead, we are going to use Apple Computer’s
own recently upgraded and overhauled assembler for the rest of the book.
This one is called The Apple 6502 Editor/Assembler, or EDASM for short,
and is found on one of two popular utility disk ettes in the Workbench
series. Both DOS 3.3e and ProDOS versions are available. These diskettes
cost around $75, but since there are lots of other goodies on the disks,
particularly BUGBYTER and HIRES Character Generator systems and new
character fonts, your actual cost for the assembler will end up much less.
Unbundled, EDASM is the cheapest assembler available.

Why this assembler? Well, first, I like it. Secondly, I use it for all my work,
and it is the one I know best and have used the most. We also use it for
commercial program development here at Synergetics, and for several of
the microprocessor courses over at EAC, our local community college.

EDASM is probably the most popular assembler, if for no other reason
than there are great heaping bunches of copies of the DOS Toolkit in
circulation. EDASM is normally a disk-based assembler, so it can handle
programs of any length, particularly very long ones that cannot easily be
handled in one piece by the others. EDASM also does relocatable code
assembly very well.

EDASM’s recent overhaul now includes new macros, in-place assembly,
optional ProDOS compatibility, co-resident assembly, along with many other
new and most useful features. Important differences between "new" and
"old" EDASM are summarized in Appendix A.

And, programs written under EDASM, seem to me to be much "cleaner,"
much easier to read, and much more well thought out and far better
documented than some of the others I have seen that use competitive
assemblers. This, admittedly, is a rather subjective opinion. It might just be

http://www.tinaja.com/

Assembly Cookbook for the Apple II/IIe 43

that more people are using EDASM, or perhaps that I may be looking in the
wrong places.

Naturally, the "best" software is almost always available from sources other
than Apple Computer. This goes without saying. But I have yet to find
anything unacceptably bad about new EDASM. Incidentally, others consider
the 5-C Assembler the "best" available, no holds barred, while Big Mac is
often rated as the "best bargain."

Critics are quick to point out that EDASM has some limits to its macros
and cannot easily separate global and local variables. They delight in
EDASM’s much slower speed and painful reloading when it is not in its
in-place assembly mode.

There are also some minor peeves, such as needing an extra "A" at the
end of accumulator mode addressing, inconsistency between how you exit
the entry and editing modes, some overly strict page zero addressing rules,
and a printer bug that sometimes messes up the top line of continued
listings.

You can minimize the impact of these disadvantages. For instance, you
can fake almost all of the things an in-code macro is supposed to do by
building up a source code macro library on your diskette, and pulling off
these modules as needed. Most of the time, many assembly language
programmers will keep their printer running during an assembly. This way,
you always have a printed record of exactly what you have at any time. If
you do keep your printer on, the disk-based assemblers really aren’t that
much slower than any other, since the printer is usually holding up the
works.

A spooler or a print buffer could, of course, be added to speed things up.

And, yes, EDASM’s editor is dismal, dreary, and dumpy. Putrid even. But,
as we’ll find out later, you simply do most of your entering and editing with
Apple Writer //e instead, and handle some of your macros with a glossary or
else with WPL. Which instantly converts one of the worst editors into one of
the most powerful available. More on this in chapter five.

Anyway, I like EDASM, and I use it a lot, and we are going to use it here.

But…

Do not EVER buy ANY assembler

program until you have had a long talk

with someone who believes in and

consistently uses that program!

The main impact of new EDASM on this book will take place in the
chapters that follow. Since any assembler has to do the very same things
that EDASM does, you should be able to edit these chapters with margin
notes any time you find differences between the details of how EDASM
works and how your assembler works. We’ll even give you extra room for
this every now and then. All the detailed ripoff modules should work with
any full or macroassembler of your choosing.

44 What is an Assembler?

Tools and Resources

One assembler program and one assembler book will in no way make you
a decent assembly language programmer.

I have yet to see a decent Apple II assembly language programmer who
was proud of the work he did last week, let alone last year. Assembly
language programming is a continuous learning and skillbuilding process.

So, those who think they are going to instantly become fantastic assembly
language programmers are both deluding themselves, and ripping off their
customers as well. If you are unfortunate enough to ever meet one of these
dudes, please go out of your way to talk him into writing programs for
non-Apple machines. Send him to Honeywell. Teach him COBOL. You will
kill two birds with one stone. Instead…

The only way you can become a halfway

decent machine language programmer is

through lots and lots of practice and

much hands-on experience.

The time frame involves years, and not

just days, weeks, or months.

But, as someone once said, "The longest journey starts with a single step."
If you want a shot at the brass ring and want to join the club, you gotta start
somewhere, sometime. Like now. That’s a mighty big bag of nickels up for
grabs.

Maybe some time can be saved by showing you what assembler system I
use and what tools and resources I work with. One way to find out.

Here’s two possible assembly language programming setups…

ASSEMBLY LANGUAGE
WORK STATIONS

Apple II Computer with 48K RAM
Integer ROM set in mainframe
Absolute reset ROM in mainframe
Applesoft ROM card with Autostart

 -— or, preferably —-

Apple lie computer with 128K RAM
and custom "absolute reset" EPROM
monitor ROM

 -— plus —-

Two disk drives
Quality daisywheel printer
Metal printwheels

Some comments on these arrangements. First, it is absolutely essential on

Assembly Cookbook for the Apple II/IIe 45

older Apples that you have an "old" monitor ROM in your mainframe, if you
are at all serious about assembly work. Besides the very handy single-step,
trace and debug features, this old ROM lets you stop any program at any
time for any reason, under absolute control. The Integer ROM set gives you
the old miniassembler, the programmer’s aid, and access to the "Sweet 16"
pseudo 16-bit machine routines, along with the old floating point package.

The Apple lie is, of course, a much better choice for developing newer
software. But you will definitely want to provide your own custom monitor
EPROMs to pick up absolute reset and eliminate the obscene "hole-blasting"
restart of the stock monitor chips. While you are at it, throw in a 65C02 as a
new CPU, since these do so much more so much better. But…

If you are at all serious about assembly

language programming, you MUST have

a way to do an absolute and

unconditional reset.

On older Apples, this takes the "old" F8

monitor of the Integer ROM set in the

mainframe.

On the Apple lie, this takes a pair of

custom 64K E PROMs that replace the

monitor ROM’s

On older Apples, you can either use a ROM card to pick up the Applesoft
ROMs and the autostart ROM, or else go to a RAM card and Applesoft
software. The RAM card is probably the better choice today, but should be
modified for absolute hardware control. By the way, old monitor ROMs are
often advertised in Computer Shopper, usually for $10 or less each.

A second disk drive is handy and almost essential. These days, you can get
good drives much cheaper from sources other than Apple. I use a u-SC/ as
my second drive. Sometimes you can hold off on tasks that really need two
drives and borrow a second drive just long enough to get the job done.

One useful advantage in mixing your brands of disk drives is that they all
will sound different while running. If you ever activate the wrong drive,
this "aural feedback" makes it known pronto.

A dot-matrix printer can probab1y be the best choice for writing and
debugging programs, because these printers are very fast. But, it is
absolutely inexcusable to ever publish any dot-matrix listing, even if your
uncle is an optician…

Don’t EVER publish ANYTHING that you

have printed on a dot-matrix printer!

Now, there are a few people around who claim they can actually read a
dot-matrix printout, particularly from newer model printers. This peculiar
genetic deficiency usually shows up in inbred generations of dot-matrix
printer salesmen, but is thankfully rare otherwise.

46 What Is an Assembler

Unfortunately, the printing processes in use today cannot read or accept
dot-matrix printout. By the time your dot-matrix listing goes through a bad
ribbon, gets reduced, is photocopied, gets burned onto a plate, and finally
gets printed, you will end up with a royal mess.

So, I use an older Diablo 630 daisywheel printer myself, since I can’t justify
having one printer for listing and debugging, and a second to generate
camera-ready copy.

Of course, you use a film ribbon, and for your final copies, you use
single-strike film. Naturally, it is totally inexcusable to ever retype or typeset
an assembly listing, because errors are certain to be added. Errors that are
hard to find and harder to correct.

By the way, every now and then some turkey will try to tell you that you
cannot tell the difference in print quality between a metal and plastic
printwheel. This is true only if (A) you are at least a thousand feet or more
away from the page, and (B) you are blind.

There is as much difference between a heavier metal printwheel and a
plastic printwheel as there is between the plastic one and dotmatrix print
quality. This is especially true if you use one of the "heavier" metal fonts not
available in plastic, and do so on a freshly adjusted machine. I am kind of
partial to the Titan 10 metal wheel myself for listings, and to the Bold PS
wheel for everything else.

While we are on the lookout for turkeys, watch out for misleading speed
claims on newer daisywheels. The newly discovered "words per minute"
rating is ten times the industry standard "characters per second" speed
rating. Thus, a daisy rated at "120" is much slower than one rated at "40."

Even worse, the term "letter quality" has been bastardized into "near letter
quality" or "correspondence quality." Well, "letter quality" means "looks like
an old mangy Selectric." "Correspondence quality" means "not quite totally
illegible." And, the "near" in "near letter quality" means the same thing as
"nearly" getting a job, "nearly" winning a contest, or for that matter "nearly"
getting run over by a garbage truck. A suitable synonym for "near" is "ain’t."

Summing up, if you can, use a fast printer for assembly development and
checkout, but be sure to use a good printer for your final published listings.

So much for the system. One of the really great things about the Apple II
is that it forms its own superb development system. Would you believe that
other computer systems make you buy program development hardware that
can cost tens of thousands of dollars?

Fortunately, all you need to write good Apple II programs is a good Apple
II or lie computer.

Working Tools

What about other tools? What else do you need? I’d call a tool anything
you use or refer to while you are using an assembler to write your
machine language programs. Most of the tools that are useful are books
of one kind or another. But the crucial difference between any old book and
a tool book is that the tool book gets used over and over again, while any
old book just sits on the shelf.

Assembly Cookbook for the Apple II/IIe 47

Anyway, here is a list of the tools I find handy…

TOOLS FOR
ASSEMBLY PROGRAMMING

6502 Pocket Card (Rockwell)
6502 Plastic Card (Micro Logic)
6502 Programming Manual (Rockwell)
6502 Hardware Manual (Rockwell)

Apple II Reference Manual (Apple)
Apple DOS 3.3 Manual (Apple)
Apple Assembler Manual (Apple)
Applesoft and Integer Manuals

Old Apple Red Book (Out of print)
Apple Tech Notes (IAC)
Apple Monitor Peeled (Dougherty)
What’s Where in the Apple (Micro Ink)

Beneath Apple DOS (Quality Software)
Hexadecimal Chronicles (Sams)
Lancaster’s Micro Cookbooks (Sams)
Enhancing Your Apple II (Sams)

Printer manuals and repair tools
Paper, ribbons, diskettes, etc.
Page highlighters, all colors
HI RES and LORES screen forms

A quiet workspace

Many of these tools are obvious. Once again, addresses and phone
numbers appear in Appendix B. We won’t show prices or version numbers,
because both are bound to change. As a disclaimer, this list is my choice and
what I use. There’s lots more and lots newer stuff available.

Going down this list, a pocket card is far and away your single most
important tool. Pocket cards give you quick answers to questions like "Can I
load X, absolute indexed by Y?" (yes); or "Can I do an indirect subroutine
call?" (no-but you can JSR to a JMP indirect); "Can I set the V flag?" (not
directly with software).

The pocket card also tells you how long the instructions take to execute.
This is essential knowledge for any program that involves critical timing, and
can be handy in any program.

The 6502 plastic card is equally useful. I use both. You can write on the
plastic card with a grease pencil, but you can’t fold it and carry it with you.

The 6502 Software Manual is also indispensable. You simply cannot do
any assembler work without this book. The book was first written by MOS
Technology, Inc., and for its time was one of the finest technical manuals
ever produced by any semiconductor house. It is a classic in every sense of
the word.

Those MOS Technology Inc. blue originals in their rugged dark blue
covers were big, sturdy, and quite easy to read. Most of today’s knockoffs

48 What Is an Assembler

by Rockwell International and Synertek are smaller, have lower print quality,
and are harder to read.

The 6502 Hardware Manual in the same series isn’t nearly as well
written or understandable, but it is also an important tool for the assembler
programmer.

You will want all the usual Apple manuals, particularly the lie technical
reference manual and the DOS manuals. The Applesoft and Integer manuals
and tutorials will be handy if you are tying machine language modules into
BASIC, rather than writing decent all-machine programs.

You will also want to get access to a copy of the Apple Tech Notes. This
thick series answers many Apple-use questions and spells out all known
Apple bugs to date. All International Apple Core (lAC) member clubs have a
copy. Or, if you can find a reasonable Apple dealer, they might let you look
at their copy. You can buy these tech notes, but they are expensive.

What you won’t be able to buy is a copy of the Apple Red Book. This
was the original Apple II system manual. Among its priceless goodies is a
schematic that is orderly and function-oriented rather than the intentionally
confusing mess shown in the pre-lie manuals. You’ll also find complete
details on the Sweet 16 sixteen-bit software commands, detailed
miniassembler listings, the original tone subs, low-cost serial interfaces, and
listings on the original floating point package. Very handy and very essential
if you are still working with an Apple II or II+. You’ll have to copy this one on
your own, as the Red Book is definitely out of print.

Note that the Apple lie technical reference manual does not come with a
IIe and has to be ordered separately at extra cost. This manual is absolutely
essential for lie assembly language programming.

The Apple Monitor Peeled is a very dated book. But, I still find it useful
to understand and use the monitor features, while the "must have" Beneath
Apple DOS gives you one thorough treatment to the disk operating system.
What’s Where in the Apple II is a detailed addressby-address listing of all
known major uses of all memory locations in the entire machine. There are
two parts to the listing. One part is arranged numerically and the other
alphabetically. These listings are an update and extension of the original that
appeared in the August 1979 issue of Micro. I use both the original article
and the new book, because the original is easier to use and only takes a few
notebook pages.

The Hexadecimal Chronicles (Sams 21802) is a reference that instantly
gets you from decimal to hex to Integer BASIC’s inverted decimal, and back
again, along with ASCII conversions, and includes a hex arithmetic and
circular branch calculator, and bunches of other goodies. This one is most
useful when you are tying machine language subs to BASIC programs, or are
moving BASIC pointers around to protect or capture a machine listing.

Volumes I and II of my Micro Cookbooks (Sams 21828 and 21829)
should be a good way to pick up the fundamentals of hand-coded machine
language programming. This is done through a series of discovery modules
that lead you through most op codes of the 6502. You must use these
discovery modules or something similar before you can even think about
working with assemblers.

The Enhancing Your Apple II series (Sams 21822, etc ...) can provide

Assembly Cookbook for the Apple II/IIe 49

you with many examples of machine language program modules and use
ideas. In particular, the "tearing" method in Enhancement 3 of Volume I is
essential for any assembly language programmer, since it shows you an
astonishingly fast way to tear apart and understand unknown code.

You will also want a complete set of maintenance manuals and repair
tools for your printer. These are usually not provided with your printer
purchase. Note that most printer people charge bunches extra for their real
service manuals. Often these will be broken up into a spec manual, a repair
manual, a spare parts list, a price list, and special tools.

There are many other programming aids, support books, utility diskettes,
and so on that are heavily advertised. I find myself buying but never getting
around to using these. Around 90 percent of what’s available is less than
useless, so always check with someone that believes before you buy.

Naturally, you’ll need some diskettes, tractor paper, film ribbons, and all
the usual stuff like this. A complete set of page high lighters are also essential
to have on hand. These are very useful for identifying changes and
corrections on printouts and are absolutely essential for the "tearing"
disassembly method to work.

What About Machine Programming Books?

You’ll find dozens and dozens of books around that claim to teach you all
you will ever want to know about 6502 machine language or 6502 assembly
language programming, and then some.

Usually, you buy these books by the running yard, with a price of $28 per
inch or so being typical. Mill ends are slightly cheaper. Put them on your
bookshelf to astound your friends. Or, if you happen to have a table with a
missing leg, put a stack of them to their only known use.

Very few people ever read these books. In fact, most of these books have
been designed from the ground up so you could not possibly read and
understand them even if you wanted to.

A very select few of these books are genuinely outstanding. Unfortunately,
most of the others are utterly atrocious ripoffs. The trash-togood ratio here is
well over 30:1 and is steadily and appallingly climbing.

And even if everybody else thinks some title is a great book, it may not
suit you, since its level may be too advanced, or too simple, or locked into
some obscure trainer, or too pro-dino, or too far off in left field.

So, let us repeat what we said earlier about assembler programs, only this
time we’ll apply it to programming and assembly books…

The overwhelming majority of all

programming and assembly books will

NOT meet your personal needs.

Do not EVER buy ANY assembler book

or any machine language book until you

have had a long talk with someone who

believes in and uses that text!

50 What Is an Assembler

The safest thing to do is to wade into the lair of your nearest Apple
machine language freak and find out which books are out front, have torn or
missing covers, and are thoroughly thumbed over. Don’t even consider a
book that has nothing spilled on its pages.

Come to think of it, though, it is never safe to wade into the lair of your
nearest Apple machine language freak. Forewarned is forsooth, though, or
whatever.

At any rate, avoid buying these books unless you do happen to want
a complete set of "one of each." But that gets expensive in a hurry.

Software

The software you use will, of course, depend on which assembler you
chose, and what else you decide to have on hand. Here is what I usually
work with…

SOFTWARE FOR
ASSEMBLY PROGRAMMING

 EDASM and BUGBYTER
 System Master
 DOS Toolkit
 Inspector

 Bag of Tricks
 Apple Writer IIe
 Copy II Plus
 Enhancing Diskettes

EDASM is the Apple assembly development system. Be sure to use one of
the greatly improved "new" versions, either for DOS 3.3e or ProDOS. You
should be familiar with the System Master diskette by now, particularly the
program FlO. The DOS Toolkit holds EDASM and BUGBYTER, along with
several other interesting utilities and HIRES character fonts. Inspector is one
of many available file utilities, while Copy II Plus is a versatile and
informative copy and disk speed program. Locksmith is comparable.

Bag of Tricks is most useful for fixing bad diskettes. Apple Writer IIe, of
course, is a great word processor and should get used for all of your
documentation, besides being a better editor than the one in EDASM. The
Enhancing diskettes are from the Enhancing Your Apple II series.

There are a lot of new utility programs available today that do things like
single-step whole programs, manipulate and search files, dump ASCII
strings, disassemble listings, generate cross references, provide HIRES
utilities, offer ampersand links, edit diskettes, and so on.

I have not gotten around to trying very many of these. The obvious
advantages of these new utilities are that they make writing and testing
programs much quicker and easier. Two obvious disadvantages are that
costs pile up at $30 and $100 per diskette, and that some of these programs
may conflict with where you want to be in memory. A few of these are
excellent; many others are less than useless.

Assembly Cookbook for the Apple II/II/e 51

Assembly Magazines

Magazines are some of the best places to learn about machine language
and assembly language programming. Here’s my choice of the best…

ASSEMBLY LANGUAGE
MAGAZINES

Call A.P.P.L.E.
Apple Assembly Lines
Apple Orchard
Peelings
Hardcore
InCider
Cider Press
Nibble

The finest Apple assembly language magazine is Call A.P.P.L.E. A
complete set of these, their user library diskettes, and their publications is
absolutely essential to serious machine language or assembly language
programming. Their thick All about DOS, All about Applesoft, and All
About Applewriter manuals are particularly valuable.

Apple Assembly Line is a funky little newsletter with fantastic vibes. It
centers on the S-C family of fine assemblers, but is otherwise most readable.
Apple Orchard is the lAC publication, and often has interesting reprints
from the various newsletters. Peelings is the only source of well thoughtout
and largely unbiased Apple software reviews. Hardcore has some very
interesting stuff in it, but it could be so much more than it is. You’ll also find
very old issues of Micro to be most handy and informative, but this one
clearly has peaked, so it is not on the list. Cider Press is a newsletter of the
San Francisco Apple Core.

Note that this listing of magazines specifically involves Apple assembly
language programming. There are other great micro magazines, such as
Byte, lnfoworld, Computer Shopper, Creative Computing, Dr. Dobbs
Journal, Microcomputing,Softalk, and dozens more. These have all sorts
of useful things in them, but they do not consistently center on Apple II or
IIe machine language programs and assembly language programming
techniques. There are also hundreds of club newsletters out there, many of
which will have new and useful assembly tidbits.

Unfortunately, the price of the club newsletters is high, and their quality is
steadily dropping. The reason for this drop in quality is that most Apple
clubs are now of, by, and for users, rather than hackers. This trend is
intrinsically evil and despicable. Also sad.

There’s also a musical chairs game going on where everybody reprints
everybody else without anything new ever being generated. Which waters
down the stock something awful.

Since the trend seems away from hackers, the older issues of most club
newsletters will most often have the better and more useful goodies in them,
so it pays to dig back. Way back. The Denver Apple Pi group maintains an

52 What Is an Assembler

on-line data base of most everything ever written in any Apple pub.

Reprints and Anthologies

Two other essential resources are reprints and anthologies…

IMPORTANT
ASSEMBLER REPRINTS

Abacus Plus (ABACUS)
Best of Cider Press (SFAC)
Inside Washington Apple Pi (WAP)
Peeking at Call Apple (A.P.P.L.E.)
Wozpack (A.P.P.L.E.)

These reprints usually show off "the best of" some year’s newsletter or
magazine output. They are a good way to get everything at once fairly
cheaply. The argument that you are buying old information is offset by the
fact that older Apple information is often better and more recent information
these days. Some errors are likely to be corrected as well.

We must also mention the Apple Avocation Alliance as well. These
people stock just about every available public domain Apple program, and
will copy them for you at a cost around twelve cents each. AAA also has
terrific diskette prices. Unfortunately, except for several absolute gems, very
few public domain programs are worth twelve cents apiece. Nonetheless,
studying these may prevent you from reinventing the wheel and should
clearly and concisely show you how not to do things.

Other public domain program libraries include the extensive ones offered
by the IAC, by Call A.P.P.L.E., and the San Francisco Apple Core.

That’s sure a long list of resources for assembly language programming.
But, if you think that’s bad, you should see all the garbage I bought and did
not tell you about. Hopefully, these resource listings will cut down the totally
ridiculous costs of getting into assembler work.

Naturally, don’t buy anything you haven’t looked at first. Work with
club groups. Check into schools. Ask friends. Visit company and technical
libraries. Pick up whatever works for you.

But don’t try to write Apple machine language programs in a vacuum.
That may have worked in 1977, b no more. Those days are long gone. Get
and stay informed.

Disassemblers

You mean that after you go to all the trouble to assemble a program, that
you may want to take it all apart again? You better believe it.

The opposite of assembly is called disassembly. You disassemble a
program or listing when you want to find out what the code is trying to do
or how it is supposed to work…

Assembly Cookbook for the Apple II/IIe 53

Any tool that lets you take apart a
machine language program to see
what is in it or how it works.

DISASSEMBLER —

Naturally, it is totally inexcusable to ever buy or use any piece of Apple
software without completely tearing apart the program to see what is inside
and how it works. Also, naturally, the first thing you do to any locked
program is make yourself several unlocked copies under standard DOS. Then
generate your own modifiable assembler source code, and a complete set of
working source files. You should do this automatically the first time you boot
any new disk. Every time. Without fail. Far and away the best way to learn
assembler programming techniques is to diligently study how others do it»

Far and away the best way to pick up

assembly language skills and new use

ideas is to…

 TEAR APART
EXISTING PROGRAMS

There are several good ways to disassemble existing code. Here are the
three I normally use, in order of increasing complexity…

METHODS TO
DISASSEMBLE CODE

1. Use the disassembler in the Apple
 system monitor or BUGBYTER.

2. Use the "tearing" method from the
 Enhance series.

3. Use a capturing disassembler, such
 as Rak-Ware’s DISASM.

There is a "L" or List command in the Apple system monitor that will
disassemble any program for you twenty lines at a time. For more lines, you
use more L’s. This disassembling lister converts object code into assembly
mnemonics and shows such things as the address modes and the absolute
addresses that relative branches go to. There are no labels or comments. For
a printed record, you simply turn the printer on before you list the lines you
want disassembled.

The "tearing" method appears in Enhancement 3 of Volume I of the
Enhancing Your Apple II series (Sams 21822) gives you an astonishingly
fast and easy way o tear apart any unknown machine language listing and
provides for full comments and accurate labels.

54 What Is an Assembler

A capturing disassembler tears apart object code and then converts it into
a source code file th EDASM or another assembler can use. It puts labels on
everything n eded, but these labels are simply coded sequentially. You then
have to go through the listing and add your own comments and make all
the labels more meaningful. Sometimes, you can predefine useful label
names. A capturing disassembler usually includes a complete cross reference
of who refers to whom when.

The DISASM program by Rak-Ware is the only one of these I have worked
with so far. Similar products are available from Decision Systems and Anthro
Digital.

DISASM does what they say it will and is reasonably priced. Their cross
reference generator is particularly useful. An alternative to a disassembler is
to rekey the entire results of the "tearing" method. Which is the better route
depends on your programming style and the length of the program under
attack. Using "new way" editing does simplify and speed up the repairs to a
captured listing.

DISASM’s triple cross references are most useful, though. You get internal,
external, and page zero reference tables that are absolutely essential to
tearing apart any major listing. Very nice.

Regardless of which disassembly method you use, there is one big gotcha
you must watch for…

A disassembler will only give you useful

results if it is working on VALID code,

and then only when begun at a LEGAL

starting point.

Otherwise you get garbage.

What this says is that you can only disassemble code that has gotten
previously assembled. Try to disassemble a file or some data values, and
you may get bunches of question marks and totally absurd op codes.

Even with legal and working code, you also have to start at the right
place. If you have a three-byte instruction, you must start on the first byte.
Start on the second or third byte and you get wildly wrong results. Having
the wrong starting point in legal code isn’t nearly as bad as trying to
disassemble a data file or a text file, since the disassembler will probably
straighten itself up and fly right after a few wrong listings. But watch this
detail very carefully.

If you try to disassemble, say, an ASCII file instead of legal op codes, your
cross references will end up giving you bunches of illegal and nonexistent
"artifacts," caused by reading pairs of ASCII characters as addresses.

For instance, an "AB" ASCII pair may generate a false address of $4241,
and so on. You will also get cross reference artifacts generated if there are
short stashes or other files buried inside your legal op codes. These artifacts
can be eliminated one at a time by hand, or by telling the disassembler to
"skip over" one or more tables.

You will need both assembiers and disassembiers to do a decent
programming job. One puts together, the other takes apart.

Assembly Cookbook for the Apple II/IIe 55

What an Assembler Will Not Do

A car is one possible way to go to the bakery, get a loaf of bread, and
then return. But there is no way a car can do this by itself.

You have to drive the car.

In the same way, an assembler is a great tool to help you write machine
language programs, making the process easy, fun, powerful, fast, and
convenient. But there is no way that an assembler will automatically write
programs for you.

You have to tell an assembler exactly what it is you want done, exactly
when you want it done, and exactly how to do it…

An assembler will NOT write machine

language programs for you!

You must tell the assembler ahead of

time exactly what it is you want done,

when you want it done, and how it is

to be done.

Thus, an assembler is nothing more than a very powerful tool that
will do exactly what you tell it to. To use an assembler, you must already
be a competent and knowledgeable machined language programmer.

To get into this game and go for the brass ring, you must start by hand
coding and hand debugging a few hundred lines of machine language code
on your own. Then you should get with a miniassembler and practice with
it, again for several hundred more lines.

Next, you should use the "tearing" method to take apart and study at least
a dozen major winning Apple programs. This shows you how the "big boys"
do it. Finally, if and only if you thoroughly understand what machine
language is all about, you should move up to a full assembler or a
macroassembler.

Any other way isn’t even wrong.

56 What Is an Assembler

Assembly Cookbook for the Apple II/IIe 57

2

Source Code Details

If you are going to have an assembler or some assembly language
development system create a machine language program for you, somehow
you have to give the assembler some instructions.

Once again, there is no way an assembler will write a program for you. All
an assembler can do is take the exact instructions you give it and then begin
from there to try and come up with some useful code.

We have seen that these exact instructions are called the source code…

The series of instructions you send
to an assembler so it can assemble
a program for you.

SOURCE CODE —

You can think of the source code, or source code file, as a script or a series
of instructions. In this script, you will usually find op codes and "how?" or
"with what?" qualifiers that go with the op codes as needed for certain
address modes.

Instructions to create subroutines and data files may also be included. You
most likely will also find special instructions that vaguely resemble op codes
that are intended for use by the assembler, rather than becoming part of the
final machine language program. We’ll find out later that these are known as
pseudo-ops.

58 Source Code Details

In the script, you will also find definitions of labels and values. There will
also be lots of comments/ or user documentation. Comments can include
such things as a title block, the copyright notice and author credit, a
description of what the program does, instructions on how to run the
program, and listings of any gotchas or any modifications that might be
needed. Parts of the script will also be involved in the pretty printing that
makes the entire script easy to read and easy to use. Examples of pretty
printing are blank lines, page breaks, and centering spaces.

To sum up, a script or source code file contains all the information
needed for the assembler to put together a useful machine language
program for you, along with all the documentation needed to tell people
what is happening in the process.

In this chapter, we will find out just what source code is and how to use
the "work unit" of the source code file, which is called a line. After we pick
up these internal details, we’ll go on in chapter three to find one possible
way to organize and structure your source code.

Then, with this background, we’ll go on to chapters four and five. Here,
we’ll see how you actually go about writing and then editing, or changing, a
source code file for the assembly language program of your choice. Chapter
four will show us the "old way" of using an editor in its intended way, while
chapter five will give us full details of the "new way" of using a word
processor instead. The foremost use rule involving source code is…

The source code file is more or less a

series of instructions in plain, old

English, except……

 ALL RULES MUST BE
 EXACTLY FOLLOWED!

There are some very exacting and very nit-picking rules as to what goes
into the script. Disobey these rules, and the assembler will generate garbage
for you or simply will not work at all. In particular…

Simple things like a missing or an extra

space or a forgotten "$" for hex symbol

can make the entire source code totally

worthless!

Source codes are most useful, handy, and informative. But, you absolutely
must follow the exact use rules involved with source code files if you are
ever going to get anything usable out the other end of the pipe.

Source Code File Formats

The source code file will hold enough information to do the job you want
done. The length of your source code can be just a few characters you might
need for a simple patch, through part of a page for a minor subroutine,

Assembly Cookbook for the Apple II/IIe 59

or many dozens of pages for an elaborate or very long, full-blown machine
language program. The source code will do what you want it to. You make it
as long as you need to handle the task at hand.

Some assemblers put a limit on how long the source code can be. If this
happens, you break the source code into logical chunks and process one
chunk at a time. Then you take the machine language modules you get from
this process, and recombine them into a single, long program.

The EDASM assembler we will use as our "baseline" assembler is usually
disk based, and lets you write very long programs in one piece if you want
to. Often, though, it is best to work in small and separate modules of your
source code, combining them later.

We call the "work unit" of the source code a line…

The "work unit" of a source code file.

Eighty or fewer ASCII characters
ending with a carriage return.

Enough information to assemble one
op code; or pass a single command
to the assembler; or supply a short
comment or part of a long one.

LINE —

At one time, everyone in the dino computer world knew what a line was,
since all messages and all communications were line oriented. Should you
want to, say, process words, you had to keep each line of characters
separate and work with each line individually. Now, this seems incredibly
dumb, but that’s the way things were. It took the micro people with their
memory-mapped video to first see the completely obvious.

But there are a very few jobs remaining where it is a good idea to keep
every entry on a separate and unique line that has to stand on its own and
has no particular long term relation to the line above or the line below.
Assembler source code files are one place where working line by line still is a
pretty fair way of doing things. Quaint but fair.

If you decide to use a "new way" word processor, you will pick up "free
form" or full-screen entry where you can see lots of lines at once and easily
edit across line boundaries. But, you will still have to keep line oriented.

The lines in the source code are often sequentially numbered…

Each source code line will usually be

numbered in decimal.

The numbers normally start with one and

count "by ones," in sequential order, up

to "N."

"N" is the number of lines you need to

complete the job that the source code is

trying to do.

60 Source Code Details

The reason for this numbering is that we need a way to talk about or work
with a single line. Instead of saying "the line with the LOA #$56 command,"
or "the line just above the mustard stain," we say "line number 145." Since
the lines are all numbered, we can find line number 145 and work with it.
More importantly, so can the assembler.

Actually, your line numbers do not normally go inside your source code. It
is kinda dumb to waste disk space on things that are easily calculated and
not particularly permanent. Instead, line numbers are an artifact of the editor
or assembler you use. This convenient artifact is normally generated for you
by counting the source code lines as they come off the disk or out of RAM
and then numbering them on the way to the screen or a printer.

This type of line numbering is very obvious, but it may be different from
other computer numbering schemes that you might be familiar with. As
some counter examples, machine language programs are located by
addresses, and do not use line numbers. BASIC programs use line numbers,
but you usually skip around, counting by tens or whatever, and those lines
do not have to be entered in sequential order. Pascal does not use line
numbers. Instead, the relative position of the line in the program conveys
what the line is and what it does.

But, none of these are assemblers. Assemblers normally have line numbers
ranging from one to N, in order, with nothing missing and no duplicates.
EDASM uses this "one-to-N scheme. Other assemblers might start their
numbering with 1000 or 10000 to keep the number of printed digits
constant. These other assemblers sometimes count by tens instead of ones.

One confusing thing about source code file line numbers is that they
don’t stay unique…

What was line 145 in one version of a

source code might become line 137, or

line 193, or might be just plain missing,

in a later version of the same program.

As the program length changes, or as

corrections are made, each line number

may point to a different source code line.

So, all versions of all source codes are usually numbered sequentially from
one to N, counting up "by ones." No missing line numbers are allowed, nor
are you allowed to put any line numbers in the wrong order. If you make the
source code shorter by deleting something, all the line numbers higher than
the deletion decrease in value. If you make the source code longer by
adding something in the middle, then all the line numbers above the
addition increase by the amount needed.

Once again, there really are no line numbers in most source code. The line
numbers are an artifact generated by the editor or the assembler for your
convenience. Line numbers are calculated by counting carriage returns on
the end of source code lines as they come off the disk or out of memory.

Assembly Cookbook for the Apple II/II/e 61

Thus…

Regardless of the code version or the

meaning of any particular line…

Most versions of most source codes are

numbered from 1 to N with nothing

skipped and nothing out of ourder.

The line numbering is usually fully automatic and is done free for you by
the editor or assembler. All you have to do is make sure you really mean "line
143" when you say "line 143," because any change in the source code may
change the line number.

Two nasty examples: Say you write a source code and then tell the editor
to delete line six, then line eight, and then line ten. What you really did was
delete lines number six, nine, and twelve, because the first deletion bumped
everything above line six down a line, and the second one bumped
everything above line nine down yet another line.

Or, say you get lazy or in a hurry and don’t do a printer dump of each
and every version of your source code as you go along. Say further that you
add some innocuous line such as some extra white space some place inside
your next-to-latest source code version. Now you decide the carry needs
cleared. You shove the CLC line in, but what happens? Instead of being
where you thought you were, you are one line off, inserting the carry one
place beyond where you expected it to go.

More details on this later. One sneaky way to minimize line numbering
problems is to always edit from the high numbers down, rather than
from the low numbers up. That way you are finished with the line numbers
that are going to change before they do in fact change. For now…

You must keep EXACT track of the line

numbers by yourself!

Line numbers may become wrong if you

add or remove lines from your source

code, or if you are trying to use an

out-of-date printout.

Later in chapter five, we’ll see an automatic line number changer using
WPL that adds, removes, or updates line numbers from word processed
source code. Other assemblers may have different numbering rules or use
options.

Always check.

OK. So what goes on a line? We already know that a line is the work
unit of a source code file, and that a line is some number of characters
that will fit neatly across a page or screen that ends with a carriage return.

62 Source Code Details

There are different tasks that each part of a line is intended to do. These
task areas are called fields…

A part of a source code line that
has an intended use.

FIELD —

We already know about the line number field. Line numbers usually are in
sequential order from one to N, with nobody missing, nobody out of order,
and nobody duplicated. We also know that the line number field is handled
more or less automatically for us. Just be sure that the line number you say is
the line number you really mean.

We obviously need more fields. In EDASM, the others are called the label
field, the opcode field, the operand field, and finally, the comment field…

EDASM usually uses four fields in

addition to the "free" line number field.

These are the label field, opcode field

operand field, and the comment field.

Here’s a picture that says the same thing…

FIELDS INSIDE A SOURCE CODE LINE

The NUMBER field,
if used, sequentially
numbers each line
from 1 to N. This
one is automatic, so
you don’t worry too
much about it.

The LABEL field
puts a name on the
line so that it can be
found or referred to.
labels show jump and
branch destinations and
and can identify files
or entry points.

The OPCODE field
holds either a 6502
mnemonic or else a
pseudo-op instruction
to be used by the
assembler.

The OPERAND field
qualifies the opcode,
answering "how", "where"
or "with what". Operancs
may be numbers, labels,
addresses, or data.

The COMMENT field
holds remarks useful
to people but ignored
by the assembler. You
can also have source
code lines that are
entirely comments.

The SPACE can be used
between fields as a tab
character. But spaces
are forbidden inside of
any and all fields.

A CARRIAGE RETURN
ends the source code line.

NUMBER LABEL OPCODE OPERAND COMMENT

tab or
space

tab or
space

tab or
space

carriage
return

Assembly Cookbook for the Apple II/IIe 63

More details on what each field does shortly. But, if each field is to do
some unique job,we need a way to get between fields and we need a way to
tell which field is where. EDASM uses the "space" character for tabbing…

EDASM traditionaly uses the spacebar to

"tab" between fields.

Everything up to the first space goes into

the label field.

Everything between the first and second

spaces goes into the op code field.

Everything between the second and third

spaces goes into the operand field.

Everything beyond the third space

goes into the comment field.

Because the spacebar is used to shift between fields, spaces are not
allowed in any of the first three fields. You must use spaces between
fields. You must not allow spaces inside any of the first three fields…

You MUST NOT use any spaces inside

the label, op code, or operand fields!

You MUST use a space any time you

want to go on to the next field!

After you get to the final, or comment field, you can use any number of
spaces any way you want to. But, spaces are strictly a no-no in the label, op
code, or operand fields.

You might logically ask, "Why not use a tab command to tab, instead of
space?" Well, tabbing was tricky on older Apples, and faking the tabs by
padding spaces gobbles up space on disk or in RAM. Fur:›ther, allowing
spaces in labels or op codes would create all sorts of other problems.
Besides, even on a lie, the spacebar is much larger and easier to find and use
than the tab key.

On "new" EDASM, you can use the lie tab key to tab if you want to. In
fact, this eases "new way" editing by quite a bit. Note that using the tab
command to tab is awkward on pre-IIe Apples. So, the older EDASM rule is
that, after a carriage return, the first three spacebar hits force tabs. After
that, spaces get used as spaces. Not all fields are needed on every line. But…

Each source code line MUST have

something in the op code field.

"Something" is either a command for

the assembler or else a real op code

for the computer.

xxx Back reference to original restoration

This "Director’s Cut" has been excerpted from the

ebook restoration of http://www.tinaja.com/ebooks/AACB1.pdf

http://www.tinaja.com/ebooks/AACB1.pdf

Assembly Cookbook
for the AppleTM II/IIe

(part one)

Your complete guide to using assembly language for writing your own top

notch personal or commercial programs for the Apple II and lIe.

• Tells you what an assembler is, discusses the popular assemblers available

 today, and details the essential tools for assembly language programming.

• Covers source code details such as lines, fields, labels, op codes, operands,

 structure, and comments-just what these are and how they are used.

• Shows you the "new way" to do your source code entry and editing and

 to instantly upgrade your editor/assembler into a super-powerful one.

• Shows you how to actually assemble source code into working object code.

 Checks into error messages and debugging techniques.

• Includes nine ready to go, open ripoff modules that show you examples of

 some of the really essential stuff involved in Apple programming. These

 modules will run on most any brand or version of Apple or Apple clone,

 and they can be easily adapted to your own uses.

This cookbook is for those who want to build up their assembly programming

skills to a more challenging level and to learn to write profitable and truly

great Apple II or lie machine language programs.

SYNERGETICS SP PRESS
3860 West First Street, Thatcher, AZ 85552 USA

(928) 428-4073 http://www.tinaja.com
ISBN: 978-1-882193-16-5

http://www.tinaja.com

