

Machine
Language

Programming
Cookbook I

by Don Lancaster

An eBook reprint of chapters 6 and 7
of Micro Cookbook Volume II

SYNERGETICS SP PRESS
3860 West First Street, Thatcher, AZ 85552 USA

(928) 428-4073 http://www.tinaja.com

http://www.tinaja.com

Copyright © 2010 by Synergetics Press
Thatcher, Arizona 95552

THIRD EDITION
FIRST PRINTING—2010

All rights reserved. Reproduction or use, without
express permission of editorial or pictorial content,
in any manner, is prohibited. No patent liability is
assumed with respect to the use of the information
contained herein. While every precaution has been
taken in the preperation of this book, the publisher
assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number: 1-882193-14-1

Created in the United States of America.

ABOUT THE AUTHOR

Don Lancaster heads Synergetics, a new-age software,
prototyping, and consulting firm involved in micro appli
cations and electronic design. Don is the well-known
author of the classic CMOS and TTL Cookbooks. He is
one of the microcomputer pioneers, having introduced
the first hobbyist integrated circuit projects, the first
sanely priced digital electronics modules, the first low
cost TVT -1 video display terminal, the first hobbyist key
boards, and lots more. Don's numerous books and arti
cles on personal computing and electronics applications
have set new standards for understandable, useful, and
exciting technical writing. Don's other interests include
ecological studies, firefighting, cave exploration, tinaja
questing, and bicycling.

Other Howard W. Sams books by Don Lancaster include
Active Filter Cookbook, CMOS Cookbook, TTL Cook
book, RTL Cookbook (out of print), TVT Cookbook,
Cheap Video Cookbook, Son of Cheap Video, The Hex
adecimal Chronicles, The Incredible Secret Money
Machine, Don Lancaster's Micro Cookbook, Volume 1,

and the continuing Enhancing Your Apple II series.

Preface

Machine Language Programming is the second of three volumes
on the fundamentals of microprocessors and microcomputers. In
this volume, we (that's you, me, and that gorilla) look into the
details of the micro's own language.

Volume 1 covered the fundamentals of microprocessors needed
for us to start understanding machine language programming. Vol
ume 3 is a reference volume containing detailed descriptions of
hundreds of popular and micro-related integrated circuits.

Why machine language? Because, as it turns out, virtually a// win
ning and top performing microcomputer programs run only in
machine language. The marketplace has spoken. It has not only
spoken but is shouting: BASIC and PASCAL need not apply.

Volume 2 will show you the fundamentals of machine language
programming through a series of discovery modules that you can
apply to the microprocessor family and the microcomputer of your
choice. Once you get past these modules and gain a deep under
standing of what machine language is all about, then you can step
up to the wonders of assembly language, which is really nothing
but automated machine language programming that is made much
faster, lots more convenient, and bunches more fun.

Volume 2 picks up at Chapter 6 in this continuing series. Here we
look at address space and addressing concepts, as well as working
registers and how they are used. Next is a study of system architec
ture, seeing what goes where in a typical microcomputer, with
heavy emphasis on understanding system buses and how they
work. From there we go into memory maps and on to addressing
modes, those all-important methods a microcomputer's CPU has of
accessing memory and its own working registers. We look at seven
fundamental addressing modes that apply to most micros one way
or another, either by themselves or in combination.

Address modes are then summarized in a group of quick-refer
ence charts. Next come some stock forms useful for hex dumps,
machine language programming, and assembly language program
ming. This chapter ends up with a toolkit that you can put together
for machine language work.

Chapter 7 is the real heavy of this volume. Here we actually do
lots of machine language programming. We use the "those #$! #$
cards" method, in which you work one-on-one with each individ
ual op code as the need arises, again on the microprocessor of your
choice. There is a series of nine discovery modules here. These are
elementary programming problems that start with the simplest of

op codes and programming concepts and work their way up into
some fairly fancy results, using practically all the available micropro
cessor op codes on the way. As we go through the modules, we
also pick up details on flowcharting and using programming forms;
measuring time and frequency; calculating branch values; using a
stack; testing individual bits; creating text messages; using files,
subroutines, interrupts, breakpoints, arithmetic, and much more.

We do not dwell on micro arithmetic because math uses of
micros are not all that important when it comes to real programs
doing real things for real people. Math on micros simply does not
deserve the overblown treatment some texts give it.

While many examples are given that involve the 6502, you can
easily do the discovery modules on any micro of your choice-4-bit,
8-bit, 16-bit, or whatever. All program problems and examples have
purposely been done on a mythical and nonexistent trainer, so that
you are forced to think things out on your own, solving your OWI\1
problems in your own way on your own machine.

In Chapter 8, we take a detailed look at 1/0, or input/output. We
find there are four levels of 1/0 and then explore the two lowest
levels in detail. At the device level, we check into parallel and serial
ports, look at the different port types, and examine specific chips.
Then we find out how to interface such things as keyboards and
displays, using a minimum number of port lines.

Next, at the circuit level, we examine the simple circuitry needed
to "amplify," "isolate," or "convert" micro port lines into signals
powerful enough to go out into the real world with a vengeance.
Here we include such things as transistor drivers, triacs,
optocouplers, input conditioners, analog-to-digital converters, digi
tal-to-analog converters, and things like that.

Chapter 9 both wraps up this volume and completes the "how"
part of the trilogy. First and foremost, we check into the micro
applications attack, a real-world problem-solving method that I
use. It has been thoroughly tested and, above all, it works. Emphasis
is placed on everything that has to be done away from the micro,
using the "stickiest box" method to zero in on the real problem
hidden inside what you are trying to do.

The micro applications attack is followed by some real-world
problems that you can solve using this method. Project "F" is partic
ularly challenging. Then we consider where you have to go from
here. Finally, for those of you still wondering "What good is all this
stuff?," we end the book with a list of sixty-three microcomputer
ideas that you can immediately put to challenging, unique, and
profitable uses.

DON LANCASTER

Contents

CHAPTER 6

Addresses and Address Spaces. 9

Address Spaces-Working Registers-Architecture-Address
Space Decoding-The Memory Map-The Programmer's
Model-The Package to Albuquerque-Which Address
Mode?-The Resource Sheet-The Micro Toolkit

CHAPTER 7

The Discovery Modules 113
What Is a Program?-Von Neumann Architecture-Machine
Language Programs-Those #$!$# Cards-M YTH-1 Discov-
ery Trainer-Fiowcharting-NOP and JMP-Discovery Mod
ules-Loading and Storing-Time, Frequency, and Clock
Cycles-Flags-The IF Instructions-Calculating Relative
Branches-Block Counting Method-Loop Use Rules-The
Stack-Subroutine Uses-Absolute Short Addressing-.Y
Time Delay-User-Friendly Code-Passing Variables to a
Subroutine-Bit Twiddling-Files-Interrupts-Breaks and
Breakpoints-What? No Math?-Add and Subtract

CHAPTER 8

Interface and 110 311
Micro Level lnterface-"Less Than a Port" Outputs-Real
Microcomputer Ports-Simple Parallel Ports-The 8212-The
6522-The Simplified 1/0 Diagram-Minimizing Port Lines
Serial 1/0 Ports-"More Than a Port" I/O-Open Collector
Outputs-Circuit Level Interface-Output Circuit Interface
Output Conversion-Input Circuit Level Interface

CHAPTER 9

The Micro Applications Attack . 407

Write a Brief Description of the Problem-Write a Detailed
Description of the Problem-Partition Hardware and Soft-

ware-Assign Port Codes-Draw Timing Diagrams and
Decision Trees-Make a Block Diagram and Flow Chart
Attack the Stickiest Box-Build Software and Hardware
Modules-Prepare an Improved Flow Chart and Schematic
Write, Test, and Debug Your Code-Have a Knowing Out
sider Test It-Annotate and Document Everything-Sit on
It-Evaluate and Improve-Using the Applications Attack
Now What?-Sixty-Three Ideas

Appendix: Simplified 110 diagram .

Index

443

445

This book is dedicated to microcomputer pioneers everywhere.
You can tell them by all the arrows in their backs.

- six -

Addresses and Address
Spaces

�

Have you ever been behind the scenes in a post office? There are
lots of similiarities between what goes on there and what happens
inside a typical microcomputer.

Our postmaster acts the same way a micro's CPU does when it
decides what mail goes where. Large banks of boxes are available
where users can go to pick up their mail. Any particular box might
be for a family, for a business, for a club, or for a church, just as any
particular location in a micro's address space can have various uses.
These locations can be used for temporary or permanent storage of
data and programs, or they can let you input or output to the real
world.

9

Some post office boxes may be empty or unrented. Others may
be seldom used. Yet others will be very busy and may even over
flow if they aren't continuously emptied. In the same way, some
locations in a micro's address space will be extremely busy, while
others will not be used at all or may rarely see any action.

The rules at the post office say you have to use the postmaster
to get something from one box to another. You aren't allowed to
stuff something into someone else's box on your own. Most older
microprocessors work the same way. Almost everything you do
with a micro has to go through the CPU's "hands." Some of the
newest micros do have very powerful "memory-to-memory"
transfer features built into their architectures, but this is not yet
common.

We see that the .postmaster also has several sorting bins that sim
plify handling mail. Most pieces of mail have to go through one or
more of these temporary stashes to allow sorting, routing, or for
warding. Some of the stashes are simple bins that can be used any
old way the postmaster wants. Others have one special use, such as
the safe for registered mail.

The CPU in a microprocessor also has its sorting bins. These are
called the working registers of the micro. Working registers are
involved in practically all micro actions. Some of these working reg
isters are very general stashes that can be used any way you like.
Others have one special use. Some microprocessors have lots of
working registers. Others may have fewer working registers but will
have very fancy ways of getting things between the registers and
the address space. These fancy ways are called address modes, and
we will see lots more on them shortly.

Buzzwords . . .

10

In most micros, the address space is outside the microprocessor
chip and the CPU while the working registers are inside the micro
processor chip. This is similar to the user boxes, which are available
to anyone from the lobby, compared to the sorting bins, which are
available only to the postal employees. Some single-chip micros do
include some or all of their address space internally, but in general,
the address space area is separate and different from the working
register area.

Let's take a closer look at one of our post office boxes. We'll
assume it's in a small western town where everybody goes to the
post office to get their mail. A typical box looks like this .

ADDRESS

�ol IJ:ZJ:I

,/
-�

//
.I

I/)
/

�
Once again, an address is a location, and data is what goes in that

location. Each address in a microcomputer must be unique. No mix
ups can be allowed. The addresses in the address space are often
identified by a hex number. The working registers are usually iden
tified by name or by a single letter.

11

The user box in a post office is like a single location in a micro's
address space. How much mail this box can hold depends on the
micro. In a 4-bit micro, we can put only four letters in a single
address location. In the more popular 8-bit microcomputers, and in
many locations of the 8/16 hybrid micros, we can put eight differ
ent letters in a box.

We can call a bill a zero and a check a one, and limit ourselves
to letters that are only bills or checks. As we've seen, the eight
bits of an 8-bit word have 256 different states, just as there are
256 possible combinations of eight letters that can be bills or
checks. We can put any meanings on these states we want. An
address location may hold a computer command, a piece of
data, an ASCII character, a door in an adventure file, or almost
anything we I ike.

THAT'S WHY
WE CALL IT

AN 8·BIT
In a typical 8-bit micro, each location in the �� =
address space can hold one 8-bit word.

�

So ...

Unlike the post office, we never really remove the mail unless we
are replacing it with something else. The process of reading an
address takes a look at what is in the address and makes a copy of it
to carry somewhere else. The process of writing an address destroys
whatever data was in that location and replaces it with something
new ...

Two obvious points here. First, there is no way to tell what is
stashed in a location unless you previously put something there.

12

Locations are not "empty" till you fill them. Instead, previously
unused locations will contain useless garbage. You should never
read any location that you haven't previously filled with something
useful. If you really want an area of memory to be all zeros or, say,
contain the hex $20 code for all ASCII blanks, then you have to take
time out early in your program to store the zeros or the chosen
ASCII code values where you want them.

The second point is that you can write only to an address location
that has some writeable hardware in it. You cannot write to Read
Only Memory or to an empty or unused location.

Thus . . .

SOME ADDRESS SPACE RULES

() All address space locations ALWAYS have some
thing in them.

() You must fill an address space location with
useful contents before you try to use it.

() You can only write to an address space location
that contains writeable hardware.

We now have an address space made up of lots of boxes. Each
box can hold exactly one word of eight bits each. We already
know what meanings we can put on the 8-bit words we put in
any address location-anything we want to. The whole truth and
beauty of micros is based on this extreme flexibility of making
the data in a location be anything we want and fill any need we
choose.

What physically goes into the address space? The obvious answer
is hardware of some sort. It turns out that there are only four main
types of hardware that you are likely to see in any particular address
space location. These four hardware types are . . .

ADDRESS SPACE HARDWARE

() RAM
() ROM
() 1/0

() nothing

13

RAM, of course, is memory that we can change fast and easy at
system speeds. We use RAM for anything that is going to change,
such as a working program, a data block, a message, the text file of
a word processor, and so on. We can both write to RAM and read
from it. Most RAM is volatile, so it will contain garbage on power
up.

ROM is memory that is more or less permanent. We use ROM
anywhere we want to keep its contents for a long time. PROM,
EPROM, and EEPROM are variants of ROM that we can occasionally
change but will hold their contents for us during power-down
times. The monitor and operating system are often kept in ROM so
that they are always there.

You CANNOT write to ROM locations at system speeds. You can
tell the micro to do a write, and it may go through all the motions
for you, but it won't work. Write to a ROM location that contains an
$AS, and you'll still have an $AS when you are done.

1/0 stands for Input and Output. We can pass information to
and from the real world through suitable 1/0 ports. If the port is
an input only port, we can only read this location with the micro.
If the port is an output only port, we can only write to this loca
tion with the micro. If the port is bidirectional, we can read from
those port lines set up as inputs and write to those port lines set
up as outputs. Other locations can be used to control a bidirec
tional port, keeping track of which lines go where. These other
locations are often found nearby in the address space. More
details on this in Chapter 8.

The 1/0 ports that are located in the address space just like RAM
and ROM are called memory mapped 1/0 . . .

The big advantage of memory mapped 1/0 is that anything you
can do to a RAM or ROM location, you can also do to a suitable 1/0
port, since the CPU does not know what is out there in the address
space. Any and all microprocessor systems support memory
mapped 1/0.

There is another type of 1/0 called direct 1/0 that is provided on
some earlier 8080 school chips. While direct 1/0 can be faster and
more easily decoded, it is limited to one micro family and has pro-

14

gramming restnct1ons. A direct 1/0 micro does not prevent you
from using memory mapped 1/0 on it, and this is exactly what most
people end up doing.

The final kind of hardware that we can put in a micro's address
space is nothing at all. If this seems dumb at first, think about it for
a while. Post offices usually have some unrented boxes. If they
don't, they have to add boxes for new customers.

In a micro, there is often no reason to fill all the locations in the
address space. In a simple application, 1 K of ROM and a few dozen
words of RAM may be all you will need. The leftover space can be
saved for later expansion. just remember not to write to or read
from these unused locations.

Sometimes, the unused locations can be used to simplify
decoding. For instance, if you have extra address space to burn,
you could give a single 1/0 port 256 consecutive locations, any
of which could be used to reach the port. This can greatly sim
plify the decoding hardware but can become a dangerous trap
on a later expansion.

ADDRESS SPACE

Let's take a closer look at the address space of a typical micro.
We've seen that the address space is the "reach" of a microproces
sor, made up of all the possible locations into which we can put
RAM, ROM, 1/0, or nothing at all. We also know that the micro has
working registers that are· usually outside the address space but
inside the microprocessor chip itself.

Each location in the address space of an 8-bit micro can store one
8-bit word for us. We are free to put any coding and any meaning
on what we put into any location.

There are several popular sizes of address space. By far the most
common and most important size is made from the 65536 address
space locations in a typical 8-bit micro.

The number 65536 is the sixteenth power of two, so we can reach
any point in this address space with sixteen binary address lines. As
we will shortly see, these address lines are most often broken down
into a pair of 8-bit words to simplify memory space access.

While a 65536 location address space is the most common, we
can have larger or smaller sizes of microcomputer address spaces.
Some single-chip microprocessors have an address space of only
4096 locations. This needs only twelve address lines and is popular
for smaller systems or other dedicated applications.

15

We can also go the other way. One simple route is to have sev
eral banks of 65536 locations, just as there are several bays of user
boxes at the post office. Banks are selected by a process called bank
switching. Bank switching is a simple and effective way to double
or quadruple the available address space without going to fancy
hardware.

The new 16-bit micros have gone totally overboard on address
space. Some of these have an address space of 16,777,216 locations.
This is usually broken down into 256 segments of 65536 locations
each.

Here are some typical uses of different sized address spaces .

ADDRESS

�I
SIZE LINES USES

BUS SIZES

40% 12 dedicated micros
65536 16 personal computers

262144 16* business systems
16772216 24 heavy applications

*bank switched

We'll stick with a 65536 location address space for now, since it is
the most popular as well as the baseline for everything else.

Each location in a micro's address space must be reachable by a
unique address. Good old straight binary seems to be the standard
and best way to reach a single location in the address space. For
convenience, this binary address is normally called out in the form
of a hexadecimal word.

So, we can number our boxes from $0000 through $FFFF, for the
65536 locations that specify the positions from 0 through 65535.
To do this, we need a 16-bit binary number to call out the address.
We will shortly see that this addressing number goes out some
lines on an address bus to select a single location in the address
space.

We could string all our addresses out in one long row. But even
the postal service isn't this dumb. Note how the user boxes are in
bays. Besides reaching the box by a particular number, we can also
reach the box by going to a particular bay and then selecting a
suitable row and column on that bay. The place where row and
column cross on the selected bay is the box we are after. Mathe
maticians would call a two- or three-dimensional grouping of
boxes a matrix.

16

The address space of a typical micro can be thought of as a
humongous post office box bay that is 256 boxes wide and 256
boxes high.

Something like this . . .

THIS IS THE ENTIRE ADDRESS
SPACE OF A TYPICAL 8·BIT MICRO.
THERE ARE 64K. or 65536.
TOTAL LOCATIONS AVAILABLE.

EACH LOCATION CAN HOLD EIG
FF- FFOO FF01 FF02 FF03

FE -I FEOO FE01 FE02 FE03

FD
.,.,,,=� .. �...-.........

THIS IS LOCATION $04FE.
IT IS REACHED BY AN

ADDRESS ADDRESS HIGH OR "PAGE"

HIGH BYTE OF $04 AND AN

-or- ADDRESS LOW OR "POSITION"

PAGE BYTE OF $FE.

BYTE 04- 0400 THIS LOCATION IS ALSO (Mos1
REACHED WITH A BINARY Significan1)
%0000 0100 1111 1110

03- 0300 PATTERN ON THE ADDRESS
LINES.

02 -I 0200 I 0201 I 0202 I 0203 I 0204 ti.1�i<J!l.fi,ll� 02FE I 02FE I 02FF I THIS LOCATION IS ALSO
NUMBERED AS DECIMAL
1278.

01 - 0100 0200 0102 0103 0104 01FD 01FE 01FF

00- 0000 0001 0002 0003 0004 OOFD OOFE OOFF

I I I I I I I
01 02 03 04 FD FE FF

ADDRESS LOW -or- LOCATION BYTE
(least Significant)

We see that we have 65536 boxes and that these boxes are num
bered in order from hex $()()(X) through $FFFF. Besides finding a box
by its number, we can also locate any box by finding its row and
column.

The two rightmost hex digits tell us which column the box is in.
These two digits can have a value from hex $00 to FF, representing
256 possible positions. One 8-bit word is needed to call out 256
positions.

The column-selecting word is called the /ow address byte or the
position byte.

The two leftmost hex digits tell us which row the box is in. These
two digits have values of 0, 256, 512, . . . on through 65280, step
ping along in exact multiples of 256. One 8-bit word is also needed
here to call out the 256 different multiples.

The row-selecting word is called the high address byte or the
page byte.

17

To recap . . .

() The 65536 locations of a typical micro's ad
dress space can be located with an address
word of sixteen binary bits.

() The address is usually broken down into
two address bytes of eight bits each.

() One of these 8-bit address bytes is
called the address low byte or the posi
tion byte.

() The other 8-bit address byte is called the
address high byte or the page byte.

Thus, we can say that some address location is in some position
on some page. We can also say that the same address location has
some low byte address and some high byte address.

For instance, the fourth location up and the fifth one to the right
will have an address of $0304. The threes and fours result because
we start with zeros rather than ones. We can say this address has a
high byte of $03 and a low byte of $04. We can also say that this
address is position four on page three.

A position here means one of 256 possible vertical locations on a
page. A page means one of 256 possible horizontal rows, each of
which holds 256 possible positions.

When you get around to actual machine language programs, you
will find that the address usually appears in the listing backwards,
with the low byte or location byte first and the high byte or page
byte second. This sounds strange, but it has speed and program
advantages.

18

To repeat . . .

On most microprocessor families, machine lan
guage instructions will use addresses "back
wards" with the low address byte first and the
high address byte last.

All of the documentation, assembler listings, and so on will show
the address in its expected way. Only the actual machine language
op-code listings will be backwards. For instance, on the 6502, one
possible command to load the accumulator from address location
$1234 wi II be "AD 34 12." The AD here is the op code for "load the
accumulator from somewhere in the entire address space." The 34

is the position on a page or low address byte, and the 12 is the page
or high address byte.

Both the 6502 and 8080 school micros use this seemingly back
wards convention. A few oddball VCIWs, including Motorola's
6800, do the opposite from everybody else and put the addresses in
the page-position form.

To review, the address space is the reach of a microprocessor's
CPU that calls out the maximum number of places into which you
can put RAM, ROM, 1/0, or nothing at all. On an 8-bit micro, each
of these locations can hold one 8-bit data word. This data word can
be anything you like and used anyway you want.

Again, on a typical 8-bit micro, the total number of available
locations in the address space is 65536. Other less popular address
space sizes include the 4096 words of a one-chip dedicated micro,
multiples of 65536 locations through bank switching, and the 256
segments of 65536 locations each used in some newer 16-bit
micros.

Each location in the address space must have a unique address.
These addresses are numbered in straight binary from 0 through
65535 and are usually shown more conveniently as four hex digits
ranging from $0000 through $FFFF. Addresses turn out to be much
easier to visualize in hex than in decimal, so practice hex until you
have it down cold.

Any address can be reached through the sixteen lines of an
address bus. Addresses are usually broken down into two separate
8-bit words. One of these words picks one of 256 pages of locations
and is called the high address byte or the page byte. The remaining
word picks one of 256 positions on a single page and is called the
low address byte or the position byte. In most program codes on
most microprocessors, these address bytes will appear in seemingly
reverse order, with the low or location byte first and the high or
page byte second.

Shortly, we'll find out how we decide what goes where in our
address space. For now, let's go back to the post office and those
sorting boxes.

19

The sorting bins in the post office are used to simplify handling of
the mail. We have similar sorting bins in a microprocessor's CPU.

These are a few words of special RAM that help the micro do useful
stuff in an orderly and logical manner. These RAM bins inside the
microprocessor chip are called . . .

WORKING REGISTERS

Working registers serve as a workspace or scratchpad for the
CPU. They give a temporary place to put stuff being worked on.
They give ways of keeping track of where you are in a program and
where to go next. Other working registers keep tabs on what is hap
pening and what kind of results you are getting. Still others provide
orderly ways to count through a loop or to pick one of many entries
out of a file. Still other working registers can show us where to go
to get new material or where to put old results.

Since the working registers are inside the microprocessor chip,
the CPU can quickly and easily get to them. It is usually faster and
simpler for the CPU to reach a working register than for it to reach a
location strung out somewhere in the address space.

Working registers typically are called out by a letter, such as A,X,Y
or A,B,C,D, or possibly by a letter and number, as RO through R7.

Each manufacturer tacks its own name on things. The number of

20

available registers and the details of their exact use will vary from
manufacturer to manufacturer. Often a micro that has only a few
working registers will have very powerful ways of running around
the address space, while micros that have lots of working registers
tend to have weaker and slower ways of reaching the main address
space. The newest micro chips give us the best of both worlds. They
have the equivalent of lots of working registers and powerful
addressing modes.

You can easily reach some of the working registers and put any
thing you like into them or take anything out of them. Others are
harder to get at but are automatically taken care of by the instruc
tions you give the CPU.

The newest microprocessor chips simply give you lots of on-chip
RAM and let you use much of it any way you like. But most of the
mainstream devices today have special and more-or-less committed
working registers, each of which has to obey certain use rules.

One way to classify working registers is by how flexible they are.
There are three main types of working registers .

The three main kinds of working registers include completely
general ones that can involve themselves with just about anything.
You can use these any way you like. Then there are the intended
use registers that have one big purpose in life. You can use them to
do their thing, or else you can use them for other stuff if you don't
need their specialty.

21

Finally, there are dedicated-use working registers that are forever
restricted to do one task for the micro. You may not be able to get
at these directly or else the job these registers do is so important
that your program will bomb if you mess with them.

Regardless of type, all the working registers are simply RAM or
read-write memory. The difference between the various types lies
in how the working register interacts with the microprocessor's
CPU, with you as programmer, and with the address space.

Let's look at some typical working registers and see what they can
do. Later we will pick up more specific details on how certain regis
ters in certain families work. For now, we'll stick with the big pic
ture.

The most obvious general-purpose register in a CPU is usually
called an accumulator . . .

The accumulator is often used to receive data from the address
space, to hold intermediate results of calculations, and to be the
source of data to be stored in the address space. Most of the com
mands that involve arithmetic, logic, or testing will end up with the
result in the accumulator.

The name dates back to the dina days when computers worked
on a single serial bit at a time instead of dealing with whole words.
One very expensive register was built to accumulate the results
painfully, bit by bit.

In traditional computer architecture, the single accumulator was a
narrow funnel through which everything had to go. Modern micros
often have other places to put things besides in the accumulator
and this roadblock to quick and simple programs is fast being
removed.

Most micro families have at least one "main" accumulator as well
as other handy places to put things. In the 6502, there is an A regis
ter that ha_ndles most of the work, but there are two other 8-bit
registers called X and Y. These also can read from or write to the
address space. With some limits, the X andY registers can also make
comparisons and do some logic operations.

In the 8080 family, there is a main accumulator, along with com
panion B, C, D, and E registers, while the 6800 has a pair of accumu-

22

lators called A and B. The 8048 has an accumulator as well as sixteen
R registers that can easily swap roles as needed

The traditional single accumulator computer is horribly out of
date, and use of accumulators is waning. The newest micros have
direct register-to-register actions that are far more flexible and
greatly simplify doing several things nearly at once.

As an example of how an accumulator works, suppose you want
to add two numbers. You reach into the address space and get one
number and load it into the accumulator. You then reach elsewhere
into the address space and get a second number and add this to
what is already in the accumulator, replacing the first number with
the sum of the two. This final result in the accumulator then can be
stored back somewhere in the address space.

The accumulator usually has fancier capabilities than any other
single register. Besides addition and subtraction, you can often shift
bits right and left, rotate them in either direction, compare values,
complement a result, increment, decrement, do logic, clear, and so
on. The accumulator may be the only general-use register that has
access to a special memory area called a stack. It is used for subrou
tines, interrupts, and temporary storage. Because of this, the accu
mulator gets involved more often than any other working register in
the microprocessor system.

There are usually instructions called transfer commands or moves
that let you swap things between the accumulator and any other
register that happens to be handy. These transfer commands can be
faster and shorter than those needed to reach any location out in
the address space.

You may also find other general-use registers in your m1cro.
These may be secondary accumulators or simply places to store
things. They may or may not have all the power an accumulator
does. It depends on the microprocessor and what you want to do
with it.

An example of an intended-use register is the index register.

INDEX REGISTER-An intended-use register that usually
is used to count the number of trips through a
loop or point to the contents of a certain location
in a file of data.

A machine language program often needs some way to do the
same thing over and over again for some number of times. A pro
gramming concept called a loop is usually involved. To use a loop,

23

you put a number somewhere and then count that number down
each time you go through the loop. The program that uses the loop
may simply be stalling for time or may have to do things a certain
number of times or continue until some special result occurs.

Since our accumulator will most likely be busy doing other things
for us during loop times, we need some other place to put the
number that we are going to count down for the loop. One possi
ble other place is the index register.

To use an index register in a loop, you put some number in it and
then do your loop once. You then decrement the number, test for
zero, and do the loop again. You keep this up till you really get to
zero, and then the zero test gets you out of the loop and on to
something else.

You could also use an index register to count up to some number,
but there are several good reasons that counting down is far more
popular. One reason is that it is far easier to test for zero than any
other value. Another is that the program is easier to modify if you
decide to change the number of trips through the loop. A final rea
son is that when you count down, the index register will always
hold the number equal to the remaining number of trips needed.

Thus . . .

When an index register is used to count the trips
through a loop, it most often counts down to
zero rather than up to some number.

Another use of an index register is as a way to get something out
of a file. Say you have a data list stashed somewhere in RAM. Rather
than specifying the exact address every time you need something
out of the list, it's easier to say, "Go to the start of the list plus an
index value." If you want the third entry in a list, you put an 02 in
the index register and then tell the micro to look at the starting
address plus 02, and so on.

Why 02? Because the first address is START +00, the second is
START +01, and the third is START +02.

We'll look at more details on this when we get into address
modes. What indexing does is greatly simplify how we reach into a
file and pick out data.

There are two popular widths of index registers. An 8-bit index
register can only count down from 255 or reach 256 locations in a
file from a given starting address. The X andY registers of the 6502
family are typical. You can also have 16-bit wide index registers,

24

such as the X register in the 6800 family. A 16-bit index register can
reach any point in the 65536 location address space but may be
harder to load or be otherwise limited in its abilities.

Some microcomputer families, such as the 8080 gang, do not have
index registers as such. You can still do loops and pick things out of
files with these micros, but you have to do it with something else.
Something else is often called an address register.

The reason an index register is an intended-use register is that
you are free to use it for anything you like if you don't happen to
need it for a loop or an indexed file pickoff. Index registers typically
can do some but not all of the things the accumulator can. Eight bit
wide index registers can be loaded from and stored to the address
space and often can support comparisons and other logic opera
tions. It is usually easy to transfer things between the accumulator
and 8-bit index register and vice versa.

There's a whole class of working registers that can serve either
intended or dedicated uses, depending on how they are connected.
These working registers are called pointers . . .

So close. Very close.
Actually, the dogs are used to point to somewhere else. We are

not so interested in the dog itself as in where the dog is pointing.
Let's try it one more time . . .

25

A pointer holds an address for us rather than data. It is used
whenever you want temporarily to remember where to go to get
something or where to go to put something.

The most common intended-use pointer is called an address reg
ister ...

The 8080 family has a pair of 8-bit registers called the H register
and the L register, standing for High address and Low address. If
you want to use these as an address register, you put in the address
where you want to get data or where you want to put data, and
then later instructions will tell the accumulator, "Put a copy of what
you have in the location pointed to by the HL register." The sixteen
bits of the HL register pair can point anywhere in a 65536 location
address space.

Using an address register has two advantages. The big one is that
you can calculate or change where you want to store things as you
go along, rather than being stuck with absolute values locked into
the program. The second advantage is that a faster and shorter
instruction can be used to store something at an address pointed to
by an address register, compared with spelling out exactly where in
the address space you are to go.

The 8048 has four address registers, called RO, R1, RO', and R1'.

These are intended-use registers since they are the only ones that
are allowed to point to an address. If you do not want to put an
address in any of these, you are free to use them any way you like.
The same holds true of the H and L registers in the 8080 family.
Although you can use H and Las general-purpose registers, this reg
ister pair is intended to be used as an address pointer.

The 6502 and 6800 families do not have address pointers. Instead,
they use their powerful index registers. The 6502 also has a very
flexible way to let a pair of ordinary RAM locations down on page
zero serve as an address pointer.

This "index-vs-address-register " capability is typical of the many
differences you will find among major micro families. They all can
do almost anything in some way or another, but some will offer
powerful ways to do one thing very well and others will have strong
advantages in other areas.

26

Your particular micro may have additional general-use registers
available. The newest micros bypass the register problem com
pletely by giving you lots of RAM locations on chip that you can use
any way you like in a totally general way. These RAM locations are
also inside the address space. The idea is to make things as fast and
as flexible as possible without tying you down to doing things
exactly as the chip designers ordained.

Let's now look at some dedicated working registers. These are
pretty much locked into doing one job and are not available or
usable for anything else.

One of the most important dedicated working registers is a
pointer called the program counter ...

Just as you can't tell the players without a program, a micro
always has to know what instruction it is working on and where to
go to begin doing the next instruction.

A dedicated working register called the program counter does
the job for us. After each instruction is complete, the program
counter figures out where to go for the next instruction. This is not
as simple as it sounds, since instructions may take one, two, three,
or even more sequential locations in the address space, and since
the program counter always has to know when the present instruc
tion ends and the next one begins.

Sometimes the program counter will be given a new address far
away from where it happens to be. This happens when we jump
somewhere else, or when we temporarily jump to a series of sub
routine instructions somewhere else, or when we stop what we are
doing to service an outside world interrupt.

There is usually no immediate way to write to or read from the
program counter. The CPU will do what you tell it to and, as the
result of these instructions, will end up telling the program counter
where to remember to go for the next instruction address. Thus,
doing anything to the program counter ends up as a "Mother, may
I?" game between you and the CPU.

Jumping to a new location is one sure way to set the program
counter to a new value. This is the usual way for a monitor to start
running your program for you.

27

The program counter has to be big enough to point to every pos
sible location in the address space. Thus, on a typical 8-bit micro
with a 65536-location address space, you need a 16-bit program
counter. A dedicated micro with a 4096 location address space will
need a 12-bit program counter.

There is another dedicated-use working register used to point to
a set aside group of special locations somewhere in your system
RAM. This one is called a ...

We'll learn lots more about the stack later. For now, a stack is a
temporary stash somewhere in RAM that you can quickly shove
things onto. The stack is not random access. Instead, the last thing
onto the stack is the first thing you get out, sort of like storing
dishes on a shelf.

Stacks are used to remember return addresses for subroutines and
to remember both the return address and the exact condition of the
CPU for interrupts. They are also a handy place to shove something
temporarily that you will soon want back.

The length of the stack depends on the micro, and· can be as short
as eight words for a dedicated micro, on up through the entire
65536 words of the whole address space. The 6502 family has a stack
family that uses up to 256 locations on page one of memory.

The stack pointer has to remember where the next available loca
tion in the stack is. This pointer has to be as wide as needed to
point to all possible stack locations. In a dedicated micro, part of a
word will do the job. In a 6502, a full 8-bit word is needed, to which
a "hard-wired" 01 is added in front to always reach page one. This
guarantees that the stack always stays on page one. A runaway pro
gram can destroy the stack, but not the entire memory space.

In the 6800 family, the stack pointer is a full sixteen bits wide.
With this wide a pointer, a runaway stack will take everything else
with it.

The stack pointer's address moves around as you use it. The CPU

will automatically fill and empty the stack as it services subroutines
and interrupts. There is usually some way to initialize the stack
pointer to some location and some way to read exactly where the
stack pointer is pointing.

28

The key ideas here are that there is a dedicated register available
called the stack pointer that points to the next available location in
the stack; and that we have ways of setting this pointer, reading the
pointer, and automatically moving the pointer around as the stack
gets used.

One important detail ...

The stack pointer is nowhere near the stack. The
stack pointer is a dedicated working register in
the CPU.

The stack itself is a bunch of RAM locations out
in the address space somewhere.

Thus, the stack is a collection of RAM locations. How this RAM
gets used is decided by the stack pointer working hand in hand
with the CPU.

That just about covers the pointer type of registers that hold
some address for us. Every micro has one final special dedicated-use
register. It's called the flag register ...

You'll find out later that flags are like the idiot lights on your car.
They tell you that some condition exists. If you want to, you can test
a flag and make a decision based on it.

Each individual flag is usually a single bit wide. For instance, most
micros will have a zero flag that tells you if the last operation, what
ever it happened to be, ended up with a zero result. Most micros
will also have a negative flag and a cart>y flag to aid in arithmetic,
logic, and other tests.

There can be lots of other flags that vary from micro to micro.
One may have a decimal flag that automatically keeps track of deci
mal versus binary arithmetic. Others may use a half carry flag to let
you repair a binary result into its decimal equivalent. Some micros
have flags you can use any way you like, and others have flags to
keep track of overflow problems on signed binary arithmetic.

29

The most useful thing about flags is that you can test them and
you can use them to control what the micro is to do. Each flag is a
single bit and each behaves differently according to some rule or
rules. Some flags you can set or clear yourself. Others are controlled
only by the CPU. It depends on the individual flag. We will be see
ing much more on flags later.

just as you can group the idiot lights on a car's dash, you can
group all your flags into a single word, simply by putting them side
by side. When all the flags are in a single word, we call it a proces
sor status word. The processor status word tells us the exact condi
tion of the micro as of right now.

One important use of the flag register or the processor status reg
ister is to remember where we are if we are interrupted. Should an
outside world interrupt arrive, we shove the program counter and
then the flag register onto the stack. These two things together will
let us pick up where we left off.

There are always ways to read your flag register and ways to get a
flag register onto or off the stack.

To sum up, working registers are special RAM locations inside the
microprocessor chip. These registers serve as temporary stashes
where the CPU can work on problems and keep track of where you
are and where you are going. The number and types of working
registers will change with the micro family. Enough registers and
enough ways of running around the address space are provided so
that almost any microcomputer can do almost any task.

There are three main types of working registers. These are gen
eral-use, intended-use, and dedicated-use registers. The accumula
tor is the most common, the most often involved, and the most
powerful general-use register. Other general-use registers may be
provided to take some of the load off the accumulator.

Examples of intended-use working registers include: index regis
ters that can be used to count the number of trips through a loop or
pick a value out of a file; and address registers that point to some
location in the address space where data is to come from or go to.

A working register that contains an address rather than data is
called a pointer. The program counter is a dedicated-use working
register that keeps track of where the next instruction is to come
from. The program counter is wide enough to reach any point in the
address space. The stack pointer is another working register that
holds the address of the next available stack location. A stack is
some area set aside in RAM that serves as a temporary stash on a
last-in-first-out basis and is used for temporary storage and to keep
track of subroutines and interrupts.

One final dedicated-use register is the flag register or process sta
tus register. It keeps track of the exact condition of the micropro
cessor at any given time.

30

More on all this later. Right now, we are just seeing what working
registers are and what needs they can fill.

We now have some address space and some working registers.
How are they related? To answer this, we have to take a close look
at ...

ARCHITECTURE

It would be very nice if a microprocessor had no personality at all.
Ideally, the micro should behave like a new canvas just placed on
an easel. A canvas by itself has little personality but with your per
sonal value added, it becomes a custom work of art. In much the
same way, a microprocessor should be able to do anything you
want in any way you want. The micro should do this without any
special use rules or other restrictions.

Unfortunately, most microprocessors aren't nearly so flexible,
although the newest ones are coming close. Almost all microproc
essors have distinct personalities. They may do one thing very well
but do other tasks only with difficulties or hassles.

Some micros have powerful address modes combined with few
working registers. Others feature the exact opposite. Some have lots
of bit manipulation commands that are handy for industrial control
uses. Still other micros are very strong in doing fast arithmetic, and
others easily handle the strings, files, and decimal arithmetic
needed for business applications.

We call the arrangement of resources within a micro the architec
ture ...

You'll find two different architectures. One of these is the micro
processor architecture that decides what is available inside the
microprocessor chip itself. The second is the microcomputer archi
tecture that tells you what the whole system has in the way of
memory, 1/0, user access, and other available resources.

For instance, the architecture of the microprocessor tells you how
many working registers are available, what the total available
address space is, what width buses are provided, and similar chip
level features. The architecture of the microcomputer tells you how
much RAM, ROM, and 1/0 are in the address space, the system
meanings put on certain locations, and how you can reach specific
address slots.

Something like this ...

31

In picking a certain microprocessor chip, you are pretty much
stuck with the architecture locked into it. If you are designing your
own microcomputer system, you are free to arrange the overall sys
tem microcomputer architecture in almost any way you like. You
must, of course, keep what you are doing compatible with the use
rules and architectural limits of the CPU.

Two simple architectural resources are the programmer's model
and the memory map. The programmer's model gives you a quick
picture of the microprocessor architecture. The memory map shows
you a simplified layout of the overall microcomputer system archi
tecture . . .

Later in this chapter, I'll show you how to build up a micro tool
kit that will give you many of the weapons you need to understand
and work with the micro of your choice. The programmer's model
and the memory map will be two of your first-line tools. More on
these shortly, but first, let's find out what system architecture is all
about.

32

What does an architect think about in designing a new home?
Maybe this ...

A house architect will take into account the personality of the
owners, the available budget, the location, the climate, the types of
materials, zoning rules, and lots of other obvious things. The archi
tect does this to end up with a home that suits both the owners and
their budget.

In much the same way, a microprocessor architect starts with a
certain amount of silicon and a set of processing rules. Within those
limits, the architect tries to come up with a microprocessor archi
tecture that will do lots of good things for as big a market as possi
ble.

Just as most homes are different from each other, most micro
processors also have their own architecture. Differences will be
greatest between the three micro schools, but each and every micro
has its own own unique structure.

Let's paint a big picture of a general micro architecture that is
typical of what you can expect. It turns out that many of the general
features of micro architecture are pretty similar, regardless of the
device. Let's home in on these first.

We will assume that our microcomputer uses only one micropro
cessor. Some newer systems add a second or even a third slave
micro chip to offload tasks such as video display, animation, sound,
speech, keyboard service, or printer spooling. But let's keep it sim-
ple for now . . .

·

33

START WITH THIS "TWO SPACE" MODEL ...

THIS SPACE INCLUDES EVERYTHING INSIDE
THE MICROPROCESSOR CHIP, SUCH AS THE
CENTRAL PROCESSING UNIT (CPU) AND THE
WORKING REGISTERS

THIS SPACE INCLUDES EVERYTHING
OUTSIDE THE MICROPROCESSOR CHIP
BUT INSIDE THE ADDRESS SPACE.
TYPICAL ARE LARGE BLOCKS OF
RAM, ROM, 1/0, OR NOTHING.

THEN�

...,
We see that we have a block called a microprocessor. This micro

processor contains a CPU, short for Central Processing Unit. The
CPU acts as a postmaster to control totally what goes on where in
the system. The CPU has immediate control over a group of work
ing registers. How many of what kind depends on the micro you
have chosen and is shown by the upcoming programmer's model.

You may have few or many of these working registers. We've seen
how these are classified as general-use registers (such as accumula
tors), intended-use registers (such as index registers), and dedicated
use registers (such as program counters and stack pointers).

The working registers are usually inside the microprocessor's CPU
but outside the address space. Working registers are usually identi
fied by a letter or other callout rather than by an address in the
address space. Although a few newer micros overlap address space
so that RAM in the address space can be used as working registers,
most micros don't. For now, let's assume that the address space is
separate from the working register area. So, typically ...

Working registers are usually inside the CPU but
outside the address space.

One limit of this two-area workspace is that you can't directly
reach a working register without the CPU's help. On the other

34

hand, the CPU can easily get to these handy stashes without having
to hunt all over the address space for them.

Our address space contains RAM, ROM, 1/0, and unused empty
areas. We know by now that RAM is memory that you can change
quickly and often but that is usually not permanent. ROM is mem
ory that is more or less permanent. 1/0 is input and output that give
our micro ports for real-world access. While the newest RAM and
ROM are getting more and more like each other, it still is safer to
assume that RAM and ROM are physically different devices. You
will normally use RAM for things that change (such as a program or
data file) and ROM for stuff that has to be permanent (such as a
monitor or operating system).

The RAM, ROM, and 1/0 are usually grouped into blocks. Micro
systems often use much more RAM than ROM. These blocks also
depend on the size of available chips. For instance, a 16K block of
RAM is a very common module size for older personal computers.
For more RAM, you usually add increments of 16K to bring the total
to 32K, 48K, or more. ROM tends to be in blocks of 2K or 4K and
expands in multiples of 2K. The reason that the ROM blocks seem
smaller is that most ROM is byte wide, containing a full 8-bit word
at each internal address location. Most RAM is a single bit wide, so
that a 16K block of RAM may take eight different chips, one for
each bit in the 8-bit word. If you wanted a full 16K of ROM, you
would also need eight chips, only this time it would take eight
chips of 2048 bytes each.

Newer microcomputers will use 64K or larger RAM or ROM
chips.

The area in the address space reserved for 1/0 is usually very
much smaller than that reserved for RAM and ROM. Few micro sys
tems need more than a handful of 1/0 ports. With a 4K space set
aside for 1/0, you could have 4096 different ports of eight bits each.
This is vastly more than you normally would ever use.

Much of our address space could remain empty. If you are build
ing a simple system such as a solar panel controller, you will still use
the same microprocessor everyone else uses, but you use only small
amounts of RAM, ROM, and 1/0. The unused area in the address
space is ignored. You can use this for later expansion, or you can
use empty spaces to simplify the decoding process needed to
access your existing RAM and ROM.

For instance, you can use only the bottom eighth of your address
space and ignore the top three address lines in your decodings.
Other stunts like this are possible, but they may cause trouble on
later expansion.

What goes where in the memory map is decided by the micro
processor chip itself. In the 6502 school, it's easy to get to memory
page zero (addresses $()()()(}-$00FF) and the handy stack storage area

35

is always on page one ($01()(}-$01 FF). This tells us that it's smart to
put RAM in the bottom of the address space. Like most micros, the
6502 also needs vectors to decide where to go on a reset or one of
two possible interrupts. These 6502 vectors always go at the very
top of the address space at locations $FFFA through $FFFF. These
locations are best kept in ROM if you want to keep control of your
system.

So, the 6502 school wants you to put RAM in low addresses, start
ing at the bottom, and ROM in the high addresses, working down
from the top. The 1/0, by default, goes in the middle. Chips in the
6800 family have similar needs with RAM low and ROM high.

Tl"\e 8080 school wants you to do the exact opposite. Low
addre�s are saved for interrupt and reset vectors that normally
must go in ROM. The tradition here is to put ROM on the bottom,
RAM on top, and, once again, 1/0 in the middle. The 8048 family
usually has a small address space of 4K, split into a low 2K of ROM
and a high 2K of RAM. If you are using less, you build ROM from
the bottom up and RAM from the top down.

Don't worry too much about these special rules just yet. The
point here is that the microprocessor chip you have chosen sets
definite limits on what goes where in the address space.

36

Here are some address space rules ...

() The address space contains ROM, RAM,
1/0, or nothing.

() The RAM, ROM, and 1/0 are usually in
large blocks set by the chip sizes. 16K is a
typical older RAM block while 2K or 4K

are typical ROM blocks.
() The arrangement of the RAM and ROM

blocks depends on the micro family. The
6502 and the 6800 families put RAM on the
bottom and ROM on the top. The 8080

and 8048 families do the opposite.
() The address space need not be completely

filled. Dedicated controllers will leave
many empty locations. Other uses may
save space for later expansion. A technique
called bank switching can be used to
overfill the address space, working with as
many larger modules as needed.

We'll pick up more details on what goes where when we look at
the memory maps. For now, the important points are that there are
blocks of RAM, ROM, and 1/0 in the address space and that their
arrangement depends on your specific microprocessor.

So far we have two separate boxes. We have the microprocessor
box with its CPU and working registers. We have the address space
with its blocks of RAM, ROM, 1/0, or empty space. To do anything
useful, we have to be able to communicate between the two.

We already know that we use bus structures to talk back and
forth in a microcomputer system. Let's add two buses to our archi
tecture. One of these is a data bus, used to pass information back
and forth, and a second is an address bus, used to activate only one
selected location in the address space at any time . . .

. . . ADD DATA AND

ADDRESS BUSES ...

THE� IS USED

ONLY BY THE CPU TO

ACTIVATE ONE LOCATION AT

A TIME IN THE ADDRESS

SPACE

ADDRESS BUSES ARE USUALLY

SIXTEEN BITS WIDE & UNIDIRECTIONAL

NEXT, � ..

.,
Let's look at the data bus first. A data bus has to be able to pass

the contents of something in the microprocessor to the address
space, or else handle the opposite task of getting something from
somewhere in the address space and putting it into one of the
CPU's working registers.

37

The width of the data bus is usually equal to the word size of the
microprocessor. Thus, a typical 8-bit microcomputer has a data bus
that is eight bits wide. A 16-bit microcomputer has a data bus that is
sixteen bits wide.

Note that there are times when data must go from the CPU to
address space and other times when information must go from
address space to the CPU. The data bus must be able to work in
both directions. Thus we need a bidirectional data bus ...

The DATA BUS is used to pass information
between the CPU and the address space.

The DATA BUS is eight bits wide on an 8-bit
microcomputer.

The DATA BUS is bidirectional since it must
work both ways.

The data bus is used to pass information between locations in the
address space and working registers in the microprocessor. The data
bus is normally controlled by the microprocessor's CPU, but it has
to work both ways and be able either to get stuff from the address
space routed to the CPU or vice versa.

How do we know where in the address space to go to get some
thing? We already know that each location there has a distinct
address, numbered in straight binary and called out in hex
adecimaL In a microcomputer with a 64K address space, the 65536
addresses go from $0000 to $FFFF. These addresses are often
located with two 8-bit words. One word is called the high address
byte or the page byte. The other is called the low address byte or
the position byte.

To find a specific location in the address space, we have to pro
vide an address. This address goes out on some lines that are called,
of all things, an address bus. .

The number of lines needed on an address bus depends on the
size of the address space and has nothing directly to do with the
data word size. For instance, the 4K address space of a dedicated
controller can be reached with twelve address lines for addresses
$0000 through $0FFF. The most common address space is 64K,
reached with sixteen address lines to grab addresses $0000 through
$FFFF. Newer micros may have an extended address space as large
as sixteen megabytes, reached with sixteen address lines and up to

38

eight segment lines, over an address range of $00 0000 through
$FF FFFF.

Since the CPU must always be in charge, the CPU is usually the
only thing allowed to activate the address lines. Thus, an address
bus is normally unidirectional, going only from CPU to address
space.

Summing up .

The ADDRESS BUS is used to select an address
in ·the address space for later access by the
microprocessor's CPU.

The ADDRESS BUS width is decided by the size
of the address space. A 64K address space needs
sixteen address lines in the bus.

The ADDRESS BUS is always under control of
the CPU and thus is unidirectional.

Where you want to go is decided by the address bus. What you
want to get or put in a certain location then goes in or out via the
data bus.

Address buses and data buses are normally separate and on sepa
rate pins. A few micros use the same pins to route data and
addresses on a time-shared basis. This is called a multiplexed
bus . . .

On a multiplexed bus, you take turns doing things. The big
advantage is that you save lots of package pins, particularly with 16-

bit micros. The big disadvantage of a multiplexed bus is that you
need special timing circuits on each end to separate and route the

39

address and data commands. Another disadvantage of bus mul
tiplexing is that you may have to use special and nonstandard chips
made by one manufacturer rather than using industry standard
parts. Interface to ordinary everyday RAMs and ROMs may take
extra parts and extra hassle.

Still another disadvantage of multiplexed address and data buses
is that there is always a speed penalty for their use, since time has to
be taken to sort things out at both ends of the bus. A microproces
sor that uses multiplexed buses is inherently slower than one that
does not.

Another version of a multiplex bus gives you either eight bits of
data or the eight low bits of an address. Separate address lines are
provided for higher addresses. This technique is used in some
smaller microcomputers.

Multiplexed buses are becoming popular on newer micro chips,
particularly 16-bit devices. Multiplexed buses are an obvious sys
tem-level complication.

Another address bus complication may rear its ugly head on cer
tain micros. The address bus has to contain valid addresses only
while the CPU is actively trying to put something into or get some
thing out of an address slot. There may be garbage or other signals
on the address bus at other times.

The 6502 school has far and away the cleanest address lines of all
popular micros. Addresses are always there and always output. The
8080 school doesn't address during the first cycle of some instruc
tions. Instead, a special system status word is output to identify
what the machine is about to do. Thus, if you look at address lines
on an 8080, there will be great holes chopped in them at the begin
ning of each instruction.

The 6800 family disconnects the address bus for half of each
cycle. This means you have valid addresses half the time and gar
bage the other half. This same feature can be added to the 6502
family by adding some tri-state drivers to the address lines. Using
the address bus for only half of each cycle can have a very powerful
advantage. Other microprocessors or other hardware can access and
share the address space during the time the main micro doesn't
need access. This process is called Direct Memory Access, or DMA.
Two examples of things you can do when you chop up the address
bus signals this way are to transparently drive a video display or to
share operations between a pair of micros.

These details are rather technical and very system specific. What
you need to know at this point is that address lines, except on the
6502, may not be as nice and neat as you'd expect when you look at
them on a scope.

A reminder .

40

Address lines may not be totally "clean" in some
micro families.

During the times that an address is not actually
needed, some other signals may go over the
address bus.

These other signals may tell you the status of the
CPU or may be used for direct memory access,
shared processing, or video display.

For now, we'll ignore all these added hassles. We'll assume that
we have a separate address bus that always has nice clean
addresses.

Let's add one more bus to our system architecture. This one is
called a control bus . . .

. . . AND ADD SOME CONTROL LINES ...

DATA BUS

ADDRESS BUS

THE � IS A GROUP
OF WIRES THAT DECIDES READING
-VS· WRITING. SYNCHRONIZES
TIMING. PROVIDES FOR INTERRUPTS
AND RESETS, AND DOES OTHER
HOUSEKEEPING CHQRES

FINALLY,

···+
The details of the control bus very much depend on which micro

processor you are going to use. The control bus contains a group of
lines that keep track of the essential timing and control information
that the micro needs.

41

One control line on the bus tells whether we are going to read or
write to RAM memory. This one is sometimes called a R/Wiine. It is
obviously important to be able to tell whether we are reading from
or writing to a location. The R/W line is used to control hardware
inside each RAM that sets things up for transfer in the direction you
want to go.

Another control line is the system clock. This is a high frequency
signal that is the master crank for the microprocessor. We'll look at
more details on this when we get to system timing. The system
clock lets you lock everything together. This gets important when
you are using fancy peripheral chips or are address-pin multiplexing
dynamic RAM. Sometimes several different phases of the system
clock will be available and may be labeled cp1 and cp2 or something
similar. Different clock phases are used for different timing needs.
Timing on clock phases can be very critical. In particular, phase
overlap must be zero.

The reset line is another member of the control bus. The reset
line gets everything restarted properly on power up. When the
microprocessor's CPU is reset, it goes into a known state of a
known program and picks up from there. Some fancy 1/0 chips also
need to be reset to get started on the right foot. For instance, if you
had a port that output random data on startup, you might simulta
neously be giving "forward" and "reverse" commands to an entire
steel rolling mill or bring about other unpleasantries. The reset bus
is also your panic button to stop a wayward micro system when it is
up to no good.

If the address lines don't contain addresses all the time, some
control line signal must be available to tell us when the addresses
are legal. This may be called a VMA line, short for valid memory
address. Another control line tells us when an instruction is to
begin. This is often called a sync line.

Other systems may have special lines for other uses. Some micros
can be stopped, either briefly or for a longer time. This is done by
using a halt or wait line. One use of a brief delay is to allow for
access to a memory that may be slower than the rest of the system.
If a multiplexed bus is used for both data and addresses, another
line on the control bus has to tell us what arrives when.

There can also be one or more interrupt lines as part of our con
trol bus. These interrupt lines can let an outside world event change
what the CPU is doing. There are various types of interrupts, some
of which can be turned off and on and others which demand imme
diate attention. Some micros have many interrupt lines, arid others
have only one or two that are daisy-chained as needed. More on
this in the next chapter.

A definition .

42

The CONTROL BUS is used to give all additional
information needed to run a microcomputer.

CONTROL BUS details vary with the microcom
puter in use.

Typical CONTROL BUS lines include sync, reset,
read/write, halt, interrupts, valid memory address,
system status, halt, clock, timing signals, and so on.

The control bus isn't a single-purpose sort of thing like the data
bus or the address bus. Instead, the control bus is a group of wires
used to control the rest of the system as needed. The object of the
game is to have as simple a control bus as possible and to use as
few different control signals as possible, but most micros still end
up with a handful of lines.

Most of the lines on the control bus go from CPU to address space
and other peripherals. A few lines, such as the reset line and interrupt
lines, go the other way, bringing outside world commands into the
CPU. Most control bus lines are unidirectional and go only one way.

Here's a rundown of typical control bus lines .

43

Once again, the object of a control bus is to use as few lines as
possible to control the response of the microprocessor chip, the
address space, and any interaction with the outside world. While
most control lines go from CPU to address space, a few, such as the
interrupt lines, may go the other way.

Details of use and names will vary with the microprocessor family
you pick. For instance, you'll find a single R/W control line in the
6500 and 6800 families, while the 8080, Z80, and 8048 families use
two separate read and write lines. Other details will also change
from family to family.

ADDRESS SPACE DECODING

Our address space is the total reach of the microprocessor's CPU.
Into this address space we put blocks of RAM, ROM, 1/0, or noth
ing. How do we know which block we are going to access at any
time?

We must use an address that calls out a unique slot in the address
space. The trick is to make each address correspond to something
we want.

Back in Volume 1, we saw that we could decode any 16-bit
address with a 16-bit AND gate and a handful of inverters. This may
be the way to go if you need only a single slot decoded for a special
use, but brute force decoding gets unbearably complicated when
you need lots of locations uniquely decoded.

We saw that one way to simplify decoding was to split up the
problem. We might take a 65536 location address space and break
the space up into 256 pages of 256 locations per page. We might
take the inner circuitry of a 16K RAM and use seven column
addresses and seven row addresses in a matrix, since 2f7 * 2f7 =

2f14 = 16384. Anything that breaks the decoding down into two or
three things working together is bound to help.

For instance, suppose we have a microcomputer system that has
three blocks of 16K RAM and one block of 16K ROM in the address
space. Each block will need fourteen address lines to select one
unique location. What we do is connect all fourteen low address
lines to all address inputs of all blocks at once.

That leaves us with two high address lines. We take those two
lines and route them to a one-of-four decoder. The output of the
decoder then drives the chip-selects or otherwise activates only one
block at a time.

Thus, in a micro system, we always address everything every
where, but we are careful to activate only one block of something
at once .

44

Address space decoding is done in at least two
steps.
ALL of the low address lines go to ALL address
inputs of ALL blocks at ALL times.
The remaining high address lines are decoded to
activate or enable only one block at a time.

Usually, you end up doing two different things with your address
lines. You put all the low address lines directly into each block of
RAM, ROM, 1/0, or empty space. The remaining high address lines
then go to a fast decoder that activates only one selected block at a
time.

How many address lines go where is decided by the size of each
block. If you are using 16K blocks, then the lower fourteen address
lines go to each and every block, since 2i14 = 16384. The high two
lines get one-of-four decoded and activate one block at a time. Like
this .

DECODING BLOCKS OF ADDRESSES:

THE UPPER TWO ADDRESS
LINES GET DECODED TO
ONE·LOW-OF·FOUR. ENABLING
ONLY ONE BLOCK AT A TIME.

(22
= 4)

2 BITS

1·0F-4
DECODER

16K
ADDRESS

SPACE
BLOCK
.,..........,

16K
ADDRESS

SPACE
BLOCK
�

16K
ADDRESS

SPACE
BLOCK
..,..._..,

16K
ADDRESS

SPACE
BLOCK

�

THE LOWER 14 ADDRESS
LINES GO TO EACH ANP
EVERY 16K BLOCK (21

= 16384)

45

There are several important points about decoding the address
space. You use as many decoding steps as you need to reduce the use
of brute force hardware. Each and every block of the address space
will always get all of the low address bits all of the time. But only one
block will be activated at a time from a decoder that works with the
high address bits. If a block is going to do lots of smaller things, such
as serving a bunch of 1/0 ports or whatever, extra decoding internal to
that block can be added to sort things out further.

Any and all decoders you use have to be much faster than every
thing else in your microprocessor system, since we can't waste time
waiting for a decoder to make up its mind about which output to
activate. As a general rule, decoders should be at least twenty times
faster than the rest of the system. This means you use LSTTL decod
ers with their 25-nanosecond speed in the normal NMOS or CMOS
microprocessors. If you are building a faster bipolar microprocessor,
then your decoders have to be super fast, using ECL or some other
horrible logic family to pick up the blinding speed you will need.

From the CPU point of view, all the CPU is doing is sending out
an address. From the single address location viewpoint, that address
location is activated only whenever the CPU sends out an address.
It is only at the system level that we see all this fancy two-step or
three-step decoding going on. An address is an address, both at the
CPU and inside the address space.

Let's put all this together into a final architectural picture . .

. . . TO GET THIS ARCHITECTURAL MODEL OF A TYPICAL MICRO:

......

46

Reviewing, we see that the typical microcomputer has an internal
microprocessor area and an external address space area, and that
the two are normally separate. The microprocessor includes the
CPU, which acts as postmaster or system traffic cop, along with
some working registers that get involved as temporary stashes with
just about everything the microcomputer does.

The address space consists of blocks. Each block can be RAM,
ROM, 1/0, or nothing at all. These blocks are arranged to suit the
needs of both the microprocessor and the system designer.

The microprocessor communicates to the address space with
three buses, called the data bus, the address bus, and the control
bus. The data bus is used to pass information to and from the
address space. On a typical 64K micro, an 8-bit bidirectional data
bus is most often used.

The address bus is used only to send out addresses from the CPU
to memory and has to be wide enough to address each and every
location in the address space. On a 64K micro, there is a 16-bit uni
directional data bus, usually arranged as two 8-bit groups to select
one of 256 pages and one of 256 positions on each page. A few
micros will multiplex their address and data lines over the same
lines to save package pins. If this is done, addresses and data have
to be separated at each end. System strobe pulses have to keep
track of what is going where.

The address lines are normally split into at least two groups. The
low address lines go to the address inputs on all the chips in every
block. The high address lines go to a special, fast decoder that picks
one of the available blocks. The decoder will often use the chip
select pins to activate only the ICs in that one enabled block. Some
times a second decoder will be found inside a block to further
break down the decoding process. Multiple-step decoding is done
to greatly simplify the hardware needed to recognize a certain
address. However the decoding is done, the CPU puts out an
address and only one slot at a time recognizes and responds to its
own unique address.

The control bus is really a group of lines used to keep track of
what is happening inside the microcomputer. Control bus lines
include clocks, resets, read and write lines, strobes, sync signals,
halt lines, interrupts, and whatever else is needed. Most of the con
trol lines originate within the CPU, but others, such as interrupts
and resets, can come from the outside world.

Each system has its own unique architecture. What we have
looked at is a general architecture of a general microprocessor.
Whatever system you pick, you will always find an address space, a
CPU, working registers, one or more buses to get addresses and
data back and forth, and a few control lines that let either you or
the CPU control the action.

47

THE MEMORY MAP

There are two very useful tools that will show you what goes
where in the memory space and inside the CPU. The address space
tool is called a memory map, and the microprocessor or CPU tool is
called a programmer's model. Let's look at the memory map first.

The memory map is simply a picture of what is located where in
the address space. The choice of what goes where is made by the
system designer but is restricted by the microprocessor being used.

There are two types of memory maps. The simplified memory
map paints the big picture. In particular, the simplified map should
show you how big the address space is, indicate where the user
RAM is located, point out where the monitor is, and identify the
general area of 1/0 locations. The purpose of a simplified memory
map is to get you started understanding and using a micro system.

There is also a detailed memory map. The detailed memory map
tells you the exact use of each and every location in the entire
machine. Detailed memory maps can turn out to be gory messes.
Save these for later on when you understand exactly what you are
doing.

Detailed memory maps will also change with whatever happens
to be in use. For instance, in the Apple II, the use of HIRES graphics,
the DOS operating system, machine language, the mini-assembler,
the Sweet-16, the floating point package, Applesoft, and Integer
Basic may all want to use certain locations for different things.
Obviously, any given location can be used for only one thing at any
one time.

Thus . . .

For instance, a simplified memory map for the older Apple II
would show that there is RAM in the three bottom 16K blocks and
that the very bottom 2K of RAM is reserved for "system" uses. What
system uses? We don't care for now. All you need to know is that

48

this area is temporarily off limits to you as a programmer until you
know more about what you are doing.

A form for a simplified memory map looks like this . . .

CPU

SIMPLIFIED MEMORY MAP

GOOD USER RAM
PROGRAM START

I$ I

SIZE OF THE
ADDRESS SPACE

I K I

The important things the simplified memory map should show
you are the name of the system, the microprocessor you are using,
the size of the address space, the intended uses of address space
blocks, the location and beginning of "safe" user RAM, and the
location of the monitor and 1/0 areas.

The simplified memory map is often shown like a thermometer,
with one "degree" of the thermometer for each page of the address
space,' and with the low addresses on the bottom and the high
addresses on top. If slightly more detail is needed in some area, this
area can be expanded. But it is important not to get into too much
detail.

Here is the simplified memory map for the original Apple II .

49

APPLE II

CPU �

FFFF

F800-

DOOO

cooo-

8000-

4000-

0800-

0000

MONITOR

BASIC
ROM

110

(16K)

USER
RAM
(16K)

t-----

(16K)

!l.�§@)ts!i

SIMPLIFIED MEMORY MAP

GOOD USER RAM
PROGRAM START

I $08oo I

SIZE OF THE
ADDRESS SPACE

I 64 K I

We see that the bottom 16K is RAM. The next 16K was originally
intended for expansion RAM, as was the next 16K. Today, most older
Apples start with a full 48K of RAM and then stuff up to a megabyte of
extra bank switched RAM into the 1/0 slots. The next 4K of the usual
64K address space is reserved for 1/0, and the top 12K of the address
space is ROM. The uppermost 2K of ROM is used for the system mon
itor. The other ROM areas normally contain firmware for a higher level
language, such as Applesoft or Integer Basic.

The bottom 8K of RAM is shown as "reserved." Actually, some
great things are happening in this "reserved" space, but we don't
need to see the details just yet.

Later on, we might find out that the $0400 to $0800 space in this
RAM is a video display page. For more detail, we would find out
which location corresponds to which place on the screen. We
would even find out that there is some scratchpad RAM stuffed in
here for 1/0, and so on. But it is very important always to start with
a simplified memory map. That way you aren't tripping over a
bunch of things that you don't yet need or understand.

50

Simplified memory maps with exactly the right amount of detail
are very rare, so you will almost always have to make your own,
starting with a blank form.

Let's look at some more examples of simplified memory maps.
Here is the SYM-1, a trainer from the 6502 school ...

SYM-1

CPU �

FFFF
FFBO-

AFFF

AOOO

BFFF-

8000-

0400-

0000-

SIMPLIFIED MEMORY MAP

GOOD USER RAM
PROGRAM START

I $o2oo I

SIZE OF THE
ADDRESS SPACE

I 64 K I

� ·
_/

ft".'=,...-1 -0200

f.::l:lt'.iit�...J -OOFB

-0000

The first thing we notice is that much of the address space is
unused. This is typical of most trainers. You can learn bunches with
nothing but short programs that take up only a few hundred words
of RAM. Further, the trainer's monitor and other firmware are also
usually simple and take up little space. If you like, you can add your
own RAM and ROM to this space later on, but chances are you will
use some fancier micro instead. So ...

Memory maps for most trainers will have lots of
empty space.

It takes only a few hundred RAM and ROM loca·
tions to do simple yet useful micro tasks.

51

On the SYM-1, we see we have a thousand words of RAM down
on pages zero through three. As with most systems in the 6502 fam
ily, we put the RAM on the bottom and the ROM on the top.

RAM area $00FB through $01 FF is shown reserved. The eight loca
tions on page zero are used by the monitor to save registers for you.
Page one is set aside for the stack. Most often, the stack is active
only at the upper end of page one, and you may be free to use most
of the lower space on page one. But this is risky for someone new
to micros since you can either plow the stack or let your stack run
down into your program or data. For now, leave page one alone.

We see there is a monitor ROM at $8000 through $8FFF, and an
additional ROM area at the very top of memory. This additional
ROM area holds our reset and interrupt vectors so we know where
to go on a system reset or an outside world interrupt.

We also see that we use a 64K address space and that location
$0200 is a good place to start a user program.

Here's an example of a simplified memory map for the Z-80
starter ...

52

I Z·80 STARTER I SIMPLIFIED MEMORY MAP

CPU �
GOOD USER RAM
PROGRAM START

1 $2ooo I

SIZE OF THE
ADDRESS SPACE

I 64 K I

-$2400 � -��!!'!'-��ffi"Y;l"ii"�� -$239o

USER
RAM

...L.--....1. -$2000

Since the Z-80 starter is from the 8080 school, we expect to find
ROM on the bottom and RAM further up. In this case, our monitor
takes up the first 2048 locations in the address space. This time, the
reset and interrupt vectors go at the very bottom.

Our user RAM goes in the midd�, providing 1024 words starting
at hex $2000. A portion of user RAM above $2390 is set aside for the
monitor's private use. Location $2000 is often a good starting place
for your programs on this trainer. As with the SYM-1, we have avail
able a full 16-bit, 65536 location address space.

Here is a horribly out-of-date example of a trainer with a much
smaller address space, the lmsai 8048 ...

IMSAI 8048 I SIMPLIFIED MEMORY MAP

CPU �

$0FFF-

RAM

$0800- I I

$0000

MONITOR
ROM

GOOD USER RAM
PROGRAM START

I $o8oo I

SIZE OF THE
ADDRESS SPACE

I 4 K I

This trainer is extinct, but it does shows us the typical layout for
most current 8048 microcomputers. The 8048 is a smaller micropro
cessor intended for dedicated control uses. Its normal memory map
is only 4K, or one-sixteenth the size of the two we just looked at.
This memory space is split into two banks of 2K each. The ROM

53

bank goes on the bottom and the RAM bank goes on the top. Your
best starting place for a user program is at location $0800 at the
bottom of the RAM space. When you examine the 8048 in detail,
you'll find that this limited address space is more than made up for
with very powerful ways of handling input and output. The 8048 is
good for appliance and automotive uses but normally cannot sup
port a higher level language or any use needing much memory
space.

The important thing with a simplified memory map is to keep it
simple. Later on, you can pick up specific details as you need them.
But adding detail also adds confusion, particularly for beginners.

Be sure to create your own simplified memory map for each and
every micro you run across. All the info you will need should be
buried in the micro's documentation somewhere: Use the same
shape and form for each of your simplified memory maps.

A detailed memory map is often shown as a table or a book of
tables rather than as a simple thermometer style map. For instance,
here is a fragment of the Apple ll's detailed memory map .

$0020 WNDLEFT Left side of scrolling window

(normal range $00 to $27)

$0021 WNDWDTH Width of scrolling window
(normal range $00 to $28)
(WNDLEFT + WNDWDTH <$28)

$0022 WNDTOP Top of scrolling window
(normal range $00 to $18)

$0023 WNDBTM Bottom of scrolling window
(normal range WNDTOP to $18)

$0024 CH Horizontal cursor position

(normal range $00 to $27)

$0025 cv Vertical cursor position

(normal range $00 to $17)

As you can see, these six locations tell a lot about what you need
to know to use the scrolling window in the Apple II. Since there are
another 65530 locations left to cover, a detailed memory map can
be a very involved listing. Things get even worse when one location
can have more than one use.

The detailed memory map is often far too detailed for you early
in the game. You tend to get lost out in left field rather than zeroing
in on what you are trying to do. Here are two good use rules .

54

DO- Have a specific goal if you must
use a detailed memory map.

DO NOT- Use a detailed memory map unless
you really need it.

Wait to use the detailed memory map on a system until you really
need it. Detailed memory maps also are often hard to find. You may
have to try a user group or some independent publisher to pin
down this information.

Let's review. The memory map is a tool that tells you what goes
where in a micro's address space. There is a simplified memory map
that shows you only the essentials and a detailed memory map that
gives you all the specifics on each and every location. The impor
tant things the simplified memory map should show are the CPU

used, the size of the address space, the locations of the ROM, RAM,
and 1/0 blocks, the area of user RAM available without restrictions,
and a good starting place for simple programs. The detailed mem
ory map should show the use of each and every location for all pos
sible uses. But don't use such a map until you have a specific need
and understand what you are doing.

DOING IT:

() Create simplified memory maps for
a trainer, a personal computer, and
an industrial controller of your
choice.

As you tear into the manuals that go with most micros, you'll be
horrified at how atrocious most of them are. A simplified memory
map properly done in a standard form is a joy to behold. Make sure
that any simplified memory maps you do show enough, and just
enough, information to be useful. A simplified memory map will be
a very important part of the micro toolkit that we will be putting
together shortly.

THE PROGRAMMER'S MODEL

Our memory map tells us the uses we put on locations in the
address space. The programmer's model is another tool that does
the same thing for the microprocessor's internal space ...

55

Let's look at a programmer's model and see what it will do for us.
Here is the programmer's model for the 8085, an upgraded version
of the original 8080 . . .

15

8085 PROGRAMMER'S MODEL

0

A ACCUMULATOR
8

D BC REGISTER PAIR

DE REGISTER PAIR

HL ADDRESS POINTER

SP STACK POINTER

PC PROGRAM COUNTER

I s I z � A lfifiJ p wal c I PSW STATUS FLAGS

SIGN �3 El L-cARRY
ZERO ___j L__ NOT USED

NOT USED PARITY

AUX. CARRY NOT USED

Each block corresponds to a single bit location. Each row of blocks
corresponds to one working register. We see at the top that we have
an accumulator that is eight bits wide. The accumulator usually ends
up holding the result of a logic or arithmetic instruction.

We then see that we have six register pairs labeled B, C, D, E, H,
and L. The B, C, D, and E are general-use registers that can be used
as handy stashes. You can use these as separate 8-bit registers, or
you can pair B and C or D and E into a single 16-bit wide register.

H and L are an intended-use register pair. They will often contain
an address, rather than data, and will point to the address space.
The H and L pointer will show the source or destination of a move
command that is to go out into the address space. While you can
use H and L as plain old registers, it is better not to.

56

Continuing down the model, we see there is a 16-bit wide stack
pointer that can point anywhere in the address space. There is also
a 16-bit wide program counter that can point to any location in the
64K address space. We will find out much more on stack pointers
and program counters later. The stack pointer will usually point to
the next available location on the stack, which is a convenient stash
for temporary storage and for handling subroutines and interrupts.,
and the the program counter will tell the starting address of the
present instruction we are working on.

Finally, we have a bunch of flags grouped together in a flag regis
ter. The carry, negative, and zero flags are common to most micros.
The 8080 school calls its negative flag an S flag, short for sign. The
same thing in the 6502 school is called an N flag. The name is differ
ent but the purpose is the same.

We use flags to show that something has happened in the micro.
Flags become very powerful when you test them and then make a
decision based on the test result. We'll learn more on flags later.
The point here is that the programmer's model shows you how
many of what kind of flags you have and how they are arranged.

The programmer's model for the 6502 looks like this .

15

0

6502 PROGRAMMER'S MODEL

0

A ACCUMULATOR

X INDEX REGISTER

Y INDEX REGISTER
8

D PC PROGRAM COUNTER

ITG]IIIIIIIII S STACK POINTER

I N I v � B I 0 I I I z I c I p STATUS FLAGS

NEGATIVE�3 El L-cARRY

OVERFLOW __j L__ ZERO

NOT USED INTERRUPT

BREAK DECIMAL

We see at once that the 6502 school has fewer and shorter work
ing registers than the 8085. There is an 8-bit general-use accumula
tor and a pair of intended-use 8-bit X andY registers. There is a 16-
bit wide program counter that can point anywhere in the address

57

space and an 8-bit wide stack pointer that always points to a loca
tion on page one. The flag register holds seven flags for us, includ
ing the negative, carry, and zero flags common to most micros.

The programmer's model also hints that 16-bit wide arithmetic and
memory moves will be harder than with a device from the 8080
school. But what the model doesn't show is that the 6502 has all 256
locations of page zero in the address space available to us for use as
working registers and that there are powerful address modes that
make running around the entire address space very easy and conve
nient.

The 6800's programmer's model looks something like the 6502's .

15

6800 PROGRAMMER'S MODEL

8

0

A ACCUMULATOR

B ACCUMULATOR

X INDEX REGISTER

PC PROGRAM COUNTER

SP STACK POINTER

tt�T] A I I I s I z I 0 I c I s STATUS FLAGS

NOT usED�3 El L- cARRY
NOT USED___j l__ OVERFLOW

AUX. CARRY ZERO

INTERRUPT SIGN

This time we have two 8-bit accumulators and three 16-bit wide
pointer registers-namely, the index register, the program counter,
and the stack pointer. There are six flags available, including the
usual carry, zero, and negative flags. The 6800 turns out to have
much weaker address modes than does the 6502 and is inherently
slower because it lacks a feature called pipelining. It is interesting
to compare this VCIW with the 6502 to see the "alike but different
somehow" similarities between micro families.

Remember bow our 8048 microprocessor had a much smaller
address space than the others? Well, it more than makes up for this
with its programmer's model .

58

RO'
R1'
R2'
R3'
R4'
R5'
R6'
R7'

8048 PROGRAMMER'S MODEL

0

m:lwm :;:r?'n�,,}:i''?h0A1Y0z1,j;

BANK 1

7 0
I I I I I I I I I A ACCUMULATOR

RO ADDRESS POINTER
R1 ADDRESS POINTER
R2 REGISTER
R3 REGISTER
R4 REGISTER
R5 REGISTER
R6 REGISTER

I I I I I I I I I R7 REGISTER

BANK 0

:F LEJ [lfD OJ IJ±ill $:7

• 32 X 8
USER RAM

8-LEVEL,
16-WORD STACK •

ON-CHIP RAM

.�arrnrn m1nm.�.
11 10 9 8

D II II 0 I I I I I I PC PROGRAM COUNTER
POSITION BANK PAGE

11111111 BUS }
PORT 1 INPUT /OUTPUT
PORT 2

I I I I I I I I I TIMER

TEST ONE --(D IQl rj"l
TEST ZERO -----�::::i L:..J
INTERRUPT ------__j

TESTABLE INPUTS

OJ I c I A I 0 I B BBl s I s Is I STATUS FLAGS

FLAG 1 _j I

II �· L_

CARRY STACK POINTER

AUX. CARRY NOT USED
FLAG 0 BANK IN USE

59

We see there is the usual 8-bit accumulator. In addition, there are
sixteen working registers, numbered RO through R7 and RO' through
R7'. RO, R1, RO', and R1' are intended-use registers since they can
contain an address for us. The others are general-use registers.

If sixteen registers aren't enough, there are also another thirty
two words of user RAM inside the CPU, along with a sixteen-word
stack.

Our program counter is shorter than usual since it only has to
cover 4K of address space. The program counter is further broken
down into three parts. The most significant bit selects the 2K bank
in use, picking between the low 2K ROM and the high 2K RAM.
The next three bits pick one of eight pages of 256 bytes out of the
bank selected. The final low 8-bit word gives us the exact location
on the page and bank we selected.

We also see bunches of new and fancy stuff further down in the
model. There i'S a timer register that can be used to provide time
delays or count events. There are three input lines that can be
tested. There are two 1/0 ports of eight bits each on board, along
with an expansion port called the BUS 1/0. Only five flags are avail
able, and the stack pointer, which is allowed to point to only eight
different locations, is included in the flag register.

Don't worry about how all this stuff works just yet. Our interest
here is in the programmer's model itself and how it shows the avail
able resources inside the CPU. We've gone into extra detail so you
can see the variations you will meet from micro to micro. Most
micros can do almost any task, one way or another, but the details
can and will vary.

DOING IT:

() Create a programmer's model for
three different new microproces
sors.

We have used programmer's models of the older devices as
examples here, since most of the newer chips add to or enhance
these "oldies but goodies."

The newer micros may have very involved programmer's models
because of all the resources they include. Often you can find the
programmer's model on the pocket card for the microprocessor. If
not, it's bound to be somewhere nearby, such as in a programming
manual or on a detailed data sheet.

60

Even if you have a nice, neat programmer's model available, be
sure to make yourself a personal copy BY HAND. This forces you to
think about what is available and how it is used as you make the
copy. Hand copying a model also raises the "what if?" question. If
you don't see enough details on how to use some resource, think
about it for a while, ask "what if," and then try it out on your own
to see what it will do.

As a general rule, anything you ignore on a micro will turn out to
be super powerful and super useful, once you nail down the use
details. The longer you put off learning about it, the more it will do
for you, and the sillier you will feel when you ultimately understand
what is going on.

Wow. We've gone through a lot of details on both the memory
map and the programmer's models. Both of these will be essential
parts of your micro toolkit. But before we look at all the other tools
you will need, we have to check into another matter that involves
address modes. I like to call these . . .

THE PACKAGE TO ALBUQUERQUE

How would you go about getting a package to Albuquerque? .

There are lots of ways to get a package to Albuquerque. Speed,
cost, reliability, protection, convenience, weight-all these things
enter into your choice of how to ship a package. For instance .

61

DOING IT:

How would you get each of the following
to Albuquerque?

() A jar of peanut butter
() 50 pounds of peanut butter for a

small bakery
() 50 tons of peanut butter for a candy

factory
() A gasket for routine farm machinery

maintenance
() A similar gasket for a hospital's only

kidney dialysis machine that failed
suddenly

() A tin of corned beef hash
() A kilo of Lebanese hash
() A live giraffe
() 1 000 marbles
() 1 000 Krugerrands
() 1 000 cubic feet of helium
() An idea

What is good for one package is clearly ungood for another. Where
you are shipping something can also lead to big differences ...

DOING IT:

How would you ship a barge of coal from .

() Pittsburgh to Cincinnati?
() Amarillo to Albuquerque?

From Pittsburgh, we simply cut the rope and .float the whole
works down the Ohio River. Simple, convenient, and cheap.

From Amarillo-let's see now. First we borrow every skateboard in
Texas and neatly lay them all out on 1-40. Then we find some ...
But what about that long hill down Sandia Pass? As long as they
aren't too particular about exactly where in Albuquerque we deliver
the coal, it just might work. But clearly there are better ways.

Microcomputers also offer lots of ways to get a package to Albu
querque. There are many different methods you can use to get to a

62

certain location in the address space or to access a certain working
register. We call these methods address modes ...

Much of the richness and variety of the different micro families
comes from the different address modes available. Some micros
have only a few address modes; others have over a dozen. Some
modes are everyday plain vanilla things; others are extra powerful.

Which address mode do you use? The answer is the same as how
you get your package to Albuquerque.

It depends.
The main differences between available address modes are in

their length, their speed, and what they can reach ...

Address modes differ in how many bytes they
need, how fast they work, what they can get at,
and how convenient they are to use.

Not all address modes are available on all
micros. But almost any task can be done on a
micro using some combination of the available
address modes.

There are lots of tradeoffs here. Sometimes, you can pick any one
of a handful of different address modes. Other times, only one will
do, or else one will do the job far better than any other. In general,
you try to make your program as short as possible and try to get it to
run as fast as possible. These two goals are usually opposed to each
other, for anything you do to shorten your code may lengthen how
long it takes to do the job ...

Usually, you want to make your programs as
short and as fast as possible.

Operating speed and program length tend to
fight each other, so different address modes are
available for horse trading.

63

One classic example is a loop. Say something needs to be done
ten times. By looping the same code ten times over, you can
shorten the program almost to a tenth of its "brute force" form. But
each trip through the loop means unavoidable loop overhead that
takes time. As we said, short code often equals long execution
times and vice versa.

Each manufacturer has its own name for its address modes, and
there's lots of PR fluff to make the modes sound better than they
really are. Sometimes one mode may be split up several ways to
make the machine sound more powerful.

When you remove the flack, most microprocessors use combina
tions or variants of only seven basic address modes. It is up to you
to sort out what these modes are, how they are used, and what's
really behind the name used for each mode.

To repeat, there are different address modes because each mode
does one particular job better than the others; and there are lots of
tradeoffs involved in writing a program that is both short and fast.

Let's pretend we have a general and universal microprocessor
that doesn't have strange names for its address modes. Let's also try
to relate each mode to something in the real world and see where
we get to. Then we'll sum everything up in a handy address mode
reference chart.

IMPLIED ADDRESSING

64

You just got home, and there, sharpening its claws on your best
hi-fi speaker grille, was the cat.

Now, exactly what you say probably isn't printable, but it will be
short and to the point, leaving no doubt whatsoever which cat and
which speaker grille you are referring to.

The simplest microcomputer addressing mode does the same
thing. It is short, obvious, and leaves no doubt what is to be done
where. This is called implied addressing ...

For instance, we now know we have carry flags in most micros. A
command to "clear the carry flag," often shortened to the mne
monic CLC, will clear the flag for us.

On a CLC command, the carry flag gets cleared. There is no ques
tion about which flag or what we are going to do to the flag.

Register moves and transfers are other examples of implied
addressing. The command MOVBC moves a copy of working regis
ter B into working register C and destroys anything old left in C. The
command TXY transfers a copy of register X into Y. These actions are
pretty much the same. Only the name changes from micro family to
family.

The big advantage of implied addressing is that it is short and
sweet. One single byte is needed for a command and that is all
there is to it. Any task that can be done without any further infor
mation lends itself to implied addressing.

The big disadvantage of implied addressing is that it is usually
limited to manipulation of working registers or housekeeping
actions. There is no way to nail down a specific location in the
address space with implied addressing. Nor is there a way to answer
"with what," "from whe.re," "to where," or "how much."

Address modes will differ through their op codes. A different
command will be used for each and every different address mode
that a micro can handle, even if the commands may end up doing
nearly the same thing.

The symbol for an implied addressing mode is just the mne
monic, and nothing more ...

65

An implied addressing mode is shown by the
mnemonic only. Nothing else is needed .

CLC

Let's look at some more examples of implied addressing ...

TYPICAL IMPLIED COMMANDS

BRK_:_Break, or do a software interrupt for
debugging.

CLA-Ciear the accumulator, or reset it to zero.
CLC-Ciear the carry flag.

NOP-No operation. Go on to the next step.
MOVBC -Move a copy of the contents of B to C.

PHA-Push a copy of the accumulator onto the
stack.

PLA-Pull off what is on the top of the stack
and put it into the accumulator.

ROLA-Take what is in A and rotate the bits all
one to the left.

RORA-Take what is in A and rotate the bits all
one to the right.

RTI-Return from an interrupt to wherever you
left off before.

RTS-Return from a subroutine to wherever you
were before.

SEC -Set the carry flag.
lAY-Transfer a copy of the contents of A to Y.

This assortment of op codes is from several micro families, but
you get the idea. Any action that can be done without any further
help uses the implied addressing mode.

Implied addressing commands are usually the fastest available for
a given micro. Since no further information is needed, the micro
can right now go and do whatever has to be done. Thus, implied
addressing is usually both the fastest and the shortest way to get a
job done.

However, there are a very few implied addressing commands that
may take a long time to execute, perhaps even longer than any
other command in any other mode. In these special cases, a single
command starts the micro off on a long song and dance routine.
Returning from an interrupt is one example. The micro has to look

66

around in the stack to find out where to return to. It then has to get
some flags off the stack and finally has to pick up where it left off.
All these det�ils take time, even though one simple command is all
it takes to start the routine.

Returning from a subroutine and generating a software-con
trolled break are other examples of implied commands that take a
long time. But remember that these are exceptions. Most implied
commands are very fast and very short.

Generally, you'll find bunches of implied op codes in any micro
family. These get used any time and any place they wilt work. Prac
tically all of your service and housekeeping commands will use the
implied addressing mode.

Suppose we want to put some value into a register. Obviously we
can't do this with an implied address mode, because we also have
to know "how much?" This leads us to another addressing mode.
This one is called . . .

IMMEDIATE ADRESSING

When you pull up to a gas pump, you imply that you want some
gasoline. But that is not enough. Besides implying that you want
some gasoline, you also have to tell how much of what kind of gas
you want. Usually you will do this with some sort of quantity value,
such as "ten dollars worth," "ten gallons, please," or "whatever the
tank will hold." Even this last value ends up as something definite
when the tank is filled.

To buy gasoline, you need two things. First you say you want gas
and then you say how much.

67

The immediate addressing mode does the same thing for the
microcomputer. The immediate mode usually puts some value
somewhere for you. After an op-code word that says to do some
thing, there is a second word that tells "how much." The first word
says "jump," while the second says "how high " ...

The name immediate sounds rather urgent, but here it simply
means that we know exactly what we want to fill something with.
We put a value immediately into a register, rather than going to
some other location, getting some variable value from that location,
and moving it.

The usual symbol for an immediate command is the mnemonic
followed by a # number symbol and then a numeric value.

For instance, the command LOA #$56 tells us that we are to
immediately put the hexadecimal value $56 into the accumulator.
Note several important things here. First, the immediate address
mode takes both an instruction and a value. Second, the # symbol
is absolutely essential, so that you or an assembly program can tell
an immediate address mode from other upcoming modes. Finally,
you must show whether the value is in decimal or hex. Hex is nor
mally shown by a dollar sign in front and decimal is shown with
nothing in front ...

An immediate addressing mode is shown by a
mnemonic, followed by a number symbol, fol
lowed by a value . . .

LOA #$56

Here are some assorted examples of immediate addressing com
mands .

68

LOA #$56-Puts a value of hex 56 in accumulator.

lOA #56-Puts a value of decimal 56 in accumulator

EOR #$FF-Does a bit-by-bit exclusive-OR of the
accumulator and the mask of value # FF

(in this example, we complement A.)

CPY #$04-Compare the Y index register against the
value hex 04.

SBC #$01-Subtracts one from accumulator.

We use the immediate addressing mode whenever we want to fill
a register with some value, or whenever we want to do a logic oper
ation against a fixed mask or a fixed value.

By the way, we are showing you these examples in what is called
assembler format. Assembler format is easy to read and will be most
helpful later. When you actually load these values into a machine
language program, though, you will simply be punching hex num
bers into the machine. In the immediate addressing mode, the first
number will be a command to do something and the second
number will be a value or a logic mask.

Two fine points. The LOA #56 decimal example will work only if
you or an assembly program calculates the "real" value of hex $38.
And the SBC #$01 example will work properly only on a set carry
flag in most micro families.

An immediate addressing mode is usually slower than an implied
addressing mode. The reason for this reduced speed is that there
are usually two bytes in the instruction. After the micro knows what
it is to do, it has to look into the second byte to find out "how
much?" or "with what?" Time is needed to process and then use
this second piece of information.

The advantage of immediate mode addressing is that it lets you
shove a fixed value into or logically operate a fixed mask against a
register or other location.

The disadvantage of immediate mode addressing is that it is only
immediate. There is no ordinary way it can handle variables or
changing values. Although great for putting numbers into registers,
immediate mode usually can't get the numbers back out, since a
store command has to tell where to put something. Immediate
mode can ask "how much" or "with what "-it cannot ask "where."

Another disadvantage shared by the immediate mode addressing
with the implied mode is that it usually works only with working
registers and cannot reach a point out in the address space. If we

69

want to get anywhere in the address space, there is one address
mode that always works for us. This one is called .

ABSOLUTE LONG ADDRESSING

SIMIAN SHORES
LOTS 56-lOt

A city zoning map shows you the location of every street and
every address in the entire town. In much the same way, an abso
lute long address lets us reach each and every location in a micro's
address space . . .

Absolute long addressing always works. It can hit any spot any
where in the entire address space. Absolute long addressing is avail
able on all micros and is one main way we have of reaching into a

70

RAM, ROM, or 1/0 location out in the address space, either loading
from or storing to that address.

The usual symbol for an immediate address is the mnemonic fol
lowed by enough hex digits to specify an exact address. Most often,
you will use four hex digits to nail down one location in an address
space of 65536 locations . . .

An absolute long addressing mode is shown by a
mnemonic, followed by an address value of four
hex digits ...

LOA $FA62

For instance, the command LOA $FA62 will reach into the address
space, get the value stored in location hex $FA62, and put that value
into the accumulator or A register. Usually three bytes of op code
are needed. The first byte tells us that an absolute load of the accu
mulator is needed. The second and third bytes tell the exact address
from which loading is to take place.

Now, on most microcomputer families, including the 6502 and
8080 schools, the third byte tells us the page of memory and the
second byte tells the position on that page. Thus, when reading
actual machine language coding, addresses are picked up in "back
wards" order . . .

Most micro families use the third byte of the
command to show the page or high address and
the second byte of the command to show the
position on that page or the low address.

This is true of the 6502 and 8080 schools but is
NOT true of the 6800, which is backward from,
and thus slower than, everybody else.

WATCH
THIS
DETAIL

+'
The reason we do things backwards is that there is a speed advan

tage called pipelining that lets the micro set up what it must do
ahead of actually doing it. Another advantage to the backwards
address entry is that op codes are much more consistent from
address mode to address mode. This way, a position on a page
always follows the op code, both for absolute long and absolute
short addressing.

71

Here are some absolute long addressing examples ...

LOA $FEFD-Loads the accumulator with a copy of
what is in location $FEFD.

STA $CAFE-Puts a copy of what is in the accumula
tor into location $CAFE.

INC $0145-Adds one to the value stored in loca
tion $0145 if there is RAM there.

DEC $EF03-Subtracts one from the value stored in
location $EF03 if there is RAM there.

ASL $1234-Shifts the contents of location $1234

one to the left if there is RAM there.
ORA $6666-Does a bit-by-bit logical OR of $6666

and the accumulator; puts the result in
the accumulator.

ADC $4545-Adds the contents of $4545 to the accu
mulator and then puts the result in the
accumulator.

JNZ $8888-)umps to location $8888 if the last thing
done didn't give a zero result.

JSR $9999-Temporarily jumps to a subroutine at
$9999. Will most likely return later.

We will pick up details on how to use many of these instructions
later. Right now, we just want to recognize that the absolute long
addressing mode is the most obvious and most certain way of
reaching any location in the entire address space.

Absolute long addressing is both long and slow. It usually takes
three op-code bytes for a single absolute long instruction. The CPU

also has to do a lot of work. After it gets its op code telling it to do
an absolute long action, it has to go to the next location and pick up
part of the address. After this, it has to go to a third location and
pick up the rest of the address. Finally, after all three bytes are read,
the absolute action can be completed.

The advantage of absolute long addressing is that it will always
work and can reach any location in the address space.

There are lots of disadvantages to absolute long addressing. This
mode is slow in executing and long in listing. It becomes involved
and tedious if you are going to do things to a bunch of adjacent or
nearby address locations. For this sort of thing, there are usually
more powerful modes available.

Some of the newest 16-bit micros will have an absolute super
long addressing mode. In this, you specify the usual 16-bit address
as well as picking one of 128 sectors needed to access the entire
sixteen megaword address space.

72

One way to shorten and speed up an absolute addressing com
mand is to make some assumption about where you are going to
end up in the address space. This leads us to .

ABSOLUTE SHORT ADDRESSING

(

If someone asks you to hang a picture on the east wall of the
living room, you usually assume that the picture is to hang in the
house you happen to be in at the time. You don't have to go back
to the zoning map to find out which house on which street you are
talking about. The nail hits an absolute location, but it is limited to
one known house.

Similarly, if we make some assumption about where in the
address space we are, we can shorten our absolute addressing
mode to one I call absolute short ...

73

Compared with absolute long addressing, absolute short address
ing runs faster and takes up less room in the program, but it is lim
ited to one particular area in the address space.

The details on absolute short addressing vary from family to fam
ily. On the 6502, there is a page zero addressing mode. Anything
you do in this mode will go to or come from a location on page
zero, or locations $0000 through $00FF. This makes page zero prime
real estate since you can both speed things up and shorten pro
grams by staying on this page as much as you can. This also strongly
suggests putting RAM in the bottom of your address space, since
these locations are easy to get at.

The 6800 has an addressing mode called, in a triumph of PR
doublespeak, "direct" addressing. Direct addressing is the same as
page zero addressing. The address specifies one location on page
zero.

The 8048 goes about its absolute short addressing in a different
way. The normal address space of an 8048 is 4096 locations, usually
split into a lower 2K ROM bank and an upper 2K RAM bank. Each of
these two banks in turn is split up into eight pages of 256 bytes
each. Instructions are available that assume you are either working
on the same page or else are jumping to a known other page. What
they have really done is given you eight different jump commands,
one for each page. This takes eight different op codes but lets you
quickly reach any area you like.

There are other variations of absolute short addressing modes on
other micros. The object is to avoid specifying the entire address
space, limiting yourself to 256 locations in a known area.

Notation for an absolute short address is usually the op code, fol
lowed by the location on the assumed page . . .

An absolute short addressing mode is shown
by a mnemonic, followed by a value of two hex
digits . . .

LOA $62

Note the important difference between immediate addressing
and absolute short addressing. LOA #$34 puts the hexadecimal
value $34 in the accumulator. In a micro with page zero absolute
short addressing, LOA $34 goes into location $0034 and gets what-

74

ever happens to be in that location and puts that into the accumula
tor.

One more time:
The # symbol after the mnemonic is crucial to your telling the

immediate mode from the absolute short addressing mode. LOA
#$45 puts the hex value $45 into the accumulator. On a micro with
page zero absolute short addressing, LOA $45 reaches down into
location $0045, picks up whatever value happens to be in location
$0045, and puts it in the accumulator. One mode gives you a fixed
value. The other goes to a fixed location and picks up whatever
value happens to be there.

The micro tells the difference between address modes with dif
ferent op codes. You tell the difference with different symbols.
Later on, when you get into assemblers and assembly language,
these symbols will be automatically converted to the right mode for
you. For now, you have to learn the right notation and usage for
each mode and the symbols involved. Getting the notation right is
extremely important.

Beginning students mix up the immediate and the absolute short
modes more often than any others. Remember that immediate
addressing puts a value into a register or operates a mask against it.
Absolute short addressing goes into some location in the memory
space, gets some unknown value, and either puts it in or removes it
from the addressed location.

For now, we will skip examples of absolute short addressing,
since these vary from family to family. Most often, the first op-code
byte will tell us that an absolute short action is needed, and the
second byte will tell us the exact location in the assumed area of
the address space where that action is to take place. Many of the
more important absolute long instructions will also be available as
absolute short ones in a typical micro.

The advantage of absolute short addressing is that it is faster and
shorter to use than absolute long addressing. The disadvantage is
that you are limited to a certain known area in the address space.
Fewer commands are usually available in this mode than in absolute
long. Another limitation shared with any absolute addressing mode
is that things get long and tedious when you try to work with a
nearby or sequential group of address space locations.

Yet another limitation of absolute short addressing is that you get
into turf fights when different applications all need access to a few
locations. Now 256 locations sounds like a bunch, but if you get
into a personal computer where a monitor, two languages, a DOS
operating system, some graphics, and all sorts of applications soft
ware all demand absolute short locations, things get hectic fast. It is

75

important to define and reserve your absolute short locations care
fully whenever a conflict is likely.

Oh oh. Look out. Here he comes .. .

RELATIVE ADDRESSING

ooao"'"

Our friend here is having so much fun he doesn't even know
where he is. But, with his diesel pogo stick, he can easily go as
many squares forward or backward as he wants. He needn't even
read the labels on the sidewalk. Just say "bounce back three" and
he will do it for you.

And, regardless of where he starts, the commands "bounce back
three" or "go forward seven" will get him somewhere else. You
may have done the same thing when lost in a big city. Asking direc
tions, you get an answer of "right for three blocks and then left for
five." You still don't know where you are, but you now can reach
your goal by following these relative instructions.

Micros often like to get someplace else in the address space by
going so many steps backward or forward from where you happen
to be. This is called relative addressing .

76

Thus, relative addressing has nothing to do with where your
Uncle Louie lives. Relative addressing in a micro means simply to go
forward or backward so many address space locations relative to
where you happen to be.

Relative addressing modes always involve a command that is try
ing to get you somewhere else. If you are always to go somewhere
else, this is called an unconditional jump, or an unconditional
branch, depending on the micro family.

More often, a relative addressing mode will be involved with
some sort of a test. "If so and so is true, back up nine squares. If it is
false, just keep going."

The test will often involve a flag. For instance, we could "branch
if carry set." This means that we test the carry flag. If the flag is set,
we take the branch, going off so many squares in the address space.
If the flag is cleared, we ignore this test and go on to the next
instruction, as if nothing had happened.

We will find out much more about these relative branches when
we look at loops and testing in the discovery modules of the next
chapter. As we found out back in Volume 1, much of a micro's
intelligence stems from its ability to test something and then
change its course of action based on the results of that test.

How far do we go and how do we know the direction? We use
2's complement signed binary to tell us how far. Often, a relative
branch will use only a single 8-bit byte to tell us both distance and
direction. When this distance and direction byte is shown as 2's
complement signed binary, this gives us the option of going for
ward from $00 through $7F squares, equal to + 0 through + 127
locations. The same byte also can let us back up from $FF through
$80 squares, the equivalent -1 through -128 steps.

The notation for relative addressing can be confusing. It consists
of the mnemonic and the absolute location you wish to branch
to ...

77

A relative addressing mode is shown by the
mnemonic and the absolute address the branch
is to go to . . .

BEQ $18A4
BUT . . . the op code will consist of a command
followed by a 2's complement number telling us
how far backwards or forwards to go .

FO 06

How do you tell relative addressing from absolute long address
ing? By the mnemonic. Many mnemonics for many relative
branches start with a "B." You get to recognize these after a while.

It also turns out that most branch commands that use relative
addressing are available in pairs. If the right one don't get you, the
left one will. Thus, you can branch on carry set with one relative
command, and branch on carry clear on another. This is an example
of complementary instructions.

Here are more relative addressing f'rinstances .

TYPICAL RELATIVE COMMANDS

BCC $1244-lf carry is clear, branch to address hex
$1244.

BCS $1244-lf carry is set, branch to address hex
$1244.

BEQ $1244-lf last result equals zero, branch to ad
dress hex $1244.

BNE $1244-lf last result was NOT zero, branch to
address hex $1244.

BPL $1244-lf the last result was zero or positive,
branch to address hex $1244.

BMI $1244-lf the last result was negative, branch
to address hex $1244.

BRA $1244-Aiways branch to address hex $1244.
BNV $1244-Never branch to address hex $1244.

Now that last one looks kinda dumb. The relative command tells
us never to go somewhere. But there are at least two uses for some
thing like this. The first is that it preserves the symmetrical and com
plementary pairs of the other branches, and the second is that it is
useful for debugging or working parts of a program that may have
different uses in different places. The branch never is put into the

78

program ahead of time and changed as needed for later options or
debugging.

One big advantage of relative addressing is that the code is posi
tion independent ...

Thus, if you move a part of a program somewhere else, all the
relative branches will stay the same, since six steps backward are
still six steps backward, regardless of where you start. If you try
moving a program with a bunch of absolute addresses in it, many of
these addresses will have to be changed to suit the new locations of
everything.

Relative addressing is usually faster and shorter than absolute
addressing. Only two bytes of op code are normally involved, com
pared with the three needed for a long absolute address.

Relative addressing has several disadvantages. This mode is pretty
much limited to "test and go" branches and jumps. You also are
normally restricted to short hops of plus or minus 127 counts from
where you are. But most useful "test and go" hops turn out much
shorter than this, and you can always throw in an absolute jump if
you want to go out of range.

Another limitation to relative addressing is that it thoroughly con
fuses beginners, since they have to calculate a 2's complement
number to find the offset. We'll check into a simple "count the
squares" method that will straighten this out for you later. When
you get into using an assembler, this branch calculating hassle is
taken care of for you.

To add to a beginner's confusion, if you move a relative branch,
the op code stays the same but the operand changes! This is
because six counts are six counts, but after a move, the "go to"
location shown after the mnemonic is now pointing somewhere
else in the absolute address space.

A few of the newer 16-bit micros let you do long relative
branches of plus or minus 32767 counts that let you end up any
where in a 65536-slot address space. You can partially fake this
"long branch" with the short 8-bit branches used on older micros
by branching to a location that holds a jump to an absolute address.

So far, we seem always to know exactly where we want to go.
Our previous addresses have been known or fixed. Sometimes, it is
nice to be able either to calculate an address or to go to an

79

unknown address, or to be able to go to any of a bunch of different
possible addresses. To do this takes a powerful new addressing
mode called . . .

INDIRECT ADDRESSING

D

You're vacationing in a strange part of the country and you want
to find an old friend you know is around somewhere. Back East,
you'd probably try the phone book, the city directory, the police, or
even a local bar. But out here in the real West, it's no contest. You
go straight to the little old lady in the post office.

Works every time.
"Well, go out past where the bowling alley used to be, through

Nat Clemson's place, and then a fur piece down the old stage road.
Sit with Crazy Andy for a spell so's he doan up an' shoot you, and
then . . . "

What you are doing is going to one location to get the address
you really want. That is, you go to a first address to find a second
address. Micros use a similar scheme to let you go to a calculated or
changing address. This is called indirect addressing .

80

Now, indirect addressing sounds like a runaround, and it is. But
it's useful runaround. You can calculate an address or change an
address as you go along. For instance, say you have some program
that is menu driven. Say further there are twenty-six different
options, A through Z. Pick an option. Then, with the value of this
option, find an address that contains the starting address of where
this action is to happen. Then go and do it.

Indirect addressing is very powerful. Its exact use changes with
the micro family. Two of the more powerful types of indirect
addressing are called register indirect and absolute indirect ...

The 8080 school is heavily into register indirect action, while the
6502 uses absolute indirect.

For instance, there is a register pair in the 8080 and 8085 called
the H and L registers. The H stands for High and the L stands for
Low. You put an address into this register and then, if you use a
register indirect op code, you load to, store from, or otherwise
interact with the address pointed to by the H and L registers. Regis
ter pairs B, C and D, E can also sometimes be used to hold indirect
addresses.

The 8048 offers register indirect addressing through its RO, R1, RO',
and R1' working registers. The 8048 also has one variation on indi
rect addressing called accumulator indirect. Here, you put your
absolute short address in the accumulator and the CPU then
replaces the address with the contents of that address location.
Sounds very powerful.

Sneaky, too.

81

One advantage of register indirect addressing over absolute
addressing is that it is faster, since the address is already sitting
there in the H and L registers. The CPU doesn't have to take time
out to look into extra bytes as it would with absolute long address
ing. It is also a simple matter to increment or decrement the Hand L
registers, so you can pick off sequential locations in a table of val
ues or some other file in memory.

The 6502 school uses absolute indirect instead. One example is
the jump indirect op code. When this is encountered, the CPU goes
to the address shown by the second (low) and third (high) byte of
the op code, gets the address of where it is to jump to, and then
goes to this new address.

There are five bytes involved in an absolute indirect jump on the
6502. The op code takes three bytes. The first of these is the com
mand, followed by the low address address, followed by the high
address address. Then, out in the memory space, we have to put the
address we are to go to in two more locations. Thus, there are three
bytes of op code and two address locations involved.

Several even more powerful modes are provided on the 6502 that
combine the upcoming indexed addressing with absolute short
(page zero) and indirect. Together, these can form a powerful way
to hit any location in the entire address space. These exotic indirect
address modes are what give the real power to the 6502 school,
despite its limited number of working registers.

One way to show an indirect addressing mode is by using paren
theses .

An indirect addressing mode can be shown by a
mnemonic, followed by an address in paren
theses ...

JMP ($27AF)
The location in the parentheses is the place we
go to get the address we are trying to reach.

Notation on indirect addressing varies from family to family.
Sometimes an @or an X will be involved with the indirect address
ing mnemonic. On register indirect, sometimes the register name
will be tacked onto the mnemonic. For instance, mnemonic LDAB
might mean "load the accumulator with the address pointed to by
the 8 and C register pair." The programming manual or detailed
data sheet for the micro you are interested in should show you
details on this.

Anyway, an indirect addressing mode goes somewhere to find an
address and then goes to that found address for the action. Indirect

82

addressing's main power lies in working with groups of addresses,
unknown addresses, or changing addresses. We can reach any point
in the address space and do so with a vengeance.

One disadvantage of indirect addressing is that it is complicated.
You have to go to a lot of trouble ahead of time to put the address
you need where the CPU can find it, and the stop along the way to
pick up the address can add to the execution time.

Another place where indirect is handy is for reset or system start
up. On reset, we always want to start off in some known direction,
going to an address pointed to in ROM. We can use an indirect
jump to get from this address to where we really want to start. We
can also play some double indirect games that let us jump to some
RAM location once we are sure the CPU is up and off on the right
track.

You'll want to save indirect addressing for later, but anytime you
want to go to a calculated, a changing, or an unknown address, one
of the indirect modes will do the job. A monitor routine that uses
calculated addresses can reside in ROM. Only the indirect locations
need be in RAM. Indirect addressing solves the dilemma of code
that has to be both always there and changeable on the fly.

There is one more address mode we should look at. This one is
very handy for moving things around in memory since it lets us
work sequentially through a memory area. This mode is called .

INDEXED ADDRESSING

Have you ever gone into the 146 flavors donut store and ordered
one of each for a party? If the counter person thinks about what

83

they are doing, they will go to the upper lefthand corner and start a
tray at a time, picking off the donuts in sequential order. The same
simple "one of each" command starts off a series of donut pickups,
all of which are the same but each of which gets a different donut
in sequential order.

Now, this sounds obvious, but you could order each donut sepa
rately. Micros face the same dilemma. With absolute addressing,
you have to go to each location, one at a time, in a long and drawn
out process. It would be much nicer if we could pick off bunches of
nearby locations, either in sequential or random order, quickly and
conveniently. This is done with an indexed addressing mode .

In our donut shop, the base value will be the upper left tray. The
index will be the number of trays we have used so far. Note that the
base value does not change. Only the index changes, so we can use
the same indexed address instruction each and every time we grab a
donut.

More terms . . .

Let's look at an example. Say you have a table of some sort,
stashed starting at location $0800 in- a 6502. The 6502 has an
addressing mode called absolute, indexed by X.

If we tell the CPU to LOA $0800,X, the CPU will find the index
value in the X register, add it to the base address of $0800, and then
go to the address that is the sum of the base and the index. It then
gets whatever is in that location and loads it into the accumulator.

If there were an $07 in the X register, location $0807 would be
loaded into the accumulator. The only time you would actually load
from the base address of $0800 is when the X register, or index,
equaled $00.

84

This can be confusing the first time you see it, but it is super
powerful. Think back to the donuts. We could program our counter
person to ..

•• - - n

Get a donut from tray # 1
Get a donut from tray #2
Get a donut from tray #3

Get a donut from tray # 146
-

This would certainly work, but it sure needs lots of instructions.
Here is a much shorter way ...

-

For 146 TRIPs . . .
Get a donut from tray #TRIP

The code is much shorter this way. This is the power of the
indexed addressing mode. It lets us use one instruction to access
bunches of different locations in memory, simply by messing with
an index value.

The notation for an indexed addressing mode looks like this ...

An indexed addressing mode is shown by a
mnemonic, the base address, a comma, and
finally the name of the index register used .

LOA $1800,X

The big advantage of indexed addressing is the ease with which
you can reach adjacent locations in the address space.

There are several disadvantages to indexed addressing. First, it
may not be available on some older micros. In this case, you can
often play games with the register indirect addressing mode to fake
the same thing. Second, the index range may be limited. You may
only be able to index 256 locations at a time. Third, indexed may be
slower than absolute addressing since it takes time to add the index
and takes additional time in the program to change the index and
test the loop or whatever you are using.

Usually, indexed addressing will involve lots of options. There
may be a choice of index registers, and there may be a choice of an
absolute short or absolute long base address. To really get powerful,
some families, including the 6502, will combine the indexed

85

addressing with page zero and indirect addressing. The use of a
page zero or absolute short address is shorter and faster than an
absofute long one would be.

This mind-boggling combination can be used to go to any of a
range of different addresses, or it can be used to pick any value out
of any file anywhere in the machine. More on this later.

WHICH ADDRESS MODE?

Let's see where we are. We decided that there are lots of different
ways to get a package to Albuquerque. These ways differ in speed,
expense, convenience, reliability, and so on. Different people with
different needs will pick different ways to get their individual pack
ages to Albuquerque.

In much the same way, a microprocessor CPU has lots of different
ways to reach working registers and address space locations. These
different methods are called address modes. These address modes
vary from micro family to family, but most address modes boil
down to combinations chosen from seven basic types .

-

We need a way to do obvious things ...
So we have an IMPLIED address mode.

We need a way to put fixed values into registers . . .
So we have an IMMEDIATE address mode.

We need a way to reach any address space location ...
So we have an ABSOLUTE LONG address mode.

We need a way to reach a few address locations quickly ...
So we have an ABSOLUTE SHORT address mode.

We need a way to step forward or backward ...
So we have a RELA liVE address mode.

We need a way to handle variable addresses ...
So we have an INDIRECT address mode.

We need a way to handle a file or a block of data ...
So we have an INDEXED address mode.

- -
-

When you are writing a microcomputer program, you normally
want to make the program as compact as possible, using as few
instructions as you can. You also will want to make the program run
as fast as you can. Because these two goals usually fight each other,
you will have to use different address modes in different places and
at different times.

Let's put all these address modes into a handy form for later refer
ence .

86

1

++++ +++++++++++++++++++++
+ +
+ IMPLIED ADDRESSING +
+ +
+ +
+ +
+ +
+ +
+ +
+ USED TO DO +
+ OBVIOUS TASKS. +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

+ +
+ +
+ +

: LENGTH - One byte for command only. !
+ SYMBOL - Just the mnemonic . . . +
+ CLC +
+ . +
+ MAIN USES - Housekeepmg and control. +
+ ADVANTAGES - Short and fast. +
+ LIMITS - Only works when no further info needed. +
+ Cannot reach the address space. +
+++++++++++++++++++++++++

87

2.

+++++++++++++++++++++++++
+ +

: IMMEDIATE ADDRESSING :
+ +

+ +
+ +

+ +
+ +

+ FILLS A REGISTER +
+ WITH A FIXED VALUE. +

+ +
+

\
+

+ � +

+ +

+ +
+ - +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

+ LENGTH - Two bytes. One gives command. Second says+
+ "how much?" or "against what?" +
+ SYMBOL - Mnemonic, followed by # symbol, followed by+

+ fixed value . . . +
+ LOA #$17

+

+ +
+ MAIN USES - To put a FIXED value into a working register or+
+ to logically use a fixed mask against a working+
+ register. +

+ ADVANTAGES - Puts constants and fixed values into your pro-+
+ gram. +
+ LIMITS - Only useful for fixed values. Cannot reach the +

+ address space. +
+++++++++++++++++++++++++

88

3.

++++ +++++++++++++++++++++
+ +
+ ABSOLUTE LONG ADDRESSING +
+ +
+ +
+ +
+ +
+ +
+ +
+ REACHES ANY LOCATION IN +
+ THE ENTIRE ADDRESS SPACE. +
+ +
+ +
+ +
+ +

+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ LENGTH - Three bytes. One describes action. The next two +
+ give the absolute location. +
+ SYMBOL - Mnemonic followed by a full address . . . +
+ LOA $FA62 +

: MAIN USES - To definitely reach any KNOWN location in the :
+

entire address space.
+

+ ADVANTAGES - Always works. +
+ LIMITS - Slow and tedious. Exact address must be known +
+ and fixed. +
+++++++++++++++++++++++++

89

4.

++++ +++++++++++++++++++++
+ +

! ABSOLUTE SHORT ADDRESSING !
+ +
+ +
+ +
+ +

+ +
+ REACHES ANY LOCATION IN A +
+ KNOWN OR ASSUMED SMALL +
+ PART OF THE ADDRESS SPACE. +
+ +
+ +
+

(
+

+ +
+ +
+ +
+ +
+ +
+ +

! ==i\\1 !

i 11 \ i
+ +
+ LENGTH - Two bytes. The first describes action. The sec- +
+ ond gives the location in the assumed small por- +
+ tion of the address space. +
+ SYMBOL - Mnemonic followed by a short address . . . +
+ LOA $62 +
+ +
+ MAIN USES - To definitely reach any KNOWN location in a +
+ small portion of the address space. +

+ ADVANTAGES - Faster and shorter than absolute long. +
+ LIMITS - May not reach entire address space. Turf fights +
+ over valuable locations. +
+++++++++++++++++++++++++

90

5.

++++ +++++++++++++++++++++
+ +
+ RELATIVE ADDRESSING +
+ +
+ +
• •
+ GOES SO MANY STEPS FORWARD +

+ OR BACKWARD FROM PRESENT +
+ LOCATION. +
• •
• •
• +
• •
• •
• •
• +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
• +
• +
• •
+ LENGTH - Two bytes. The first describes action. The sec-+
+ ond gives the LENGTH of the jump in 2's com-+
+ plement signed binary. +
+ SYMBOL - Mnemonic followed by a long address . . . +

! BEQ $18A4 !
+ MAIN USES - Testing and branching to other parts of a pro-+
+ gram. +
+ ADVANTAGES - Code is relocatable. Shorter and faster than ab- +
+ solute long. +
+ LIMITS - Usually limited to conditional branches. Range +
+ may be restricted. +
+ + + ++++++++ + +++++ + +++ + + + +

91

6.

++++ +++++++++++++++++++++
+ +

! INDIRECT ADDRESSING !
+ +
+ +
+ +

+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+

1"1
+

+
�

+
+ +
+ •

+ +
+ +
+ +
+ +
+ +
+ +

+ LENGTH - Three bytes. The first describes the action. The +
+ next two give an absolute address pair at which +
+ the final ADDRESS will be found. +
+ SYMBOL - Varies with family. Often a mnemonic followed +
+ by a long address in (parentheses) . . . +

! JMP ($27AF) !
+

MAIN USES - Getting to a calculated address. +
+ADVANTAGES - Handles unknown, variable, or changing ad- +
+ dresses. Very powerful. +
+LIMITS - Slow, long, and involved. Requires setup ahead +
+ of use. +
+++++++++++++++++++++++++

92

7

++++ +++++++++++++++++++++
+ +
+ INDEXED ADDRESSING +
+ +
+ +
+ +
+ +

t GOES TO AN ADDRESS THAT IS
+
+ THE SUM OF AN ABSOLUTE

+ BASE ADDRESS AND AN INDEX +
+ REGISTER VALUE. +
+ +
+

-
+

+ � +
+ �:� . . . b +
+ �- +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

+ +
+ +

+ LENGTH - Three bytes. One for action, the next two for +
+ the base address to which the index value will+
+ ���- +
+ SYMBOL - Mnemonic followed by a long address, followed+
+ by a comma and index name . . . +
+ LOA $1800,X +
+ +
+ MAIN USES - Sequential or random access of nearby or relat- +
+ ed addresses. +
+ ADVANTAGES - Very efficient at handling files and moving+
+ blocks of data. +
+ LIMITS - Needs careful program design. Requires setup +

+ ahead of use. +

+++++++++++++++++++++++++

93

Unfortunately, manufacturers have their own different names for
each of their own address modes and the assembler symbols
change from family to family. Worse yet, "nonofficial" assembly
programs may substitute their own symbols and ways of handling
address modes, even for the same micro chip. Address modes are
sometimes combined with each other into more powerful but spe
cialized ones. Also, address modes may be subdivided so it sounds
as if you have lots more available than you really do.

To add to these hassles, not every mode is available on every
machine. If a mode is not available, there will often be some other
mode that fills in for it. You can do almost any task on almost any
micro, one way or another. We have seen how micros with absolute
indirect addressing may lack register indirect addressing, and so on.

Some examples. The name that the 6800 gives its page zero or
absolute short addressing is "direct" addressing. Their idea of abso
lute long addressing is called "extended." Early 8080 literature
speaks of an "implied" addressing mode that we know today is
really a register indirect addressing mode. The 6502 offers four dif
ferent indexed address modes, involving X andY index registers and
absolute short (zero page) and absolute long (absolute) base
addresses. They also have an "accumulator" address mode that is
nothing but an implied address mode involving only the accumula
tor. There are also some super-powerful address modes that com
bine indexed addressing with indirect and page zero addressing.
These are especially strong when handling files and moving data
beyond the 256-byte range of single 8-bit commands.

I won't try to show you all the different names for all the different
address modes of all the major micro families. As you get into any
one family, you will find that most of the available modes break
down into mix-and-match combinations of the basic seven we just
looked at. Instead, you do it ...

94

DOING IT:

() Look into the addressing modes avail
able for two micros of your choice.

() What names have they put on each
mode? Ignoring the name, what
does the mode really do?

() What are the assembly language
symbols for each address mode?

() How is each mode related to the
seven basic address modes we
have looked at?

Now, if you look into the newest microprocessors, you will find
lots of different address modes. But almost all of these fancy modes
a�e really only mix-and-match combinations of our basic seven
modes.

We might find a super-long variation on absolute long addressing
that lets us hit any slot in a sixteen-megaword address space. We
can expect improved relative addressing that applies to more
instructions and reaches farther. A 16-bit relative address is some
times called a long branch.

We can expect all sorts of combinations of indexed and indirect
modes that aggressively cover the full address space. And the new
est machines will give us lots of choices as to what a word is. The
addressing modes may apply to individual bits, to 4-bit bytes, to 8-

bit words, to 16-bit words, and even to paired 16-bit words.
You will also find some simple commands that can do very

involved and fancy things, again based on the seven basic address
modes. For instance, relocatable addressing lets you move a pro
gram anywhere you want without having to recalculate or change
everything. This usually uses combinations of indexed and indirect
instructions, along with a relocation file or table of some sort. The
big advantage of relocatable code is that it fits anywhere you want
it to and is more or less machine independent.

A fancy variation on relocatable addressing is traditionally called vir
tual addressing. In virtual addressing, address space locations placed
on a floppy disk's tracks or elsewhere is moved from and to the micro,
giving the illusion of immediately having an enormous address space.
In reality, you use only a small part of the address space at once, so
you pick only what you need to use at any one time.

Another example of a fancy addressing mode is called block
move addressing. In block move addressing, one command will
move the contents of an entire block of many data locations from
one area in the address space to another. But all this really takes is
repeated use of our basic indexed addressing mode. The Apple II
system monitor has a powerful block move command that is faked
by repeated use of simpler address modes.

You might also find some very oddball VCIW addressing modes
that won't fit any nice mold, but these are very rare. One example is
called associative addressing, in which the content of a memory
location is partly specified by that location's address. Manipulation
of humongous files, such as those needed at a regional air traffic
control center, might use this mode.

Some 16-bit micros have a trace addressing mode that keys on
certain coded addresses. This is a powerful debugging technique
that also goes by the name of signature analysis. Other new micros
split their address modes up depending on whether you are in a
"user" or a "supervisor" mode, or they may limit access to certain

95

address space areas. Still other new micros work directly in "higher
level" languages that prevent you from ever reaching or controlling
the actual address modes being used.

But take away all the fancy stuff, find out what is really happen
ing, and you are back to the seven basic address modes. Get these
down so you can understand and use them, and you will be able to
handle almost any mode on any machine. As with everything else
we've looked at, it takes practice and use to master address modes.
just reading about them simply won't hack it.

THE RESOURCE SHEET

Do you know anything about running a bulldozer? .

vr.
I

---�- - �-=--,_�&..-:_-<---<· ,· -e_ �-----:_��� -7/r ��
.

·
. . .

.
........... � .

��--��- �
,.IJIIJVIII :... � · ::----� ,.,,_..,. .. .a: -

. :.:::::=;:.>-. . ·...
-------c:

-

. . -. . <"'"<·

Dozer operation should be simple enough. just jump on, hit the
starter button, and away you go. Right?

Wrong.
It turns out that many bulldozers do not have an electric starter.

Instead, there is a gasoline pony engine on the side of the main
diesel engine. To· start things up, you electrically start the pony
engine and then use the pony engine to start the main engine.
There is an elaborate and exact procedure you have to go through.

The same is true of most microcomputer systems. Although some
simply let you "punch and go," there is usually one right way to
bring up a microcomputer to the point where someone can use it.
This is just the same as there being one correct way to start a bull
dozer.

A micro resource sheet helps you understand what a microcom
puter consists of and how to get it working .

96

This may sound obvious and trivial, but if you have several micro
systems, and several people using them, the resource sheet can
eliminate all sorts of confusion and hassles.

You can easily make up your own resource sheets. They are abso
lutely essential in schools, labs, clubs, and other multi-user places
where people you may not totally trust can get their hands on your
micro.

Here is a typical resource sheet, this one for a Z-80 Starter . .

Z-80 STARTER

A. PARTS:

B. POWER SUPPLY:

C. BRINGING IT UP:

Z-80

(CPU)

EAC #24331
Large Green PC Board

- Z-80 Starter Microcomputer
- Z-80 Pocket Card
- Z-80 Programming Manual

Needs external + 5-volt, 2-ampere supply.
WARNING-Voltages over + 5 will de

stroy this unit.

1 . Connect red to + 5 and black to -
supply lead. Jumper supply - to sup
ply case r1n terminal.

2. Disconnect red supply lead. Turn supply
on, and set voltage to + 5 and current
limit to maximum.

3. Turn power off, reconnect red lead,
and turn power on.

4. Press BLACK reset button at top of train
er. A "-" should appear on leftmost
digit of display.

You can decide what is important for your own resource sheets.
This one gives the name of the trainer, what it looks like, and who
owns it at the top. After that, we list everything that is supposed to
go with the trainer. Then, we show the type of power supply

97

needed. This is followed by detailed instructions for bringing up the
micro. Finally, we show the microprocessor used in the system.

DOING IT:

() Create resource sheets for a micro
trainer and a personal computer of
your choice.

It is particularly important to have detailed start-up instructions
when an external power supply is needed. Beginning users always
get the - and case leads on a supply confused and often do not
understand how a current-limited power supply works. One Z-80
trainer I use got several chips fried when a student had the current
limit set too low and turned up the voltage anyway. When the reset
button was hit, the current dropped momentarily, raising the volt
age well above + 5 volts and roasting a bunch of chips.

Anything that can be destroyed easily should have its procedures
spelled out on the resource card. The keyboard connectors on the
AIM-65 trainer are one example. These ordinary DIP cable plugs
simply aren't rugged enough for beginning students to use.

You'll also want to put a permanent copy of the resource sheet
wherever the trainer lives when it is not in use. This prevents mix
ups and helps insure that everything you need stays together.

Start-up procedures change from trainer to trainer. Some, like the
old KIM-1, have you punch lots of keys to get them started off on
the right track. Others, like the Apple, need warnings NEVER to
make or break any connection ANYWHERE on the machine while
the line cord is connected. Each and every machine is different.

Don't omit anything from your resource sheet just because it
would be completely obvious even to an idiot. If it can be done
wrong it will. There are some students and some industry types who
can break an anvil just by walking within a few feet of it.

Spell everything out. Completely.

THE MICRO TOOLKIT

Let's take a quick quiz. What is the secret of success in any of the
following?

98

() Mountain climbing
() Watch repair
() Heavy equipment maintenance
() Spelunking
() Sign painting
() Weaving

The obvious answer is "the right tools to get the job done." For just
about anything you set out to do, there are correct tools that, prop
erly used, make just about any task simple and easily done.

The same is true of microcomputers. There are bunches of basic
tools you need to deal with micros expertly and effectively. Many of
these tools are simple and cheap, often nothing but the right form
on the right sheet of paper. Others take time and effort to pin
down.

Here's what I consider to be the essential tools you absolutely
must have as a beginner to understand microprocessors and
microcomputers ...

THE MICRO TOOLKIT

(0) The right attitude

(1) A microprocessor trainer
(2) Resource sheet for trainer
(3) Pocket card for trainer
(4) Pocket card for CPU

(5) Manual for trainer
(6) Programming manual for CPU
(7) Simplified memory map
(8) Programmer's model
(9) Simplified 1/0 circuit

(10) Machine language forms
(11) Assembly language forms
(12) Hex dump forms
(13) Quad graph paper pads
(14) Logic template

(15) Highlighters-all colors
(16) Pencils
(17) Lots of large erasers
(18) 3 X 5 cards-many colors
(19) Oscilloscope (optional)

(20) Glomper clips, 16/24 pin
(21) Grabber test leads
(22) Usual electronic hand tools
(23) Two quiet workspaces

99

This sounds like quite a pile of junk. But, properly used, this pile
of junk will introduce you to micros and then let you understand
them. Much of the paper stuff will later on get done by the com
puter, but it is absolutely and utterly inexcusable for someone new
to micros to start using things like assemblers and program develop
ment aids without fully and thoroughly understanding exactly how
micros work and exactly how to use them.

These tools should let you deal with the micro of your choice on
your own terms. We'll find out just how in the next chapter. For
now, let's take a more detailed look at some of the tools in the
micro toolkit.

the right attitude

This one goes at the top of the list. Forget all those stupid lies that
people have been yapping at you since year one about doing things
right the first time and never making mistakes.

Let's repeat some key points from Volume 1 . . .

() Your first attempt at anything you do with
micros WILL be wrong.

() Mistakes are ABSOLUTELY ESSENTIAL to
learning and using micros.

() You are never anywhere near where you
think you are in any micro problem.

() The simplest possible models and smallest
possible steps must be taken at all times.

() Complete and continuous documentation
of everything you do is ABSOLUTELY a
MUST!

() The unsolved and unworked part of any
micro anything will ALWAYS be much
more of a hassle than you expect.

Or to quote Murphy, anything that can go wrong, will.
If you are not willing to accept or believe this, then go away.

Right now. Better yet, go get a job designing dinos or old line min
icomputers. This will do a great service to humanity by killing two
birds with one stone.

100

To win with micros, you must have the right attitude and the
right frame of mind. Nothing pas.t tool number zero will help you if
you do not.

a trainer

The best possible way to learn a microprocessor is with a trainer,
such as the ones we looked at back in Volume 1.

What you want is something simple that lets you directly write
machine language programs, single stepping and debugging as you
go along. That something must have a simple and useful system
monitor and must have parallel ports on board and ready to go.

A personal computer will do if (1) you can take it apart, (2) it
easily and conveniently speaks machine language, (3) it has single
step, trace, and debug features in a powerful system monitor, (4)
you can do an absolute reset to machine language, (5) parallel ports
are available, and (6) you don't feel bad about running around bare
foot inside an expensive machine.

One very poor way to learn micros is with a microprocessor
development system or demo board. As we've seen, these are far
more expensive and generally less useful than trainers.

The worst possible way to learn micros is to get yourself a CPU,
some RAM, and some EPROM and build yourself a system from the
ground up. Working with chip sets is bad because you have no sys
tem monitor until you write one. This creates the worst sort of
chicken-and-egg problem you ever saw. A second reason to steer
clear of chip sets is that somehow you have to be able to
breadboard them. And this can lead to rat's nest wiring, wirewrap
horrors, super-expensive PC layouts, and other problems. The sad
dest thing about all this is that your focus ends up on hassles pecu
liar to your own system, rather than on understanding and using
microprocessors and microcomputers in general.

Now, if you want to design some dedicated micro controller
using your own chips, that's probably okay. Dumb, but okay. Start
ing with chips almost certainly will end up costing more than a
trainer and will give you fewer features, but if that is your trip, fine.
Just don't expect a chip set to teach you microprocessors and
machine language, because it won't.

No way.
Trainer or whatever, try to pick a machine that uses the CPU fam

ily you think you eventually will be working with. For the 8080
school, the Z-80 starter or the HP 8800 is a good choice. For the 6500
school, there's the AIM-65, the SYM-1, or the good old KIM-1.
Avoid using oddball trainers such as 6800 or COSMAC 1800-based
units unless you are actually going to try to do something useful
with these VCIW families. Stay in the mainstream unless you have

101

an overwhelming reason not to. A trainer that is $50 cheaper is no
reason. It's not even an excuse.

pocket cards

We've already seen that micros have pocket cards available to give
you all the key info you need at a glance. You will need two pocket
cards, one for the trainer or microcomputer system and a second for
the CPU itself. Be sure to label these so you can tell them apart at a
glance. Then get yourself the most vicious junkyard dropout guard dog
you can find and keep these cards under his collar.

manuals

Most trainer manuals are utterly and totally atrocious. The only
thing worse you are likely to find is a manual for some dino prod
uct. The same goes for most programming books.

Unfortunately, you are pretty much stuck with this trash and have
to live with it, for this is the way things have been done in the past.
One thing you can do that will help bunches is to go through the
manuals and color-code all the important details with page high-
1 ighters.

Another thing you can do is ask around for the best available soft
ware and hardware books and manuals for any micro. Stuff that
looks really bad the first time through may not be that awful after
you know what you are doing and have some experience under
your belt. More material may be available through a user group or
special interest section of a local club. But don't expect miracles.

If you are a beginner, avoid totally anything that uses assembly
language. This is great stuff later, but for now, you must concentrate
on the fundamentals of machine language.

maps, models, circuits

We've already looked at the simplified memory map and the
programmer's model. There are two good reasons for doing your
own version of these. The first is that usually there is far too much
detail in what you will find with the system documentation. The
second, of course, is that redoing something yourself forces you to
focus on what is happening and why. This is a key learning process
that is hard to pick up any other way.

There's also something called the Simplified 1/0 Circuit that we
will look at in Chapter 8. This one shows you where all the 1/0
ports are and how you use and connect them.

forms

There are three forms you should have photocopied by the hun
dreds. The first is called a machine language programming form and
looks like this .

102

MACHINE LANGUAGE PROGRAM FORM

DONE BY:=====:
DATE

RUNS ON���������
CPU :=

PROGRAM:::::========:::::::!
VERSION:=:=:=:=:=:=:=:=:=:::::::

I ADDRESS loP coDE I BYTE 1121BYTE #31MNEMONtcl HOW? 1 NOTEs

NOTES---------------

PAGED OFO

The machine language programming form is used to write and
understand your simplest microcomputer programs. You will learn
much more about this in the next chapter.

By the way, if you want larger copies of any of the forms I am
showing you, find a local Xerox machine that enlarges. Make one
big copy, and then copy the copy as often as you like.

This is an assembly language programming form . . .

103

Actually, you will use this assembler form very little, because
once you get into assembly language programming, you will proba
bly have a printer and an Editor/ Assembler program to do all the
work for you. Editor/ Assemblers eliminate practically all the
dogwork of machine language programming. The problem is that
assembler programs throw out the baby with the washwater. When
the dogwork goes, so does insight and understanding.

Anrl, more importantly, so does the discipline needed to attack
any micro task at any level.

Here's a form called a hex dump . . .

HEX DUMP FORM

DONE BY :======:
DATE

RUNS DN �������=�"::!,�
CPU :=

NOTES

PROGRAM

.VERSION :===========:

PAGE D OF O

105

The hex dump is used to save an exact image of what is in a
micro's address space. These are useful for files and for complete
programs, when you want to have the program in its most compact
form.

The advantage of the hex dump is that it is the simplest and most
compact way of storing data or entering programs. The disadvan
tage is that hex dumps totally lack documentation and give you no
r:lue to what the code is or what it does.

from the office supply

You will need several pads of quality quadralle graph paper.
These get used for timing diagrams, flowcharts, and anything else
when you want to combine words with sketches. I like the ten-to
the-inch type myself, although these are harder to get. You may
prefer using a journal that has graph paper pages. If you do, you will
still need pads for first tries, mistakes, corrections, and so on.

Get yourself a logic template. Notice I said logic template and
not a programmer's flowchart template. On a micro, all you will
ever need in the way of flowchart symbols are a rectangular box, a
diamond symbol, a title oval, and straight lines with arrows to con
nect everything. These needed symbols are easier and cheaper to
pick up with the logic template, and you can also use the logic sym
bols for interface diagrams and so on.

You will want to get yourself bunches of page highlighters. Be
sure to get lots of different colors. Most assortments seem to give
you six shades of yellow, so look around. Get several of every color
you can find. Thin ones and fat ones. Light, see-through colors.

And use them. Anytime you find anything interesting or impor
tant anywhere, highlight it with some color code meaningful to
you. The first place to start is the title page_of the programming
books. Higl:"!light each mnemonic as it crops up. The highlighters are
most useful when you are analyzing a longer machine language
program. Color coding lets you break up the program flow into
understandable small pieces.

I hate pencils. I am a pen person. So do as I say, not as I do ...

106

Pens have no place whatsoever in a micro
toolkit.

ALWAYS USE PENCILS!

Lots of big erasers are obviously needed for learning micros. But
only use erasers to correct small and obvious defects and to make
small and obvious changes . . .

BeFORE vou RuB
1\NYTHING 1 ALWAYS
ASK IF" You A.RE

DESTI\OYING- SOME

THING You CANT

RECO'JER OR.. THE. LAST

THING THII.T you WERE

SURE wo�KE��

Beginners often end up erasing their last copy of good working
code and then replacing it with something dumb that doesn't work.
Always think before erasing.

A final need from the office supply is several packs of 3 X 5 cards
in different colors. These cards will be your key to completely learn
ing the microprocessor of your choice. You will find out all about
these in the next chapter.

Will you ever.

oscilloscope

You don't absolutely have to have an oscilloscope to learn
micros, but you'll miss most of the insight and most of the opportu
nities if you do not.

Since scopes are super expensive, it pays to try to rent or borrow
one, either by signing up for a hands-on college or computer store
course or by asking around at a micro club or bulletin board system.

I use a Tektronix 455 myself, but this is sort of a heavy. A scope
from their newer 2200 series .is a better choice. What you want in a
scope good for learning micros on is one with at least a ten
megahertz bandwidth, triggered sweep, two vertical inputs, and
vertical delay. If you can afford it, sweep delay can also be very
handy.

107

An oscilloscope lets you look into the actual working waveforms
of a running microcomputer, giving you immediate details of timing
and the relationships between various buses and signals. Scopes are
also handy to check states of input and output ports, measure volt
ages, and so on. Oscilloscopes are absolutely essential when you
repair, interface, or modify a microcomputer system.

So plan on learning what an oscilloscope is and how to use it as
part of your micro learning experience. But don't run out and buy
one. Borrow one or sign up for a course that gives you free access to
one till you find out what scopes are and what they can do for you.

Another very useful tool is a general purpose volt-ohmmeter. The
plain Radio Shack jobs should do and should cost less than $30. Do
not get sucked into buying a digital voltmeter instead. Besides
being more expensive, digital instruments aren't nearly as readable,
useful, or convenient as a plain old meter-style YOM.

glompers and grabbers

Two other handy test aids are called the glomper and the grab
ber .. .

GLOM PER

@Y#/.3ij,.�

Glomper clips snap onto an integrated circuit and bring out all
the pins to where you can conveniently reach them for measure
ment or scope viewing. Grabbers are tiny hook clips that let you

108

safely catch one lead of an integrated circuit or other small compo
nent without shorting adjacent pins. AP Products is one manufac
turer of glompers, while f-Z Hook supplies many of the grabbers.
Selections of these appear in most new-age electronic distributor
catalogs.

Be sure to get the type of grabber that is small enough to safely
grab a single pin on an integrated circuit. Larger ones simply won't
do. By the way, any short on any pin of any integrated circuit is
almost certain to wipe out the program in a micro, and some worst
case shorts, however brief, can also destroy the ICs themselves.

Always be careful!

electronic hand tools

A collection of the usual electronic hand tools is something you
will want to pick up as you go along. Here are a few of the essen
tials ...

ESSENTIAL HAND TOOLS

() Small soldering iron
() Diagonal cutting pliers
() Needle-nose pliers
() Small screwdriver
() Medium screwdriver

() Wire stripper
() Solder sucker
() Desoldering braid
() Small magnifier
() Small crescent wrench

() X-acto knife
() High intensity lamp
() 1/4-inch nut driver
() Third hand PC vise
() IC puller

You can buy most of this list as a set from Heath or jensen Tools,
but it is usually better to pick up what you need as you need .it.
Again, a school course, a club, or an electronic bulletin board can
put you onto free tool use without your actually buying anything.
This is a good way to get started, but you will almost certainly want
to pick up your own tools as you go along.

109

workspace

Notice that the last entry on the micro toolkit list says you need
two quiet workspaces. One is where the trainer is. The other is
where you can quietly think and manipulate ideas and programs on
paper.

It is extremely important for newcomers to micros to keep their
grubby mitts off the microcomputer until they know exactly what
they want to do with it. You don't just sit down in front of the thing
and start punching in code. Instead, you have to plan out carefully
exactly what you are going to do and how you do it ...

Be sure to have TWO separate workspaces.

The FIRST place is where you quietly design,
develop, debug, and document your programs

The SECOND place is where the micro lives and
where you do actual coding and testing.

Photographic darkrooms always have two separate workspaces.
You must always keep the wet side and the dry side separate. The
two different sides do different things in different ways. Mix them
and you get a sloppy mess.

It's the same with micros.
And here's an essential rule .

FOR

su The SOONER you start punching code into a --,· mkrocomputer, the LONGER the task wm take.

Plan before you punch.
In a later chapter we'll find out all about the Micro Applications

Attack, a way to use micros to solve real-world problems. It turns
out there is no need ever to go near a micro until something like
the tenth step of a fourteen-step process.

Later on, you'll find yourself doing more and more development
and debug work at the microcomputer, as you get into Editor/
Assemblers, saving longer programs on disk, using emulators, etc.

But even then, you must keep two separate workspaces in your
head. Micro as design and debug helper must remain totally sepa
rate from micro as running real-world applications programs. By

110

forcing yourself into a two-space attitude and two-dimension work
habit ahead of time, you'll be way ahead of the game.

Well, we are just about ready to embark on the dark unknown of
microprocessor programming. But before we do ...

DOING IT:

() Assemble your micro toolkit.
() Arrange for a trainer.
(.) Get access to an oscilloscope
() Pick up the needed hand tools.

And now, as Von Neumann once said, "Let's get with the pro-
gram . "

111

�·-·---·-·-·-·-·-·-·-·-·-·-·-·- · I .-·-� I i j things they never tell you in computer school i i
• • •

! f ON BEING A GENERALIST i !
I • f I
• i The key feature that makes micros what they are today is that they are I • I ,. very general tools that can be customized to handle any specific task i I • you can dream up. You have a "one size fits all" machine that can do • • I f almost anything for anyone. When the right software is added to that ! I
e f machine, it does one limited and specific something for a single some- I • I

I
one. i I

•
• Your software should also be as general as possible. Good software f •

I ! should do as many different things for as many different people in as f I • I many different ways as possible. • I i Let's look at two winning examples. These are, of course, Visicalc and il I • • • 'I the Adams Adventures.
• I

• With hindsight, the idea behind Visicalc is completely and totally obvi- ! •
1 ous. Only no one thunk of it. Here was this drapery estimator adding 1 1
• '

up rows and columns on a spreadsheet. Over there was someone keep- i •
I ! ing church attendance records by adding up rows and columns on a • 1

1 spreadsheet. Stage left was a sales manager doing his forecasts by add- ! • •1 • ing up rows and columns on a spreadsheet. Out in the field, a biologist f I was tallying observations by adding up rows and columns on a spread- f • sheet. • ! Now, no way would the biologist buy a drapery estimating program. ! ! I And neither the drapery estimators nor biologists by themselves create I 1 enough of a market to be worth writing sanely priced software for. But j • •1 just about everybody can use something that adds up rows and col-
I I umns on a spreadsheet, no matter how specialized the information •

• they are putting onto that spreadsheet. I i ! The Adams adventures do pretty much the same thing. You see, there •
I

I
• really is only one main adventure program. All that changes when you 1 i move from adventure to adventure is a data base file that is tacked � • onto the end of the program. Once your first adventure program is 1 tested and debugged, you can go on and add new adventures forever, • i just by dropping in new data bases. � I

• • The Adams adventures main program also does its thing by being gen- 1 •
1 erally useful to many different data bases at once. � 1
e Anytime you write a program, always make it as general as you can and I • I as flexible as you can, so many different people can use it many differ- • I
• ent ways to do many different things. Particularly in ways you wouldn't I e

1 even dream of. i I i Think generalist. Act generalist. Be a generalist. � .,
•

•

I · i! i '-·-' I
·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·

112

- seven -

The Discovery Modules

Having got this far, you are almost ready to start writing and
debugging your own machine language programs.

We will use a technique called the "those #$!$# cards method"
that will let you understand and use just about any microprocessor
family from just about any micro school, present or future. We will
take a "discovery" approach, working with a group of very simple
yet fiendish modules. Each module builds on the previous one until
you have fully explored most of the fundamentals of the micro of
your choice.

Throughout, we will emphasize method rather than specific
details. This way, you can easily apply what you do to most any
micro family. We will break things up into two parts. The first part
will show you what a machine language program is and how to
write and debug simple code. That's what this chapter is all about.
Later in Chapter 9, we will look at the Micro Applications Attack
that shows you how to tie in simple program techniques with
everything else needed to solve real world problems.

Beginners are always surprised to find out that punching code
into the machine is only a tiny and trivial part of real world problem
solving, something that happens only very late and plays a very
minor role in an applications attack.

I feel very strongly that the only way to learn microcomputer pro
gramming is to start with machine language, rather than with an
Editor I Assembler language.

Now, an assembler is not something inherently evil. An assembler
is simply too powerful and too convenient a tool for a beginner. It
hides from you the reality of what is actually going on in the micro
on the gut level. It's sort of like flying a 747 jetliner instead of a
trainer aircraft for your first solo flight.

113

Machine language programming is tedious dogwork. No doubt
about it. And it takes bunches of patience and persistence, and it
will be very frustrating. But doing your first programs in machine
language rather than assembler language is absolutely essential for
understanding and exploring a micro family.

Just note as you go along that anything really tedious or really bad
involving machine language will get done "free" later with a good
Editor and Assembler, but at the price of putting things between
you and the machine that mask what is really going on.

Machine is a trip you must take on your own. The reasons to do
so, of course, are that machine language programming can be
insanely profitable, and that machine language is far and away the
fastest running, most fully using, and most flexible way you can
possibly interact with a micro of your choice. To repeat, truly great
programs can ONLY be written in machine or assembly languages
there are no othe.r alternatives. The "top thirty" programs for virtu
ally all personal computers run in machine language, with practi
cally no exceptions.

A crucial rule .

PLEASE! Do NOT attempt to use an Editor or an Assem-

'+
bier until you have written, debugged, and fully
tested not less than several hundred lines of
hand-coded machine language instructions!

Many of our coding examples will use the 6502. First, I like this
chip and know it best. Second, the 6502 is absolutely and undisput
edly the funkiest microchip available anywhere ever. And finally,
the 6502 is a very friendly chip to learn and use. It has very simple
timing and hardware needs.

Since we are going to emphasize method rather than details, it
won't really matter what chip you pick from which family for your
first venture into microcomputing.

If you haven't done so already, put together the micro toolkit of
the previous chapter, since you will need most of it here. A trainer
is strongly recommended. If you must use a personal computer
instead, be sure you can conveniently get it into machine language.
It must have single step, trace, breakpoint, and debug abilities; an
absolute reset into a machine language monitor; and at least one
simple parallel 8-bit input/output port available for use. Naturally,
you have to have the works open so that you can look at and meas
ure individual pins on individual chips.

Before we write a program, though, we might want to ask the
obvious question .

114

WHAT IS A PROGRAM?

A program is a series of machine language instructions that does
some task. Get that? ...

As a reminder, ALL microprocessors and ALL microcomputers can
ONLY run machine language coded instructions on the gut level.
Higher level languages place a machine language program called an
interpreter or a compiler between the high level code and the hard
ware. This compiler or interpreter changes the high level code into
the binary ones and zeros that machine language is all about.

A typical machine language program will have two different types
of bytes in it, the machine instructions,and data blocks. The
machine instructions are the op codes and the "with what?" and
"where?" qualifiers needed to go with those op codes for certain
address modes. Data blocks hold any information that the machine
language instructions work with, such as text files, tables of
addresses, graphics, color patterns, musical notes, or whatever.

Thus ...

Machine lang�ge programs hold both
MACHINE INSTRUCTIONS and DATA BLOCKS.

The machine in�ructions are run by the micro-
computer. · :

The data blocks ·are accessed and used by the
machine instructions as needed.

One popular form of data block is called a file. A file is a fairly
large block of information that is accessed as needed. A short file
that only holds a few bytes is sometimes called a stash. We will see
much more on fi�es and stashes later.

By the way, it is finally time to do in the "data are" people once
and for all. If you ever hear someone speak the words "data are" or
"datum is," please immediately jump up and scream the word
"FROBOZZ!" five times. If you see the same thing in print, send the

115

author five separate postcards, each with the single word
"FROBOZZ!" on it. Then ask five friends to do the same thing.

An important point ...

Only machine instructions can be "run" on a
microcomputer.

A data block can be used only by a program. Try
to "run" the data block and the system bombs.

Not every program needs and uses data blocks. Sometimes, small
amounts of needed data will be built into the machine language
instructions themselves. But programs that are better, longer, and
more flexible will almost always have relatively short machine lan
guage blocks working with fairly long data blocks of one sort or
another.

One tremendous advantage of the "short program with lots of
data" route is that you can make the program do other things sim
ply by changing the values in the data block. For instance, once you
have designed and debugged the code for one Adventure, if you
have used your data blocks right, all you have to do is change the
blocks to change to a brand new and totally different Adventure.
The fully debugged and tested instruction blocks will still work
with the new data blocks.

As a simpler example, a traffic light program using data blocks
can immediately be changed to a disco chaser program, a pendu
lum model, or a theater lighting control. Custom "instruction blocks
only" programs would have to be rebuilt from the ground up each
time.

Von Neumann and company

just how do we arrange the data blocks and instruction blocks
into a microcomputer? One obvious way is to put all the instruc
tions in one place and all the data in a separate place, even if the
data is only a single value. This is simple and obvious.

But it is not the way people think. People think by mixing
actions, tests, and the data needed for those actions and tests
together in sequence. Most microcomputers have their instructions
arranged so the instructions and the data values needed to go with
those instructions are combined in sequence.

This is called Von Neumann architecture .

116

The big advantage of Von Neumann architecture is that it is
extremely flexible. Instructions can even modify themselves, a pro
cess both dangerous and powerful at the same time. Certain loca
tions can serve as data to parts of a program and as instructions to
other parts of a program.

The disadvantages of the Von Neumann architecture are that it
confuses beginning students and that instructions and data values
that go with those instructions can need a variable number of bytes,
depending on what that instruction is going to do and depending
on the "How much?" or "With what?" or "Where?" data values that
go with that instruction.

But, once again, this is simply the way people think.
Von Neumann architecture is used in- micros since it most closely

mimics the way people think and act.
Gorillas, too . . .

117

The next time you clean off a table after lunch, break down the
task into the simplest steps you can possibly think of and repeat
each step out loud as you do it.

Note in the following dialog how the actions, the data, and the
tests are mixed together. Note also how you use them together one
step at a time . . .

......

"WHAT IS THIS ITEM ON THE DINING ROOM TABLE?"
"It is a box of milk."

"DOES THE BOX OF MILK BELONG ON THE TABLE?"
"No."

"WHERE DOES THE BOX OF MILK BELONG?"
"In the refrigerator."

"WHERE IS THE REFRIGERATOR?"
"In the kitchen."

"I WILL GO TO THE KITCHEN REFRIGERATOR.
"IS THE REFRIGERATOR OPEN?"

"No."
"I WILL OPEN THE REFRIGERATOR."
"IS THERE ROOM FOR THE MILK?"

"Yes."
"I WILL PUT THE MILK IN THE REFRIGERATOR."
"I WILL CLOSE THE REFRIGERATOR."
"I WILL GO BACK TO THE DINING ROOM TABLE."
"WHAT IS THIS ITEM ON THE TABLE?"

"It is a shaker of salt.''
"DOES THE SHAKER OF SALT BELONG ON TABLE?"

"Yes.''
"IS THE SHAKER OF SALT IN ITS PROPER PLACE?"

"No.''
"WHERE DOES THE SHAKER OF SALT BELONG?"

"In the table center with the pepper.''
"I WILL PUT THE SALT IN THE TABLE CENTER.
"WHAT IS THIS ITEM ON THE TABLE?"

-

--

. . and so on until you are finished.
Note several very important points. The first is that you break

down a complicated task into single individual steps and then do
each step one at a time in some reasonable order.

Microcomputers can also do only one simple thing at a time.
Turns must be taken to let simple actions build up into results, and

118

then those results are built up one by one into tasks. Tasks are then
completed one at a time to finish the job at hand ...

Micros can do only one simple thing at a time.

Simple things are built up one by one to get a
result.

Results are built up one by one to complete a
task.

Tasks are completed- one by one to finish th�
whole job.

The second point is that we mix actions, data values, and deci
sions as we go along. In this case "MILK" is a data value, "GO" is an
action, and "DOES" starts a test.

If there was no milk on the table, chances are you could still
clean up after lunch. The data values, such as "MILK," determine
the exact actions that are to be done to complete the whole job.

So ...

Micro instructions mix commands, data values,
and decisions together in the order needed to
get a result.

Results are then mixed together in the order
needed to complete the entire job.

The third point is that you must keep exact track of where you are
in a microcomputer program. Here is a very ridiculous example ...

DOING IT:

If you were cleaning up a table, how
would you handle ...

An action called " M I LK " ?

An object called "DOES"?

A decision called "GO"?

119

You get into the same absurd situation if you don't keep track of
exactly where you are in a program. Instead of picking up a valid op
code, you may get some random data or qualifier value, and the
program begins executing nonsense.

So ...

For a program to work, you must know EXACTLY
where to start and EXACTLY where to go to con
tinue at all times.

The microcomputer has no way of second-guessing you. If you
tell it something.absurd to do, it will faithfully try to do it.

what does a program do?

The answer to that question is obviously that it depends on the
program. But there are three main types of machine language pro
grams. These are programs that get a result, programs that provide
exact time sequences, and, finally, programs that both have to pro
vide a result and simultaneously have to do it in an exact time
frame ...

TYPES OF MICRO PROGRAMS

() Programs that provide results.
() Programs that provide timing.
() Programs that must do both.

A calculation of some sort is a good example of a program where
only the result matters. Say we need to calculate the square root of
273. What we are after here is a result, and it most likely won't mat
ter much if it takes a fraction of a millisecond or a fraction of a
second to do the job.

An algorithm, decision tree, or other set of rules usually helps in
attacking any result-dependent program.

A traffic light or a pinball game are examples of programs where
timing is most important. An ordered sequence of events spaced
out in time is required in both cases. While we may be free to cal-

120

culate a square root along the way, it might not be needed, and any
old way that does the timing for us will work.

A timing diagram is often the best choice for programs where
time is of the essence.

The stickiest programs need an exact result that must take place
in an exact time frame. One example is a microprocessor-controlled
video display, where characters must be placed exactly on the
screen in exactly the right time slot. Sometimes apparently simple
programs end up taking too long to do by "obvious" programming
methods, and these become the sticky type where both timing and
results are important.

Almost always, the first attempt at any program will run far too
slow. More often than not, some rethinking will get things up to
acceptably fast speeds. Naturally, high level language freaks with
their pitifully long execution times will blame everything on the
hardware. Most of the time, though, all that is needed is some care
ful and creative use of machine language.

Another way to classify programs is by how they end ...

MICRO PROGRAM ENDINGS

() Programs that go round and round till unplugged.
() Programs that return to some other program when

they are finished.

Very few microprocessors are ever stopped. When a micro is
doing something useful, it is continuously running some program.
This may be a program such as a traffic light that cycles continu
ously or a program that does a calculation and then returns to a
supervisory monitor or operating system.

Most interactive programs will spend much of their time waiting
patiently for someone to press a key or stalling around for a printer
to finish a page. Thus, most time on most interactive programs is
spent simply waiting for something to happen.

If a program is to interact with people who have to make choices,
that program should usually be menu driven. A menu driven pro
gram will have a master option selection list at its beginning. When
one of these selections is picked, those actions needed for that
selection are completed, and the program once again returns to the
master menu for another selection. Even the exit, usually a "Q" for
Quit option, should be included on this menu ...

121

Should the total job be horribly complex, each menu selection
can lead to a sub menu, and if needed, each sub menu can lead to a
sub-sub menu. An orderly process should exist to get back up one
or more menu levels. At any time when a program finishes its task it
should return to the upper menu level with everything back the
way it was at the program start, so there are no suprises if menu
options are picked in a strange order.

a "typical" machine language program

Most machine language programs start at some low address in
the user RAM area and work their way up through user RAM, going
from low addresses to high addresses. Remember that parts of RAM
may be reserved for "system" uses and that your program should
start somewhere near the bottom of the free area of user RAM. Use
your simplified memory map as a guide.

Unless there is a good reason to do otherwise, the CPU reaches
into the address space and gets an op code. It then evaluates that
op code, and if it has to, gets another byte or two to answer "with
what?" "where?" or "how much?" The CPU then goes on to the
next available higher memory location and expects to find another
op code there.

This process continues until the CPU gets some instruction that
tells it that it is to go somewhere else to continue, rather than on to
the next higher instruction. Examples of "somewhere else" com
mands are jumps, testing branches, interrupts, breaks used for
debugging, and subroutine calls. More on these later.

The point here is that the CPU goes through memory in increas
ing order unless it is given an overwhelming reason not to. When
the CPU gets to the end of the useful program at the upper end of
its code, it will be told to jump back down to the beginning and
start over again, or else it will return to a supervisory program, the
monitor program, or an operating system.

Summarizing .

122

Machine language programs start at low mem
ory addresses and work their way upward in
sequential order.

One, two, or three bytes may be needed per
instruction. The CPU will automatically "skip
up" to the next legal instruction.

Jumps, branches, and a few other instructions
can alter this normal low-to-high operation.

We can immediately see that it is extremely important for the
microcomputer to know e·xactly where it is at all times. If the micro
gets mixed up and thinks a "how much?" qualifier byte is really an
op code, the whole program will bomb.

No, the micro won't stop. What happens is that some totally
weird program starts executing, most likely plowing up everything
of value that you put into the machine. This wayward program then
continues until disaster strikes one way or another.

Here's how to prevent disasters . . .

()

()

()

()

()

()

TO AVOID PROGRAM BLOWUPS ...

You must always have EXACTLY the pro
gram in the machine that you think you
do.
You must always EXACTLY initialize any
program values and EXACTLY configure
any hardware before you use either.
You must always know EXACTLY where
you are in any program.
You must always start EXACTLY at the in
tended starting address of any program.
Your jumps and branches must go EX
ACTLY where you intend them to.
Your program space must be EXACTLY
protected from incursion from any other
use, including self-destruction.

123

Fail to obey any of these rules and your program will bomb. And
after it bombs, it will probably destroy all sorts of obscure locations
in memory that you may wrongly continue to assume are okay.

Another rule ...

If a program bombs, do not only fix the cause of
the trouble.

Always go back through the ENTIRE program
and the ENTIRE data block area and make sure
that no other damage was done by the bomb
ing.

We will find·out just how to do all these things as we go along.
The important point here is that you have to pay extremely
close ...

E�flON
•• p.·rt' rb l \ �<(gll bktAIL!�

�

Well, we have put it off as long as we can. Looks like we now
have to turn to .

124

THOSE # $!$ # CARDS

There is only one sure way to understand a microprocessor thor
oughly and completely. And that way is actually to use each and
every instruction in that micro's instruction set. Do this first in short
and simple discovery modules and then later in actual programs.

This is what the "those #$!$# cards" method is all about. What
you do is get yourself a thick pack of unruled 3 X 5 inch cards, all
one color, for the micro of your choice. You complete one card for
each and every instruction for each and every address mode. That
translates to some 121 cards for the older versions of the 6502 and
the better part of a thousand for the Z -80.

Each card should be simple and obvious to use but must have
more detail than you could normally get off a pocket card. You
should pick up each instruction as the need arises rather than trying
to do things in alphabetical or some other order.

It is extremely important that you do each and every card by your
self and by hand! It is the action of creating the cards that forces
you to relate to what an instruction is and how the microcomputer
can use that instruction.

The "those #$!$# cards" method is very simple . . .

THE "THOSE #$!$# CARDS" METHOD

() Create a card for each and every instruction in
each and every available address mode for the
micro of your choice.

() These cards must concisely show you how and
why each instruction can be used.

() You must do these cards in an "as needed" order,
going from simple to complex.

) You MUST do each and every card BY YOURSELF
and BY HAND!

We'll shortly look at what goes on a typical card and how to get
started. We are going to look at a series of nine "discovery mod
ules." Each of these modules will do something useful and interest
ing by ,itself. But more important, each module will build on what
has gone before to let you fully explore the micro of your choice.

Hidden in each discovery module are some new techniques and
new skills you will have to pick up before you can progress to the
next module.

Here are the names of the modules . . .

125

THE "DISCOVERY" MODULES

(1) Tail Byter
(2) Figure Eight
(3) Square Deal
(4) Audio Tone
(5) Pitch Reference
(6) ".Y" Time Delay
(7) Nite Lite
(8) Text Outenblatter
(9) Burglar Interrupt

Note that none of these discovery modules are true programs.
Sure, each one does some "gee whiz" thing using your trainer or
personal computer. But real programs involve much, much more
than just punching code into a micro and watching it react. We will
save the actual real program writing for the Micro Applications
Attack of Chapter 9.

Since it is super important that you do everything yourself on
your own trainer, I am not going to give you code that will immedi
ately run on any particular trainer. This way, you will have to think
about what you are doing to get any results rather than just punch
ing in some code you may not fully understand.

Canned code is worse than useless for learning micros. Avoid it!
So let's invent a fake "discovery trainer." Call it the MYTH-1

1l6

THE MYTH-1 DISCOVERY TRAINER

So that you will be forced to rewrite all code for the
micro of your choice, we will use a fictional, MYTH-1
trainer for the detailed examples.

This fictional trainer uses the 6502 as the CPU.

The available 1 K User RAM starts at location $2000.

There is one 8-Bit VIA style parallel port available. The
"teach port" address is $C080. The actual port address
is $C081.

Text is output to a printer or TTY by a subroutine at
$F90D.

The keypad is read to the accumulator by a subroutine
at $F67C.

NMI, RESET, and IRQ vectors are stashed at $02FA
through $02FF.

The monitor includes a single-step feature, an LED
display, and little else beyond the bare essentials.

As you go through the "those #$!$# cards" method, you may
find many differences between your micro and the 6502 coding.
Obviously, all op codes will be different for a microprocessor from
a different school. You may also find that the index registers com
mon to the 6502 and 6800 families have to be replaced with the
indirect registers common to the 8080 school.

As this happens, be sure to look for "classes" of instructions that
will do the same task our example does or that can solve a similar
problem by a somewhat different method. You may also have to
emphasize and explore some powerful instructions on your own.

But we are mainly interested in method. The "those #$!$# cards"
method will work on ANY microprocessor from ANY family, simply by
starting with the discovery modules and building on them.

Before we get started, though, we need to pick up some simple
details on . . .

flowcharting

A flowchart is a special diagram that shows what program actions
happen in what sequence. Again . . .

Old line dino people tend to go way overboard on flowcharting
and use dozens of weird symbols and all sorts of nonsense conven
tions. They also spend far too much time drawing flowcharts
instead of thinking creatively about what the program is really sup
posed to be doing.

The first and foremost rule of flowcharting is . . .

127

Sometimes you want to split up your flowchart into a "main"
flowchart and separate "detail" flowcharts. These are otherwise
known as . . .

You should avoid fancy flowcharts with lots of blocks and lines
crossing each other. Use only the amount of detail needed to serve
as an outline.

Here is a simplified flowchart showing the only symbols we need
or should use . . .

(TITLE
...... SHOW BEGINNINGS AND

ALWAYS LABEL
AT TOP.

ARROWS SHOW
DIRECTION.
USE MANY

'-..

_

ENDINGS WITH OVALS.

....------.... If DOTS SHOW COMMON

an event
that does

something

PATH.

+EVENTS GO
IN BOXES .

..... TESTS OR DECISIONS
GO IN DIAMONDS.

no
� ALWAYS SHOW TEST

,
I

.... RESULT ON EACH
DIAMOND EXIT.

The start or the finish of a flowchart is shown by an oval. Name
this oval START, or ZORCH SUBROUTINE, or whatever. Any event

128

that does something goes into a rectangular box. Any decision that
needs a "yes" or a "no" answer goes in a diamond-shaped box. If
there are more than three possible answers to a test, use a stack of
diamond-shaped boxes.

Lines with arrows connect as many event boxes as you need to as
many decision diamonds as you use. Be sure to use lots of arrows so
you leave no doubt about which direction the "flow" of your
flowchart is. Always label and title your flowcharts. Include version
and date.

Generally, you flow from top to bottom and from left to right.
Detail is set aside elsewhere. If there are two or more paths to an
event, these paths are joined with a dot above the event. Always
enter an event at the top and exit at the bottom. Always enter a
diamond from the top and exit right or left or down, depending on
whether or not the decision leaves you in the mainstream. All dia
mond exits must be labeled. Use "yes" for the YES line, "no" for the
NO line, or whatever you need.

Avoid crossing lines and keep nested loops one inside the other.
Try to keep the "mainstream" flow straight downward, with "side
trips" just that. Aim for a whole flowchart connected and in one
piece. Do not use little numbered or lettered circles to show
"splices."

As I mentioned before, avoid using a flowchart template, since
there is too much useless garbage on it. Use a logic template
instead. There are also flowcharting aids such as faint-blue printed
master sheets, overlays, and mylar stick-ons. None of these should
be needed here, although they do neaten and simplify documenta
tion.

One thing that is essential, though, is quadrille or graph paper
rather than lined or blank paper. This is a must for just about all
micro work.

'Nuff said on flowcharts. Their use should become obvious as we
go along. Let's see what goes on ...

a typical card

For a given microcomputer family, you will want one card for
each command in each and every address mode.

As a review, an op code is usually a 1-byte command that starts a
course of action for the microprocessor's CPU. In the case of an
obvious, or implied, addressing mode, that one byte is often all that
is needed to complete the task. Fancier addressing modes will need
a second, a third, or further bytes to qualify the original op code
and answer such questions as "with what?" "how much?" "from
where?" or "to where?"

129

Our first two cards will look at two instructions available on every
microprocessor. One of these is an implied instruction, called "no
operation" or NOP, while the second is an absolute instruction
called "jump" or JMP.

Let's use NOP as an example of what we want to put on a card.
Here is an annotated NOP card . . .

� I ADDRESS MODE I
� FORTHIS

OF INSTRUCTION INSTRUCTION

It I
NO O�RATION ... /�-

{IMPLIED addressing)

I 1

Let's first zero in on what is supposed to go on the card for any
instruction. Then we'll find out what a NOP really is.

Starting in the upper left, we have the mnemonic. In this case, it's
a "NOP." This should be in larger, bolder print, and shows us the
class of instructions this particular one belongs to. I like to have
only the mnemonic here. We'll pick the address mode and show
the assembler notation elsewhere on the card. Keep abstract sym
bols to a minimum, since they often can confuse newcomers.

There can be lots of different cards for each mnemonic. You
should end up with one card for each addressing mode that is avail
able for that command.

A very brief description of what the instruction does should be
centered on top of the card, again larger and bold. Try to provide
more detail than the pocket card does. For instance, on the upcom
ing LOA or load the accumulator cards, use "PUT VALUE IN ACCU
MULATOR" or "FILL ACCUMULATOR FROM PAGE ZERO." In
other words, give a hint which addressing mode is used and what
the intended use for the instruction is.

The op code goes at the upper right, also bold and larger. The op
code is the only way the micro's CPU has of identifying which par-

130

ticular instruction this is to be. Op codes of related instructions are
sometimes similar. Thus, on the 6502, three of the LDAs are coded
as A9, AS, and AD to separate the immediate, page zero (absolute
short), and absolute long modes. Each of these has a hex $A or
"1010" code for the top four bits in its op code.

The addressing mode is centered under the instruction title. This
tells us how we are going to get our package to or from Albuquer
que. Very often, a single mnemonic will be able to do a bunch of
different things in different addressing modes, as was the case with
the LDA above. You should end up with one card for each mode of
each instruction.

The number of 8-bit bytes needed for the instruction goes
below the mnemonic. An implied addressing instruction usually
needs only the mnemonic, while most other instruction modes
need additional 8-bit bytes to answer "With what?" "Where to?"
or "How far?"

How many CPU clock cycles are needed to complete the
instruction? The answer to this appears under the op code. This
value tells us how long each instruction will take to execute. This
will turn out to be important later when we look at timing.
Instruction times are called out in CPU cycles. The actual time to
do a CPU cycle varies with the microcomputer, so you multiply
the number of CPU cycles by the time per cycle to get the total
execution time. Very often, 6502 micros will have a CPU cycle
about one microsecond in length.

Note that it is real easy to mix up the cycle and byte numbers off
the pocket cards. Be sure you get it right. On the 6502, a good mem
ory jogger is the RTS or "ReTurn from Subroutine" command. This
implied instruction takes one byte but takes a long time (six cycles)
to complete.

Sometimes an instruction may need a variable number of clock
cycles. On the 6502, any of the branches will need two clock cycles
if the branch is not taken and three if it is. Another clock cycle may
be needed if a page boundary is crossed. On other micros, the
number of clock cycles can get incredibly complex, particularly on
early devices in the 8080 school.

The box below the number of instruction bytes shows the nota
tion we will need later on when we use an assembler or Editor and
Assembler combination. The assembler picks an address mode by
seeing what comes after the mnemonic. More precisely, the
assembler demands an op code followed by an operand. The op
code tells us what to do, and the operand tells us the address
mode and answers the usual "where?" "with what?" or "how
far?" questions.

Like so ...

131

The exact symbols needed for an operand vary with the micro
processor, as well as with the particular assembler or editor in use.
Very often, though, the dollar sign is used to identify a hex value.
The "number," "sharp," or"#" sign indicates an immediate value.
Parentheses often mean an indirect address, where you go to the
address in the parenthesis to get the address you are really after. If
you are using register indirect addressing on the 8080 school, then
an "I" will often get tacked onto the end of the mnemonic to show
an indirect command. Other micro schools use "X" or"@" to show
indirect addressing.

The number of hex digits in the address tells us the difference
between absolute short and absolute long addressing. Commas will
often tell us that indexed addressing is in use. What follows the
comma is usually the index register. If you have a fancy enough
assembler, quotes often mean to enter what follows as ASCII coded
data values. This is handy to build files and data stashes that are to
be used by your machine instructions.

Typical operand symbols are ...

TYPICAL OPERAND SYMBOLS

$ -means a hexadecimal value
% -means a binary value

- (nothing) is in decimal
-means an ASCII coded string

-means an immediate value
() - means indirect addressing

- (comma) means indexed addressing

2 hex digits = absolute short
4 hex digits = absolute long

Once again, you should not use assembly language till well after
you have done bunches of machine language programming. But it is
important to get the notation right the first time, so that later on the

132

assembler will understand what you are asking it to do. The "punc
tuation" turns out to be extremely critical, so watch these details
very carefully. You also have to be sure the notation you use is right
for your choice of microprocessor and assembler.

Returning to our example card, the notation box should show a
real example, rather than something obscure like "LOA $nnnn,
R(k)." Use concrete examples and not vague symbols.

At the center right of our sample card, we see a description tell
ing which flags are affected by this instruction. We will look at flags
in depth later. For now, note that there are a handful of flags in
most micros. Some instructions will affect certain flags and will not
affect others. The flags can then be used to simplify tests and deci
sions, set modes, pick routes, or otherwise ease programming.

We then put in a simple description of what the instruction does
and how it does it. Do this in plain old English. Do not, under any
circumstances, use those stupid and totally undecipherable symbols
seen in the micro data books.

Tell it like it is.
A line should separate the top and bottom halves of the card. Put

one or two use examples below this line. Make up some legal start
ing address in user RAM and show the instruction doing something
useful. Then explain, again in Eng I ish, what is happening.

The first example should show the most obvious and simplest use
of the instruction. A second example may be added to show some
subtle point or bring out some use detail that may not be obvious. If
there is some real gotcha, you can show this here. You can even
continue special details on the back of the card, but don't if you can
help it. You can also show simple diagrams on the bottom of the
card. Rotate and Shift instructions are much easier to show than to
describe.

Once again, the purpose of the cards is to force you to relate one
on-one to the instructions of the microcomputer of your choice.
You should include enough, and only enough, information on the
card to let you fully understand what the instruction does. Be abso
lutely sure you do each and every card by yourself and by hand,
because creating the card is of far more value to you than actually
using the card will be later.

As you complete a group of cards, use each and every card in an
actual discovery module or other short program to make sure the
instruction behaves exactly as you think it does. Then ask yourself
what you can really do with this instruction that isn't obvious at
first. The real power and real insight in micros happens when you
start using instructions in new and creative ways.

Let's start building up our cards. We'll combine a micro topic or
two with several new cards and then build on what we have to do
in a discovery module.

133

We'll start out with ...

NOP and JMP

Two very simple op codes and cards are the "do nothing" NOP
and a "go somewhere else" command called)MP absolute. We will
use these to get us started on our first discovery modules.

An instruction to do nothing at all sounds like a total waste. But
this instruction, called a NOP (short for No Operation) ends up
having lots of interesting and powerful uses in the micro world.

NOPs take up a minimum amount of time and then go on to the
next instruction. One important use for NOPs is to purposely burn
up machine clock cycles to provide an exact amount of time delay.
This may be needed for time-critical programs or modules.

A second use for NOPs is to save room for some added complica
tions later on. For instance, if you later need a subroutine call but
don't want to get into it just yet, you put in three dummy NOPs for
now and fire away. Later on, you can easily replace these with the
real code you need.

NOPs are also a great debugging tool. If a program doesn't work,
you often can patch over parts of the code with NOPs and see what
goes away. Replacing one part at a time can often point to the prob
lem area.

Let's look at the NOP card again ...

NOP I NO OPERATION I EA
(IMPLIED addressing)

1 Byte 2 Clocks

I NoP I no
flags

Does nothing and then goes on to the next instruction. Used for short time
delays or to leave room for later changes.

24A6- EA Does nothing and goes on to next instruction at 24A7 two
clock cycles later. No flags are changed.

134

NOP is an implied address mode instruction since we need no
further information to complete the action. The assembler notation
is just the NOP op code itself, since no operand or qualifier is in
use.

A NOP takes up two CPU clock cycles in the 6502. We will
shortly see that a CPU clock cycle is typically one microsecond on
many 6502 trainers, with the Apple II running very slightly faster. So,
one NOP delays two microseconds for us in most 6502 trainers. For
a delay of four microseconds, you could use two NOP commands
together. Six microseconds is done with three NOP commands, and
so on. But we will find there are far better ways to gain long time
delays than by using scads of NOPs.

Some other instructions will also behave as NOPs under certain cir
cumstances. Many of the upcoming "test-and-branch" instructions
default to a NOP if the test fails. On other microprocessors, a com
mand, "move something to itself," such as an 8080 MOVAA or a 68CX)
school "branch never" command, also serve as no operations.

The NOP is admittedly not the most exciting of all microcom
puter instructions. But we have to start somewhere, and there is a
surprisingly large variety of timing, room-saving, and debug uses for
this command.

Remember that a microcomputer starts at some low numbered
memory location and works its way up through the instructions. It
does this in ascending order, using up the one, two, or three bytes
as needed to carry out a command. As long as the code is correct
and as long as the commands do not tell us to do otherwise, the
CPU will have its program counter work its way up through mem
ory, usually in sequential order. The place in memory we use can be
ROM for things like system monitors, operating systems, and often
used subroutine utilities. For changeable programs, user RAM is the
place where the action takes place.

We may need a way to get from the "finish," or high end of the
program, back to the "start," or low end of the program. Instruc
tions called branches or jumps force the CPU to go somewhere
else ...

135

In general, branches and jumps do pretty much the same thing.
Either puts you somewhere else in a program. But the individual
names may have very different and very special m.eanings for a spe
cific micro family. For instance, on a 6502, the absolute jump com
mands do their thing regardless, or unconditionally, while the rela
tive branch commands make a test and then may or may not go
somewhere else, depending on whether the test conditionally
passed or failed ...

IT MAY
DEPEND ...

~
There are two jump commands on the older 6502-the JMP abso

lute and the JMP indirect.
Here's the card for JMP absolute ...

JMP I JUMP SOMEWHERE ELSE I 4C

(ABSOLUTE LONG addressing)
3 Bytes 3 Clocks

I JMP $25A61 no
flags

Jumps unconditionally to a new position, whose position is shown by the
second byte and whose page is shown by the third byte. Used to go
somewhere else with no strings attached.

2028- 4C 06 A2 Jumps unconditionally to location $A206.
NOTE: SECOND Byte = position on page

THIRD Byte = page

136

This JMP command uses the absolute long addressing mode. We
cannot simply say "jump." We must qualify that jump command
with a "where to?" operand. On the 6502's absolute long address
ing, you need a full 16-bit wide address, which means that it will
take two additional 8-bit words to answer our "where?" question.
In the 6502, as in most micro schools, the address is spelled out
backward in the op code, with the low byte or position on the page
as the second instruction byte and the high byte or page as the third
instruction byte.

This backward addressing has several advantages. One is called
pipe/ining and lets the CPU set up some of what it has to do ahead
of time to speed up operations. Another advantage is that opera
tions for absolute short and absolute long addressing start off the
same way and proceed in the same direction.

When the CPU gets to a location where it expects to find a valid
op code and it sees a "4C," it immediately whips out its own pocket
card and decides it must do an absolute jump. After that, it looks in
the next slot to find an address low value. It then looks into the next
slot after that one to find the address high value. It then puts both
values together in the correct order and jumps to that address.

Naturally, there must be something useful and interesting at the
location th?t the microprocessor jumps to. Unless there is a valid op
code in this location, the program will bomb.

One obvious use of absolute long jumps is to get from the end of
the program back to the beginning. Another use is to combine dif
ferent paths through a program into one common continuing path.
Absolute long jumps can reach anywhere in the entire address
space, so they can also be used to "amplify" a branch or other short
jump to reach anywhere in the entire address space.

Another interesting use of a jump command is to make a
trap . . .

Now, obviously, you never want to leave a trap in a final program.
But the trap is a powerful debugging tool that lets you do the first
part of a program and see any results. If you have program
problems, just add traps as needed to separate what is working from
what is not.

137

I'll let you do the JMP indirect card on your own. Its a toughie to
start with. Some hints. The 6502 JMP indirect, or 6C op code, finds
an address low as its second byte and an address high as its third
byte. It then goes to this address to find the real address low or
position byte. It then goes one farther to the indicated address plus
one to find the real address high or page byte. Finally, it goes to that
"real" address.

Do it ...

DOING IT:

If your trainer is from the 6502 school,
complete the NOP, JMP absolute, and
JMP indirect cards at this time.

If not, complete all cards for all do-noth
ing instructions and for all absolute
jumps and all indirect jumps.

The jump indirect mnemonic often includes parentheses, such as
JMP ($FDAC), but the notation changes from micro family to family.
In this case, the microcomputer finds the address low from the
"real" address value stored in FDAC and then looks in FDAD to find
the "real" address value high. It then jumps to those new locations.
Note that five bytes are involved. There are three bytes in the pro
gram module that include the jump indirect op code, the low
address address, and the high address address. Th�re are also two
data block bytes stored elsewhere that actually hold the low and
high bytes of the address we are to go to.

Indirect unconditional jumps are useful when you need to calcu
late an address, such as continuing with the options on a menu
selection. They are also useful to let you put most of your program
into ROM, while letting you calculate or otherwise change a pair of
RAM address values as part of your fixed program.

A final important reason to master indirect addressing on the
6502 is that you must understand indirect addressing before you can
go on to the super whiz-bang address modes that combine indirect,
indexed, and absolute short or page zero addressing.

If your micro does not have an absolute indirect jump, it should
have some other way to do the same thing, such one or more regis
ters that can be used as an address pointer. Check it out.

We can now try out our first two cards on an actual discovery
module .

138

DISCOVERY MODULE

�
TAIL BYTER

Write a program that does nothing three
times and then repeats forever.

List, single step, and then run the pro
gram.

�����

Remember, the discovery modules are NOT programs. Programs
that solve any useful real-world problems take a very involved and
long solution method called the Micro Applications Attack that we
will see in Chapter 9. The discovery modules will run like a pro
gram, but we need only go from flowchart to code sheet to pro
gram.

Use this simplified attack . . .

TO DO A DISCOVERY MODULE-

1. Do a flowchart.
2. Do a coding form.
3. Enter the code.
4. Debug the code.

Each discovery module will have all sorts of nasties fiendishly
hidden in it. These include new skills you have to pick up or new
things to learn. Our first discovery module requires you to learn
how to use the machine language programming form and the hex
dump form, how to bring up the micro, how to read and write to
memory, how to list, how to single step, how to debug, and how to
actually run a program on the trainer of your choice.

So, if you haven't already done so, get out your trainer, bring it
up, and practice reading and writing memory locations. Use your
simplified memory map to pick a good program starting point. Try
writing to a ROM location. What happens? Why?

Here's the flowchart for the first discovery module . . .

139

TAIL BYTER:

START)
1
+

DO
NOTHING

�
DO

NOTHING

�
DO

NOTHING

I

We see that we want to have three events called "do nothing" in
a row. Then we have to go back to the start and repeat. While we
will use a jump to get back to start, we don't have to show this as an
event. The return line, the arrows, and the path-combining dot at
the top imply this jump for us.

Let's now get a machine language programming form and look at
it . . .

ADDRESS OP CODE BYTE #2 BYTE #3 MNEMONIC HOW? NOTES

I....

-:

......._... - -
-

............_

Starting at the left, we see a column that holds the address of
each new instruction. The op code for that instruction goes next to
the right. You use one line per instruction but only one box per
byte. If you have a two-byte instruction, you put the op code in the
first box and the second "how?" or "with what?" byte in the second

140

box. If you need three bytes, the third "where?" byte goes in the
third box.

For instance, if your user RAM starts at $2000, you may need loca
tion $2000 for an implied instruction, or locations $2000 and $2001
for an immediate instruction, or locations $2000, $2001, and $2002
for an absolute instruction. The next available location for the next
instruction on the sheet will likewise be bumped forward as far as
needed.

The op-code column holds the mnemonic for the command. The
HOW? column holds the operand if one is needed. The final col
umn to the right holds notes. These notes, or comments, are peo
ple-type words in ordinary English that say the same thing the
words in the flowchart boxes do. Avoid using any mnemonics or
other computereze in this column.

Always do your programming forms from RIGHT to LEFT' Start
with the people-type notes. Then figure out the op-code mnemon
ics and the "how?" operands needed to complete those commands.
The answer to "how?" might instead answer "where?" or "with
what?" Then go all the way to the left and calculate the next avail
able address. You calculate the next available address by counting
filled boxes from the previous address. Finally, use your cards to fill
in the actual code values.

One more time.
The action is on the right' It's those people-type notes or com

ments, followed by the assembly level mnemonic and operand, that
you should spend most of your time on. Do NOT, repeat DO NOT,
fill in the code values first' Always work from right to left.

Some rules ...

PROGRAM FORM RULES

) Always work from RIGHT to LEFT!
) Keep comments in English, not computereze. The

note, or comments, "field" is far and away the
most important.

() Always use ONE line for ONE op-code command.
() Use the second and third byte boxes ONLY when

the command needs a second or third byte.
) Calculate new addresses by counting one for each

FILLED IN box per address space location.

Let's go through our first program form, filling in some detail.
Here is what the final form will look like for our MYTH-1 imaginary
trainer ...

141

[
--

r

MACHINE LANGUAGE PROGRAM FORM

DONE BY ltJ.If.l: I PROGRAM 1 r"l.'"' l}.t:.z:�t!.
DATE I Ulf l:i?;i I VERSION (/,a

RUNS ON lt!a:::rti--' I
CPU I 6l� I

ADDRESS OP CODE BYTE #2 BYTE #3 MNEMONIC
ldJ!t. £A AIOP

tJ. €A NOP
I. t:!A NO�

1/J, 4C fP(J .:I..(J """ p
,,,

I--

NOTES 0/SCOV£1<'(MOOIIU #. .1 IN

M/CifQ CqqK8aQI< VOL A

HOW?

12dd(J

NOTES
lJo .NoTII!Nt<io
JJO No: 'H!.Nl!il

IO __ Hil> "H A!Ei
- -- A/11/J RE I'EA I

PAGE IZ) OF (2]

I
I

-

This module is rather obvious. Three NOPs and a jump back to
repeat over and over again. But let's go through how you build up
your programming form, step by step.

The first thing to do is decide where you want your program to
start. You can find this from your Simplified Memory Map or other
wise determine where your program is to go. Naturally, the first
entry of a program has to be in a user RAM area· that won't get
plowed by something else. Much later on, you may want to perma
nently burn your program into EPROM, but even then you will
probably need some RAM for things that are to change.

A lot of disk operating systems assume the first program location
is in fact the start of a program. So it's a good idea to put your pro
gram or discovery module first into RAM, followed by any support
subroutines, data blocks, files, stashes, or whatever.

We will start our program at $2000, the start of the MYTH-1's user
RAM.

Now, we go to the flowchart and get the "do nothing" comment
off the flowchart and put it on the programming form. We next
decide that a NOP is a good mnemonic to do nothing, so we put
this in the top slot of the MNEMONIC column. A glance at our
NOP card tells us this is an implied instruction that needs no quali
fications, so we leave the operand or HOW? column blank.

142

We then calculate the instruction address. In this instance, this
step was already done when we decided where we wanted to start.
Most of the time, though, we find the instruction address by look
ing at the previous instruction address and adding one, two, or
three locations to it, depending on whether the previous command
took one, two, or three bytes.

You only put in the machine code after everything else is filled in
on the line. You must have your note, mnemonic, HOW? and
address fields complete before you look up any code. You must
also be sure you know exactly which address mode you are using at
this point. The symbols and punctuation for your address mode also
must be exactly correct.

Then, and only then, can you go to your cards and fill in the EA
code needed. (Naturally, if your trainer is not from the 6502 school,
your NOP will have a wildly different op code, rather than EA.)

The process continues in the same way for the second and third
lines The only difference is in how we calculate our address. To
calculate a new address, add the number of bytes of instruction
code of the previous address to the previous op-code address. It's
simple this time. $2000 plus one byte is $2001, the start of the sec
ond instruction. $2001 plus one byte is $2002, the start of the third
instruction. Don't forget that $0A comes after $09 and that $10 fol
lows $OF!

It's best to call out addresses out loud, "counting blocks" as you
go on. This avoids any confusion on multiple byte addresses.

Note that the address mode can change how many bytes are
needed for an instruction. Be sure you get the right mode with the
needed number of bytes; because if you don't, the program will
bomb by mixing up "how?" "where?" or "what?" bytes with valid
op codes.

Our final I ine note says to do it again, and we decide an absolute
jump is the way to go. Our mnemonic is JMP. In this case, the mne
monic by itself won't tell us all we need to know, so we put the
address we want to jump to, $2000, in the operand, or HOW? col
umn. Our address calculates just like before, since the previous
instruction was one byte long.

On to the 6502 JMP card and the actual coding. We need a "4C"
op code to do an absolute jump. This has to be followed by the
address low or position byte, which in this case is $00. The third
byte is the address high or page byte and is a $20. Note that the
addresses appear in byte reverse order only in the code blocks.
Addresses are shown frontward on the operand column and in any
documentation.

On your trainer, there will be a different starting address and the
JMP values will be different. The op codes will, of course, also be

143

different if you are not using a 6502 family microprocessor. Be sure
to think about what you are putting on the sheet. Make sure all
addresses relate to what you are trying to do and make sure you
have EXACTLY the addressing mode you chose.

Note the arrow on the left margin. Always show program flow
this way in a hand-coded machine language programming form.

I have shown you most of the program form in this example. It is
very important to fill out ALL of the boxes on the form completely.
Otherwise, old versions of nonworking programs will get mixed up
with the good stuff, and you will be in deep trouble. ANY time you
write down ANYTHING involving micros, always show the date,
who you are, the program name, the version number, the CPU, and
what machine it runs on.

In later examples, we will omit the boilerplate from the forms to
save room. But remember that it is ABSOLUTELY essential that
EVERY sheet of anything you do with micros is identified so well
that you or anyone else can immediately tell what it is a year from
now.

You can now punch the code into the machine. After you enter
the code, you should dump it or list it to make sure that what you
actually put into the machine is what you thought you put into the
machine. Listing or dumping just gives you a location-by-location
check to make sure the machine is filled the way you want it.

Still, the terms mean different things ...

If you get bunches of question marks during a listing, you either
are trying to list something that is not a program or discovery mod
ule, or you have the wrong starting point, or you have mixed up

144

your address modes or otherwise dropped or picked up a byte
somewhere.

All trainers let you dump memory. The fancy ones will also let
you list. Lising is easier to read and simpler to use.

Here is how your program might dump onto a trainer's LED dis
play . . .

........

2000- EA

2001- EA

2002- EA

2003- 4C

2004- 00

2005- 20
-

Here is what a hex dump would look like on a personal com
puter's video display, if it is set up to show eight values per line.

$2000- EA EA 4C 00 20 FF FF FF

The last three entries could be any old value, since we aren't
using them and since they aren't needed by the program. Your hex
dump form could be used to show eight or sixteen values per line.
This is how the hex dump form looks, set up for sixteen values per
line . . .

Note that each hex value goes to the right of the next one, with
the "line address plus zero" first on the left, the "line address plus
one" next, and so on for sixteen values. The start of the next line
will be address $2010, since $2000 + $10 = $2010.

Hex dump forms are used mostly to store data and file values or
to hold complete programs in ready-to-enter form. The advantages
of hex dumps are that they are compact and can hold anything.

145

Their disadvantage is that you can't easily tell what you have by
looking at it.

Your program form should give you a listing of your program
when you look at just the mnemonic and the "how?" columns.
Here is an example of the program's listing, as seen on the screen of
a personal computer ...

2000- EA NOP
2001- EA NOP
2002- EA NOP
2003- 4C 00 20 JMP $2000
2006- FF ???

The $2006 listing could be anything, and all sorts of meaningless
garbage could follow the legal part of your program. Note there is
no listing for the "00" value at $2004 and the "20" at $2005, since
these are modifier, or operand, values that are an essential part of
the instruction starting at $2003. Listing lists ONLY op codes. And,
once again, listing works only on a legal program and only when
you start at the beginning of a legal instruction. Any other listing
gives you garbage.

Listing is sometimes called disassembly, since listing involves tak
ing apart the code and breaking it down into individual mnemonics
and modifying operands.

More buzzwords . . .

After you have listed or dumped your program to make sure you
have it entered correctly, you should be ready to debug it. Debug
ging is any way of checking out a program to find problems .

146

We will pick up on these debugging methods as we go along.
Listing or dumping, of course, is the way to be sure that what you
think is in the machine is really there. Single stepping lets another
program run one line of your target program at a time. Trapping
stops the program and hangs it at a selected point. Isolation is any
way to decide what part of the program is causing the problem.
Patches, NOPs, immediate subroutine returns, and other stunts can
be used to change the program to isolate the part of it that is the
culprit. Tracing is repeated single stepping at a slow speed or to
generate a printed record. Falling back means going back to the last
working version of the program and trying again. If you are on your
first try, falling back consists of trying something simpler, taking
smaller first steps, or trying a different tack. Breakpoints are forced
software interrupts that jump you from your program to the moni
tor or some special code.

Most trainers have a single step feature. This is turned on by flip
ping a switch or pressing a special button. The Apple II has a single
stepper built into its "old" reset ROM. Every time you press the S
key, you get one line acted on and also get a printout or screen
display of what all the working registers are up to.

But note that single stepping does NOT run your program. Single
stepping runs a program sequence in the monitor that borrows one
program line of yours at a time. To repeat ...

As you single step your program on our MYTH-1 trainer, you
should get the following addresses on the display ...

147

- -

2000- EA

2001- EA

2002- EA

2003- 4C

2000- EA

2001- EA

. . . and round and round she goes.
If you have a fancy single stepper, you may get all sorts of other

interesting stuff as well, such as mnemonics, operands, working
register values, and so on. But the thing to watch is the addresses. If
the addresses go round and round, rather than hopping off into
some other address space, chances are your program is ready to run.

Note the difference between dumping and single stepping. In
dumping, you check to see what is in each and every memory loca
tion. In single stepping, you actually execute one op code at a time,
using up the one, two, or three bytes as needed to complete each
command. Dumping shows you what is there. Single stepping actu
ally does each command.

DOING IT:

If you single stepped the TAIL BYTER
and got this sequence, what beginner's
coding error did you make and how can it
be fixed?

2000- EA
2001- EA
2002- EA
2003- 4C

0020- 9F

The value at address $0020 could be almost anything else, as well.
Do you see the problem?

Oh yes. One very important point before we go on .

148

Any time you find a mistake in a program, you
MUST go back and undo ALL possible damage
that mistake did.

Instead of just fixing the error, ALWAYS go back
and relist or redump the ENTIRE program and
any related data blocks to be sure there is no
hidden damage.

If you don't relist on each and every error, here is what happens.
You find a mistake and fix it, and the program still won't behave! Why?
Because single stepping or running the mistake caused some very
strange op codes to be executed in some very dumb ways. Chances
are these plowed some things that you didn't want plowed.

Anyway, you should now be able to run your program. The run
ning rules change from trainer to trainer. On some you punch in an
address and then hit a GO button. On others, you set a program
counter pointer to some value, as is done with the "

*
" key on the

AIM-65. On others, such as the Apple II, you type an address fol
lowed by a "G." Read the user manual that comes with the trainer
to find out how to run a program.

So, you tell your trainer to run, and what happens?
Nothing!
What should happen is that the trainer should seem to quit in its

tracks, perhaps putting the display off and hanging up any video
cursor or prompts.

Why does this happen? Because our program tells the microcom
puter to go round and round and do nothing else. There is nothing in
our program that does anything to screens or LED displays. Some train
ers, such as the KIM-1, will tell you the last adddress you worked on
when you stopped the program. Start and stop your program several
times. If the final address stays in the range of the address values of
your code, then your program is probably working okay.

So if your first discovery module is working correctly, expect
absolutely nothing!

Another rule ...

If a program is to do anything useful, there must
be some output somewhere that can be viewed,
used, measured, or put to use by another program.

Looks like computing for the sheer joy of computing won't hack
it. Now, we could be sure our program is working correctly by tak-

149

ing an oscilloscope or logic analyzer with many inputs and plot out
what the data bus and address bus are up to as a function of time.
This always works, but it is a last resort and very painful way to
check out a program.

Let's try to build a program that gives us a useful output by going
on to ...

ID.

DISCOVERY MODULE

FIGURE EIGHT
22

Write a program that starts on an even
page, does nothing three times, jumps to
an odd page, does nothing three times
again, and then returns to the initial page.

View address line AS on an oscilloscope.

��

This should be easy enough. Three NOPs, a jump to a higher page,
three more NOPs, and a return to a lower page. Although it is usually a
bad idea, we'll purposely arrange our flowchart to look like a figure 8.

Here's the flowchart ...

150

(LOW PAGE)

DO
NOTHING

DO
NOTHING

DO
NOTHING

On our fictional MYTH- 1 trainer, we will start on page 20 at location
$2000 and on page 21 at location $2100. Since two pages of code are
involved, use two separate machine language programming forms.

The code looks like this ...

ADDRESS OP CODE BYTE 112 BYTE 113 MNEMONIC

�')�(/) EA HOP
'd EA AJOP

p

JL L�1:
IJt

- - -__-�

ADDRESS OP CODE BYTE 112 BYTE 113 MNEMONIC

)/1 EA NOP
.:1. EA AIOP

£A
.:>, '3 "1-t:- fPIJl tilL :rh'IP
11./

- - L--- --

HOW? NOTES

Do Norll V&
Dt> AI" r# Jill&

Ill
I

HOW? NOTES

.Do No· "HIJJ!it
J>o AIIJ T# tAl b.

-

-

�
LOW PAGE

CODE

�
HIGH PAGE

CODE

Be sure to separate your code any time there is any break in the
addressing sequence. It's best to put each piece of code on a separate
sheet. Reasons for this are so that a change in one part of the code
won't involve recopying or moving another part, and so that all the
code won't get mistakenly punched into the same memory area.

Single stepping should give you four stops on the even page and
four stops on the odd page. Once again, when you run the program,
everything should disappear.

But now we have something fairly convenient that we can view
with an oscilloscope. Set your scope to 1 volt per division (0.1 with a

10X probe), DC coupling, AUTO triggering, and 2 microseconds per
division horizontal scan rate. Touch the scope probe tip to make sure
it is alive. You then do a further quick check on the scope by picking
off + 5 volts DC from the highest (counterclockwise-most from the
notch) pin on any of the smaller non-memory 14- or 16-pin ICs or
some other obvious point. Then grab one of the crystal pins or another
known clock signal to check the scope display and locking,sync. If you
can't read DC or a clock, there is no point in continuing.

Then get out the trainer or personal computer schematic and
locate address line A8. The safest place to pick this up is on an
expansion connector by glomping onto an extra and empty connec
tor. Another good route is to use a small grabber to catch one pin
on one integrated circuit.

Here's a quick mod to a scope probe that lets you easily touch a
single IC pin ...

151

~
A PROBE
MOD FOR

IC PINS

.,.. KEEP LEAD ,. SHORT & RIGID

Any old value half-watt resistor will work. Be sure the lead is just
long enough to give you a convenient and rigid way to touch a
single integrated circuit pin. Some probe accessory kits may have
screw-on pin probe attachments. Use whatever you have available.

A gotcha ...

If you briefly short ANY two points together on
a trainer, you are almost certain to destroy your
program.

If you briefly short exactly the wrong two points
together -even for an instant, you will also
destroy the trainer.

·BUT··

WATCH IT!

·+I
It is also a good idea to add a rigid ground terminal in a conve

nient place to accept the ground lead from your scope and for other
measurements. Sometimes you might also like to add tiny wire tie
points to other places in the circuit. If you do this, be sure you do
not get solder on connector pins or do anything else dumb.

By the way, for best scope results, you must calibrate the probe
to the particular scope input you are using. This is done by twisting
the probe body or turning a small screw while viewing a square
wave calibrating signal. Things are right when the square wave is
square, without any rounding or overshoot. Do not interchange
probes or mix them up once they are calibrated.

Anyway, you should get this picture on your typical 6502 machine
when your program is run .

152

2.5 VOLT

�:s •I• is____.j
0 VOLTS

On other micro families, you may get holes chopped in the
square wave or have other problems. Check the address bus at a
memory chip pin or an expansion connector pin, rather than at the
microprocessor chip, and see if it gets any better.

If your 6502 trainer has a 1-microsecond clock, you should get a
square wave that is high for 9 microseconds and low for 9 microsec
onds, for a total period of 18 microseconds, or a frequency slightly
above 55 kilohertz. More on time and frequency in the next discov
ery module.

Note that the address lines will be noisy, as will almost any other
point you measure in a micro. There will be a small amount of
ground noise and quite a lot of noise on the high level. This is nor
mal. As long as you, or any electronic circuit, can cleanly and clearly
tell a one from a zero, everything will still work fine.

Let us see what is happening and why on your program. We will
now go through what is called logic analysis . . .

Why do we get a square wave? For now, we won't worry too much
about what the data bus and the control bus are up to. But let's check
out each and every address line versus time. Each address line will
have the binary equivalent of its hex address on it ...

153

ADDR. A15 A14 A13 A12 A11 A10 A9 A8 A? A6 A5 A4 A3 A2 A1 AO
2000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2001 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

2002 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
2003 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1

21 00 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
21 01 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
21 02 0 0 1 0 0 0 0 1 0 0 0 0 0 0 . 1 0

21 03 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1
2000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Note that we have gone all the way around and then one more.
The patterns should repeat. Now, let's look vertically to see what
the address lines are up to. Lines A15, A14, A12, A11, A10, A9,A7, A6,
AS, A4, A3, and A2 are forever low or zero and don't change. Line
A 13 is forever a one or high and doesn't change. But I ines A8, A 1,
and AO have patterns on them.

Our interest is line A8. Note the nice square wave. We get this
square wave since our program forced this address line to be low
for four instructions and then high for four more instructions. Later
we will find that three NOPs and a JMP add up to nine 6502 clock
cycles or nine microseconds. We will also get some waveforms on
lines A1 and AO, but these may end up unsquare for reasons we
needn't bother with just yet.

But we now have a program that gives us a measurable output
when viewed on an oscilloscope. And we now see how logic analy
sis, painful as it is, can almost always show exactly what is happen
ing inside the machine at any instant.

A question ...

DOING IT:

Connect your scope to address line A1.
You should get a faster rectangular wave
here. Why?

Now, reset your FIGURE EIGHT program.
The square wave turns into a royal mess,
but something is obviously still running.

Why? What program are you viewing?
Why is it so jumbled?

If you tried to use this square wave for anything, you might overload
the trainer. You need better ways to get useful square waves out of
micros. Those better ways involve ports. They also involve .

154

DISCOVERY MODULE

@
SQUARE DEAL

Write a program that puts a fast square �· ·

wave out a port.

View the output waveform to make sure it
is really square and not rectangular.

�������
Here is sort of a chicken and an egg problem. You need to use ports

to know about ports, and you need to know about ports before you
can use them. You'll find all about ports in Chapter 8, where they logi
cally belong, included with the rest of the 1/0, or Input/Output stuff.

If this is your first trip through the micro cookbooks, stop here
and pick up on Chapter 8. If not, let's continue.

We will assume that we have available a parallel port and that we
will use the lowest output line for our square wave. We will further
assume that this port has to be taught which lines are inputs and
which are outputs. We do this on the MYTH-1 by using some teach
ing hardware at $COSO. The actual port location is at $C081. More
details on this in the next chapter.

The hidden nasties in this discovery module include finding out
how to read and write values into and out of memory locations;
how to initialize, or teach ports; and how to measure and use time,
frequencies, and clock cycles.

Let's find out how we read and write to memory locations inside
a discovery module or program ...

LOADING AND STORING

With most microprocessors, there is no way that we can directly
fill or empty any old location in the address space. We must initially
use a working register to put values into, to receive values from
hardware in the address space, or to replace values routed to other
hardware in the address space.

So ...

Most operations on most micros must go through
one of its working registers.

The accumulator is usually your first choice for
this.

155

Operations that fill the accumulator or other working registers are
called loads. Operations that take copies of what are in a working.
register and put them into the address space are called stores.
Operations that move copies from one working register to another
are called transfers or moves, depending on the micro family cho
sen . . .

Let's look at a transfer first. Here's the 6502 way to put a copy of
what is in the accumulator into the X register . . .

TAX j PUT COPY OF A INTO X I AA

(IMPLIED addressing)
1 Byte 2 Clocks

I TAX I Nan� Z

flags

Transfers a copy of what is in the accumulator into the X register. The
accumulator is unchanged and the old X value gets destroyed.

Assume the accumulator holds an $F2.

2412- AA Puts an $F2 in the X register, leaves an $F2 in the accumu-
lator, destroys the old X value, sets the N flag, and clears
the Z flag.

156

As you do these cards, try to second guess what should go into
each location before you actually find the right values. Since the
TAX command needs no further information, you can guess that
this is an implied instruction that is one byte long. You can also
guess that this takes two clock cycles, since two cycles seems to be
the minimum used for simple tasks. The symbol for the assembly
notation will just be TAX, since this in an implied instruction.

But, unlike previous instructions, when you move something, you
might like the flags to change. In this case, theN flag and the Z flag
both change. You do not yet know what the N and Z flags are, but
you will find out shortly. For now, all you worry about on the cards
is whether the flags change and which ones are altered.

Note that the TAX command does not change the accumulator. It
simply puts a copy of what is in the accumulator into the X register.
Whatever used to be in the X register is destroyed, so if you needed
the old X contents, you should have done something else with it
before you used this command.

Remember also that our working registers usually hold 8-bit data
values, expressed as hex $00 to $FF, decimal 0 to 255, or binary
%0000 0000 to %1111 1111. It usually takes two hex digits to specify
a data value, and it takes four hex digits to specify an address that
can be anywhere in the 64K address space.

DOING IT:

If your trainer is from the 6502 school,
complete the TAX, TXA, TAY, TYA, TSX,
and TXS cards at this time.

If not, complete all cards for all instruc
tions that move or exchange data
between working registers.

The S in TSX and TXS is the stack pointer. You'll find out more on
it later. For now, assume it is a dedicated use working register, eight
bits of which can be copied to or from the X register.

Well, you just knocked off a bunch of cards, but none of them
seems to help much with the discovery module problem of initializ
ing a port or writing data to that port. These instructions simply
move things around inside the CPU. They do not involve them
selves with address space nor do they offer a way to put something
new into the machine.

157

To put some value into the machine for the first time, you need
to use the immediate addressing mode. The 6502 immediate
addressing command used to fill the accumulator is ...

LOA I PUT VALUE INTO ACCUMULATOR I A9

{IMMEDIATE addressing)
2 Bytes 2 Clocks

I LOA $F31 N&Z

flags

Puts the value of the second instruction byte into the accumulator. Used to
initially enter a fixed number into the machine.

2C34- A9 F3 Immediately places the value $F3 into A. Sets the N

flag and clears the Z flag.

Note the key words "fixed value." There are other load instruc
tions that go into memory and look at some location and then take
whatever they can find there and put it into the accumulator or
some other working register.

A rule ...

Use the immediate addressing mode when you
want to put a fixed number or value somewhere.

Use other addressing modes such as absolute
long and absolute short when you want to go to
a location, and take a copy of whatever is there,
and put it into a working register.

You will find lots of different LDAs in the 6502 family. Eight of
them for eight different address modes. The absolute long LOA is
op coded AD and reaches anywhere in the instruction space to look
at an address location, gets a copy of that location, and puts it in the
accumulator. This is a 3-byte instruction, since we need an op code,
followed by a low or position byte and a high or page byte.

158

The X and Y working registers can also be loaded in bunches of
ways, but they are slightly less flexible than the accumulator.

The concept of "store immediate" doesn't make any sense, so
there are no immediate stores. All store instructions take something
that is in a working register and try to put it into memory some
where. What was in that memory location before gets destroyed.

Remember that a memory location can hold RAM, ROM, 1/0, or
nothing. The CPU can try to write to any location, but it will suc
ceed only if there is RAM or writeable 1/0 at that location.

Once again . . .

You can store only to a memory location that has
RAM, 1/0, or other writeable hardware in it.

Our most obvious 6502 store takes a copy of what is in the accu
mulator and stores it somewhere in the entire address space using
absolute addressing.

Here are details . . .

STA I PUT A INTO ADDRESS SPACE I 80

(ABSOLUTE LONG addressing)
3 Bytes 4 Clocks

I STA $23451 no
flags

Takes a copy of what is in the accumulator and tries to store it in the
address space location called out by the position or low-address second
byte and the page or high-address third byte. Used to move data from
the accumulator into the address space.

Assume the accumulator holds an $F4.

256A- 8D 45 23 Takes a copy of the $F4 in the accumulator and
tries to store it at address $2345. Will succeed
only if $2345 has writeable hardware in it.

An absolute store gives a way to take a copy of what is in a work
ing register and put it anywhere in the address space. This will be
useful to initialize a port or to write data to a port, as you will see
shortly.

159

More cards . . .

DOING IT:

If your trainer is from the 6502 school,
complete the LOA, LOX, and LOY immedi
ate and absolute, and the STA, STX, and
STY absolute cards at this time.

If not, complete all cards for all instruc
tions that fill working registers with an
immediate value and for all instructions
that fill or empty working registers from
an absolute long location in the entire
address space.

Remember to use the programming manuals for the microproces
sor's CPU as a dictionary or encyclopedia to find out about each
card as the need arises. Do not try to do the cards in alphabetical
order. Do not try to complete all address modes for a given mne
monic at the same time.

We now should be ready to do the flowchart for the port square
wave . . .

SQUARE DEAL:

START

!
TEACH

PORT

1
t

OUTPUT

A " 0 "

!
OUTPUT

A "1"

I

160

We see that we teach our port which lines are inputs and which
are outputs. We do this only once at the beginning of the program.
This process is called initialization .. .

After we teach our port which lines are inputs and outputs, we go
on and write a one to the port, then write a zero to the port, and
then repeat the process over and over again. Note that we do NOT
initialize again. We simply keep outputting ones and zeros. Check
the arrow in the left margin of the upcoming code.

As the ones and zeros start streaming out the port, the port will
first go high and then low and then high again, and so on forever.
This should give us a square wave, or at least something, out the
port.

As we have seen, there is no direct way to write to an absolute
memory location or to a memory-mapped 1/0 port in most micro
families. You have to put values into working registers and then
store the register value in the final location. Normally, you will use
the accumulator as your first choice of working register ...

If there is any doubt about which working regis
ter to use, always try to use the accumulator
first.

Naturally, if the accumulator is busy, you will either have to save
its old contents elsewhere or have to use a different working regis
ter. This can become quite a juggling act in some micros. In the
6502, we have the X andY registers to help us out, and we will see
that we can easily shove accumulator values on to and off of a stack
for temporary storage. We will also see that all of page zero is easily
reached in an absolute short addressing mode. These locations can
sometimes serve as an additional 256 working registers.

Now, if we only knew how to teach our port, we would be all set.
Full details on this appear in Chapter 8, but let's preview here.

We've assumed our MYTH-1 trainer has a VIA type teachable 8-bit
parallel port. The teaching address is $C080, the actual port is

161

located at $C081. To teach the port, place a one for each output line
and a zero for each input line into the teaching location.

If we use the "zero" port line for an output and make all the
other lines inputs, the teaching pattern will look like ...

<ONE OUTPUT,
SEVEN INPUTS

.--I 0
---.

l
r--

o
--r
l

-
o -r-1

-
0 r-1 °

--.l
-

o
--r
l
-

o -r-1 �1

. which in this case is a hex $01. So we write this pattern to our
teaching location $C080 by first filling the accumulator immediately
with the value $01 and then by storing the accumulator into the
teaching location.

Two gotchas. First, note that any ODD binary value into the
teaching location will make the zero line an output. There are 128
possible values that can make any single port line an output and
another 128 possible values that can make any individual port line
an input. Each bit stands on its own. Teach a one and you get an
output line. Teach a zero and you get an input line.

Second, be careful not to mix up the teaching location with the
actual port location. On a VIA style port, the teaching location con
tains some hardware that will configure the port into your desired
number of inputs and outputs. The port location is the actual funnel
where data passes into or out of the microcomputer.

Note also that my comments here apply only to VIA style ports.
Other ports will behave differently. See Chapter 8 for more details.

We are now ready for code ...

ADDRESS OP CODE BYTE #2 BYTE #3 MNEMONIC HOW? NOTES ..L '1111 ,.,..An< o�r
:/I ;r, .IJII/Jl . ,

[
() 11r LP

C# r. .IJI1 " " " Sl /), [�J MAirE: tJ/.ITI'IlT J!f&ll
�Q dJPJ " .. •I I

.. �UL m If} /IS ANJ> FIE'PEA�
: ;.. � _/

..,.._ - -
__.,.. -

- ,. _ _, -

As usual, you fill in the blocks from RIGHT to LEFT. First load the
accumulator with your input/output pattern and then store this in
the port teaching location. Since this initialization is a separate task,
we've drawn a heavier line across the form. Usually, you initialize

162

RE
l

only once at the start of any program. Later jumps should skip this
part of the code.

You then put a #01 immediately into the accumulator and then
shuffle it off into the port. This is followed by an #00 and then a
round-and-round jump.

Glomp your oscilloscope onto the port and you'll see ...

2.5 VOLTS

��--m :Sp ·14
0 VOLTS

Uh, oops. That's a waveform all right, and the waveform comes
and goes with running and not running of the program. But this is
not a square wave. It is a rectangular one! The low time is clearly
less than the high time.

In any beginning micro class, there is always one whiz kid who
runs out and gets this result way ahead of everyone else. It sure puts
a crimp in his style when you say that isn't what you assigned.

Several points here. First, if you do not have an oscilloscope, you
can use an ordinary VOM or voltmeter and you will get a voltage
that is around 3 volts out of a NMOS port with this waveform when
it is running. What you are doing is duty cycle averaging the lumps
and reading the average voltage on the meter. While a scope is very
useful for learning micros, you can use this voltmeter substitute in
this module. The rest of the modules will give you other ways to
measure or observe results.

The second point is that you should get a clean rectangular wave
out on any trainer from any micro family. The address bus may get
messed up with other stuff in different families, but you should get
a clean rectangular wave out this port. If you don't, you have done
something wrong.

163

DOING IT:

Here are some hex dumps of four mis-
takes beginning students have made with
this module.

Disassemble the code, analyze the one
mistake made each time, and show what
the result would be.

2000- A9 01 80 80 CO A9 00 80
2008- 81 CO A9 01 80 81 CO FF

201 0- FF FF FF FF FF FF FF FF

2000- A9 01 80 80 CO A9 00 80
2008- 80 CO A9 01 80 80 CO 4C
2010- OS 20 FF FF FF FF FF FF

2000- A9 01 80 80 CO A9 00 80
2008- 81 CO A9 00 80 81 CO 4C
2010- OS 20 FF FF FF FF FF FF

2000- AS 01 80 80 CO AS 00 80
2008- 81 CO AS 01 80 81 CO 4C
2010- OS 20 FF FF FF FF FF FF

The last problem is a subtle one. More on it when we get to page
zero addressing. Hint: What value would you expect to find stored
in location $0000? In location $0001? Could the program still work?
What are the odds?

Anyway, it looks as if we have to go back to the drawing board.
We do not have a square wave out a port. Instead, we have a rec
tangular wave out a port.

Maybe now is a good time to look into ...

TIME, FREQUENCY, AND CLOCK CYCLES

During a windstorm in an orchard, you might measure four plums
per second falling off a tree. The frequency of plum failings is four
plums per second, while the average time period between plum
failings is one-fourth of a second, or 0.25 seconds.

Which leads us to .

164

On an electronic waveform, a cycle is defined as "one trip
around," or all values we go through before the waveform begins
exactly repeating. On a rectangular or square wave, one way to
show a cycl.e is from positive edge to positive edge. A cycle on a
square wave thus has both a high time and a low time.

The frequency of a waveform is simply the number of cycles per
second. The time period of a waveform is the time it takes to go
through exactly one cycle, or to get back to the same starting point
in the next cycle.

Frequency is measured in hertz, or cycles per second; in
kilohertz, or thousands of cycles per second; in megahertz, or mil
lions of cycles per second; and in gigahertz, or billions of cycles per
second. Gigahertz frequency values are not common in microcom
puter work, but they are very important for such things as micro
waves and satellite television. Time periods are normally measured
in seconds; thousandths of a second, called milliseconds; millionths
of a second, called microseconds; or billionths of a second, called
nanoseconds.

Thus . . .

Here is how these frequencies are related . . .

1 hertz = .001 kilohertz = .000001 megahertz
1 000 hertz = 1 kilohertz = .001 megahertz

1 000000 hertz = 1000 kilohertz = 1 megahertz

165

Similarly . . .

And these are related by . . .

.000000001 5 = .000001 m5 =

.000001 5 = .001 m5 =

.001 5 = 1 m5 =

1 5 = 1000 m5 =

.-..
-

.001 p.5 =

1 p.5 =

1000 p.5 =

1 000000 p.5 =

..........

1 n5

1000 n5

1000000 n5

1 000000000 n5

Time and frequency are inverses. The number of plums per sec
ond equals one divided by the time between plum failings.

Most electronic people change all these numbers to scientific
notation, and they always use powers of ten that are a multiple of
three. Thus . . .

10• hertz = 103 kilohertz = 10° megahertz
and . . .

10° seconds = 103 milliseconds = 10• microseconds
Here is how you go about . . .

166

RELATING FREQUENCY TO TIME

TIME = 1/FREQUENCY
SECONDS = 1/HERTZ

MILLISECONDS = 1/KILOHERTZ
MICROSECONDS = 1/MEGAHERTZ

As we have seen, there is also a frequency multiple called
gigahertz for a billion hertz, and gigahertz are the inverse of the
period in nanoseconds. But, while nanoseconds are often used to
measure micro speeds, the gigahertz term is not used or seen much
in most micro work.

Note that there are no funny exponents involved if you work only
in seconds and hertz; or if you work only in milliseconds and
kilohertz; or if you work only in microseconds and megahertz. So, it
pays to pick the units to fit the problem and avoid funny number
hassles.

Some insights on how much is what. In one nanosecond, light
travels almost one foot. There are more nanoseconds in three
seconds than there are seconds in a century. Turning to frequencies,
the power line has a frequency of 60 hertz, or 60 cycles per second.
Most people can hear over a range of 30 hertz to 12 kilohertz. A bat
may communicate at an ultrasonic frequency of 50 kilohertz. The
carrier frequency of an AM radio station ranges from 550 kilohertz
to 1500 kilohertz, or is roughly centered at one megahertz. Televi
sion frequencies start at 50 megahertz for channel two and work
their way up.

A typical electronic logic gate can make some ten million or more
decisions per second. That's just your everyday LS TTL gate. 1f we
really want to get snappy, we can run hundreds of times faster with
special circuits. The regular 6502 can typically carry out a half-mil
lion simple instructions per second, while a premium 65028 can
quadruple that. The access time of a typical dynamic RAM is around
one-fifth of a microsecond, or 200 nanoseconds.

On a microcomputer with a video display, one microsecond is
often the time needed to put one character on the display. One
character dot may take one-eighth of this time, leading to a
video dot frequency of 8 megahertz. Screens eighty characters
wide will halve the character time and double the video
bandwidth.

The time period of the rectangular waveform you just got in
your port code is found by adding the high time to the low time
to get the total cycle time. Depending on the trainer, you proba
bly got a high time of 9 microseconds and a low time of 6 micro
seconds, for a total period of 15 microseconds. This corresponds
to a frequency of 1115 megahertz, or 1000/15 kilohertz, or 66.7

kilohertz. This is in the high ultrasonic part of the frequency
spectrum.

How do we know just how long an event will take on a
microcomputer? This depends on several different things.

Most microcomputers define a clock cycle as the time interval
needed to complete one internal CPU event ...

167

Clock cycles are very simple on the 6502. A mmtmum of two
identical clock cycles are needed to complete a simple instruction.
In other micro schools, clock cycling may get very complicated and
a dozen or more clock cycles may be needed to complete even a
simple instruction.

The clock frequency is a reference frequency that is either sent to
a microprocessor's CPU or else is internally generated by it. The fre
quency of the reference going into the clock pin sets the time of
one clock cycle.

But different microprocessors use this clock frequency in differ
ent ways. For instance, a 6502 using a 1-megahertz clock can do
some things faster than a Z -80 using a 4-megahertz clock. This hap
pens because it takes many more clock cycles to complete certain
ZBO instructions than are needed to complete similar 6502 instruc
tions.

So, you can't automatically decide that a 4-megahertz CPU is
faster than a 1-megahertz one, particularly if they are from different
families. You also cannot usually go by the number stamped on the
crystal on a trainer or personal computer. Very often, a crystal of
much higher frequency is used to generate the timing for color
video displays and other high frequency needs. This crystal fre
quency is suitably divided down to form the clock input to the
microprocessor.

On most 6502 trainers, the microprocessor CPU clock frequency
is 1 megahertz, resulting in a clock time of one microsecond. The
Apple II runs very slightly faster, having a 1.023 megahertz clock and
a resultant 0.978 microsecond clock cycle . . .

On most 6502 trainers, the clock frequency is
one megahertz, and the clock cycle time is one
microsecond.

The Apple II is very slightly higher in frequency
and has a very slightly shorter cycle time.

So far, so good. The cycle time is the time needed to complete
one internal CPU event. But it takes at least two internal CPU

168

events to complete even a simple 6502 instruction, and more com
plicated instructions may take many more.

To get the time per instruction, multiply the clock cycle time by
the number of clock cycles per instruction ...

FINDING INSTRUCTION TIMES

The instruction time equals the clock cycle time MUL
TIPLIED by the number of clock cycles per instruction.

For instance, if a JMP absolute instruction takes three clock
cycles, and if the trainer you are using has a 1-microsecond clock
cycle, it then takes 3 microseconds to complete a JMP instruction.

To find t!le total task time, add up the times of all the individual
instructions ...

FINDING TASK TIMES

The time to do a task is found by ADDING all the
individual instruction times needed to do that task.

Task times turn out to be very important on any microcomputer
program that is involved in providing timing. Task times also get
critical if the entire job takes too long and you have to find a faster
way to get similar results.

let's try out this timing information on our rectangular wave and
see what it shows us. We will assume a 1.0 microsecond clock.

The initialize time takes 6 microseconds, since it takes two clock
cycles to immediate load and four clock cycles to absolutely store.
But since this initialize process is done only once, it doesn't affect
the square wave we get out. All it does is delay negligibly the time
the rectangular wave starts.

From the time the clock goes low, we have a load immediate and
a store absolute that add up to 6 microseconds. But from the time
the clock goes high until it goes low again, we have a load immedi
ate, a store absolute, and a jump absolute, or 2 + 4 + 3 = 9 micro
seconds. The rectangular wave is low for 6 microseconds and high
for 9 microseconds.

169

So after the first trip around, we get a rectangular waveform,
because the jump takes time and because the jump happens only
when the output is high.

let's redraw our rectangular waveform, along with the instruction
times that make up the waveform ...

_r-- 6/LS .. I. 9 /LS
.. I

L--

CLOCK CYCLES

We can make our rectangular wave into a square wave by adding
another 3 microseconds of delay during the time the output is low.
We might try using a NOP, but this gives us only 2 microseconds of
extra delay. Two NOPs together will overdo it and give us 4 micro
seconds of extra delay.

Too little or too much.
But you already have one instruction on your cards that takes

exactly three clock cycles to execute. So how would you . . .

DOING IT:

Add one instruction to your port SQUARE
DEAL discovery module to produce an
exact square wave.

Test and demonstrate it.

That ought to just about do this module. The hidden nasties here
included finding out about loads and stores, accumulator action,

170

time, frequency, and clock cycles, calculating exactly how long a
program takes, more scope work, and learning about and using
ports.

Before we go on to the next discovery module, let's find out what
we need to know about . . .

FLAGS

Have you ever gotten some mail with a mysterious and bright
sticker on it, say a green 3, a red D, a yellow C or an orange S?

'-........

The reason you got this sticker on your mail is that it happened to
be the top piece in a post office bundle, or else the top piece in a
bulk mailing bundle.

The orange S sticker stands for STATE. This tells the postal
employees that everything in the bundle is for the same state. You
only have to read the sticker and the state on the top label to know
the entire bundle is intended for a certain state.

The yellow C is a CITY sticker for large cities that have more
than one zip code. The red D stands for DIRECT or DIGIT, mean
ing that everything in the bundle goes to the same zip code.
There's a fairly rare blue F. for FIRM if the entire bundle goes to
one large company.

And finally, there's that green 3, which stands for SCF, or Sec
tion Center Forwarding and which means that the three most sig
nificant zip code digits are the same. Post offices aren't allowed to
exchange mail with each other. They always have to send up to
the SCF office and then the SCF office has to send it back down
again. While this greatly simplifies the mail flow, it can lead to
absurdities. For instance, if you are in the Thatcher shopping
center and want to pay a bill owed to a store in the Safford shop
ping center across the street, the bill has to make a 190-mile round
trip through Globe to get there, since Globe is the 855 SCF.

171

Anyway, what these stickers do is save having to look at each
piece of mail in the bundle. Instead, this one sticker is a marker, or
flag, that tells what the present status of the entire bundle is.

Idiot lights on cars are another example of flags. These red lights
do not tell you exactly what is right or wrong, but they get your
attention when and if it is needed.

The attention you pay to an idiot light may depend on what you
are driving and what you are doing at the time. If it's late afternoon,
you are fifteen minutes from home, own an American car with a
water-cooled engine, and the GEN light goes on, you can probably
drive on home without any immediate problems. But if you have an
old air-cooled VW bug, that GEN light means you also have lost
your engine cooling and that you must stop right now and check
the fanbelt.

Microprocessors also have flags ...

All microcomputers have flags. Sometimes, you can completely
ignore them. Other times, they are a very convenient and very
handy way of finding out what is happening or what has happened.
A flag on a package of mail eliminates tearing the bundle apart to
find one piece of information. Similarly, micro flags greatly simplify
finding out certain things about your program.

One very important use of flags is to make decisions. If a flag is
set, you go on to something new. If the flag is not set, you repeat
what you just did. Or, you can let a flag show which of two new
routes to pick. Or you can let a flag select certain operating modes
of your machine.

The number and type of flags varies with the micro, although
there are typically three to eight flags available for your use.

Just as you can group eight warning lights on a car dashboard,
you can also group your flag bits together into a single 8-bit word.
This 8-bit word behaves totally differently than most 8-bit words
though, since it is made up of eight totally independent bits, each
doing its own and private thing.

When we group together 1-bit flags into a single word for con
venience, we form a dedicated use register called a processor status
register.

172

One use of a processor status register is to take a sort of snapshot
of what all the flags are up to at any instant. This can be handy if the
micro gets interrupted. By saving where it is in a present program,
and by also saving the processor status register that holds our flags,
we can later pick up where we left off.

The processor status register is also very useful for debugging,
since it shows you what all the flags are up to with one check. It
also gives you a way to simultaneously set all flags the way you
want them.

More often than not, however, each and every flag will behave
totally differently and you will be involving yourself with only a sin
gle flag at a time. It is only for unusual things like initializing,
debugging, or interrupts that you will work with all the flags at once
in the processor status register.

On a 6502, the flag or processor status register is also called the P
register. One way to remember this is . . .

On a 6502, the P register is the Processor Status
Register that holds all the flags for us.

Remember this as the . .

Ph lag
. . register.

Each flag does a different thing and behaves differently in a
micro. Some are automatically changed on many instructions.
Others can be set or reset with software. Others will be altered only
by the CPU as the result of certain internal operations. Some flags
on some micros can also be hardware controlled by the outside
world.

There are two rules to flag use. The first rule is that the flag
remembers the last thing that affected it as long as power is applied,
regardless of how many new instructions or actions go by that do
not affect it.

But, even if flags will remember things for us a very long time, the
second rule tells us that it is always a good idea to use a flag state

173

immediately after it is altered. This prevents any later instructions
from surprising you and is particularly important on CMP or com
pare instructions. So ...

Flags remember their state from the last time
they were altered.

BUT-

You should always use a flag immediately after
you alter it.

Let's look at some typical flags and see what they do and how
they work. There are three flags that are very common and very
important and are found in just about every microprocessor. These
are the Z flag, the N flag, and the C flag, short for zero, negative,
and carry.

The Z for zero flag goes to a one on any zero result that affects
the zero flag. It goes to zero otherwise ...

The Z flag works automatically with most micros. Anytime you do
anything that affects this flag, it will keep track of whether you have
a zero result.

This is useful in counting down something to zero, in testing for a
register overflow, and in finding out whether two things are equal
in comparisons and other logic operations.

There is usually no direct way to hardware or software set or clear
the Z flag by itself. Its operation is usually fully automatic. Z flags
are normally used with conditional moves to let you alter program
flow on a zero result.

The N or negative flag also works automatically and is available
on most micros. Any time you do anything that affects this flag, it
will keep track of whether the most significant, or leftmost, bit is a
one or a zero .

174

What the N flag really does is take a copy of the MSB, or most
significant bit, of any result that activates this flag, and saves a copy
of this bit for you. The N flag is called an S flag on certain micro
processors. The S here stands for sign.

The reason this is called an N flag is that, in 2's complement
signed binary arithmetic, a positive number will have a zero MSB
and a negative number will have a one MSB. Thus theN flag is zero
for certain positive numbers and a one for certain negative num
bers.

But regardless of whether or not you are involved with 2's com
plement arithmetic, the N flag always sets on an MSB set and always
dears on an MSB cleared on any instruction that affects this flag.

The N flag is also usually automatic, and there is normally no way
to software set or software clear the N flag.

The third of the three most important and most common micro
flags is called the C or carry flag. The C flag can be software set or
cleared and also keeps track of carry and borrow activities in some
arithmetic commands . . .

The carry flag can do lots of different things. Its intended use is to
keep track of carry and borrow operations during straight binary
arithmetic. Normally, you clear the carry before starting an addition.
Should the carry set after an addition, this means you have to add
one to the next most significant decade or whatever you are adding.

Similarly, you normally set the carry before starting a subtraction.
If the carry clears after a subtraction, this means you have to sub
tract, or borrow one from the next most significant decade or what
ever you are subtracting.

175

Besides this, if you are not doing arithmetic, you can use the carry
flag as a 1-bit reminder of where you are in a program. For instance,
one way to do some task twice in a micro is to go through the task
with the carry cleared the first time, then go through it a second
time with the carry set. This only works, of course, if there is no
arithmetic or other instructions that affect the carry flag in your task.

Certain other instructions alter the carry flag. There are shifts and
rotates that will let you move bits from working registers or address
space RAM into the carry flag. You can then test this flag and react
in one of two different ways. The carry flag also may be used to
hold "greater than" results during a comparison.

While these three flags are far and away the most useful and the
most common, there are other specialized flags available on differ
ent micro families.

The 6502 has seven flags. Here's a rundown of how they are
arranged in the P or Phlag register and what they do ...

6502 FLAGS:
I N I v 1-1 8 I D I I I z I c 1+- ·:;;�;:

R
HLAG"

'

"

"''"""

;� I I I L
'

"

""""

;�

� rn
GOES"i'iililiNE IF THE (NONE) C

S�
C
C A ONE1!ii"iiOOITION CARRIES

MSB RESULT IS A ONE. IT AND TO A ZERO ON SUB·
GOES TO A ZERO IF THE TRACTION BORROWS. IT IS
MSB RESULT IS A ZERO. ALSO INVOLVED IN ROTATE.

SHIFT, & COMPARE COMMANDS.
THE!Vd

RF
�
OW

�
IFLAG THErmal FLAG GOES TO

GOE A N ON A CLV (NONE) A ONE'ON ZERO RESULTS AND
TWO'S COMPLEMENT AOO > TO A ZERO OTHERWISE. ALSO
127 OR SUBTRACT <-127. SHOWS "EQUAL TO" ON A

COMPARE COMMAND.

THIS FLAG IS fiiiiiiSl6J.
IT IS TVPICALI:'I"''i''NE.

THEmfRlFLAG GOES
TO A"llRrit AN INTERRUPT
WAS SOFTWARE GENERATED.
IT STAYS A ZERO FOR "REAL"
INTERRUPTS.

(NONE) •.

(NONE)
....

'----,C"'ll,-- m��:i�NTERRUPTS SEI IF IT IS A ZERO.
IT IGNORES INTERRUPTS IF IT
IS A ONE.

'-------:-- THEiliRI'IJ[lFLAG OOES CLO OECI!\IA['ljjf"'PACKEO BCD"
�g��:�6s .,11

SED
�=���ji�� �R\���M�

E
THAT CONTROL OTHERWISE.
FLAG OIRECTL V

Starting at the left, we have our N, or negative, flag which sets on an
MSB one and clears on an MSB zero and is typical of most any micro.

This is followed by the V, or overflow, flag that sets or clears on a
"plus or minus 127" overflow or underflow in 2's complement
signed binary arithmetic. This flag can be software cleared. Interest
ingly, it can also be hardware set with a pin on the 6502 CPU,
although this intriguing feature is rarely used.

The next flag is not used, but most often will read as a one. It is
labeled "-" and presumably was reserved for future expansion.

The B flag stands for break. There is a powerful software debug
ging command in the 6502 called a BRK and coded hex $00. If you

176

get to this code in your program, the CPU will immediately inter
rupt itself and go to wherever it normally would on an outside
world interrupt. The break flag can tell the experienced 6502

programmer whether an interrupt was a "real" outside world event
or an "artificial" programmer-created break. Operation of the B flag
is automatic. More on BRK later.

The D flag stands for decimal. There are two ways to do arithmetic
in the 6502: the usual or binary method and a "by decades" decimal
method using a code called packed BCD. This sounded like a great
idea once, but nobody seems to use this decimal mode any more
because it can cause all sorts of unusual troubles if you aren't careful.

There are software commands to set and clear the D flag. Setting
it puts you into the decimal mode. Clearing it puts you into the
normal or binary mode. Most 6502 monitor and operating systems
will automatically put you into the binary mode on reset or startup,
but it is always a good idea to reaffirm binary with a CLD command
as the first instruction in your program.

If you ever get some really weird results, check to see if this deci
mal flag got changed somehow. The Apple II has a strange DOS
bug, known as the "$48 problem," caused by accidental setting of
the D flag.

The next flag is the I or interrupt flag. Remember that an interrupt
is some outside world event that demands the computer's atten
tion. The I flag lets you allow or disallow certain interrupts. These
are called maskable interrupts. If the I flag is set, interrupts are not
allowed. If the I flag is cleared or zero, the interrupts are permitted.

The Z for zero, and C for carry flags are the same as you will find
on most other micros.

DOING IT:

Investigate how all your flags work at this
time.

Other micros will have other flags for other uses. You might find
a half decimal flag that lets you convert binary math into packed
BCD results. We might say that this is the opposite of the D flag in
the 6502. The D flag puts you into decimal ahead of time; the half
decimal flag lets you repair a binary answer after it is complete. The
half decimal flag is sometimes called an auxiliary carry flag.

Once again, decimal arithmetic inside micros is very much on the
wane and is being dropped in many newer chips.

177

There might be some general use flags that you can access from
hardware pins as well. Newer 16-bit micros may include an X or
extend flag that decides which part of the address space is in use,
an 5 for supervisory flag that decides whether the program code is
to be protected, and a T or trace mode that gives you debugging
options. You might also get more than one interrupt flag.

Many flags can be software controlled. Here is how to clear the
carry on the 6502 . . .

CLC I CLEAR THE CARRY FLAG I 18

(IMPLIED addressing)
1 Byte 2 Clocks

l cLC I clears C.
flag

Forces the carry flag to the zero or cleared state. Normally used before
addition to be sure you add what you think you do. Also used as a gen-
eral purpose flag when no arithmetic is involved.

2183- 18 Clears the carry flag and goes onto the next instruction at
$2184.

On the 6502, you can software set or clear the C, D, and I flags.
You can only software clear the V flag. There is, however, a seldom
used pin on the CPU that lets you hardware set the V flag.

More cards . . .

DOING IT:

If your trainer is from the 6502 school,
complete the CLC, SEC, CLD, SED, CLI,
SEI, and CLV cards at this time.

If not, complete all cards for all instruc
tions that set or clear flags.

Some microcomputer systems also have system level flags. These
system level flags are sometimes called soft switches .

178

The difference between a flag and a soft switch is that the flag
applies to the CPU in the microprocessor, while a soft switch is
used for some high level mode picking that involves the entire
microcompu ter system. Soft switches can be built from flip-flops or
latches and are always outside the CPU chip.

There are many obvious soft switches used in the Apple II com
puter. Four of these interact to pick video display modes. Another
four can output to the outside world by way of the game paddle
connector. Two more are used for speaker and cassette outputs.

You'll find flags to be a great convenience that very much simpli
fies your design of microcomputer programs. You will also find that
if you don't fully understand what flags are and how they work,
they will surely return to haunt you later.

One of the most common and most important uses of flags is to
let the computer make a decision and alter its course of action
based on that decision. It does this by me'ans of ...

THE IF INSTRUCTIONS

We have already seen that there are conditional and uncondi
tional instructions. The unconditional instructions, such as a)MP
absolute long, do their thing regardless of what else is happening.

Conditional instructions are what make a computer "smart."
With conditional instructions, the computer can test and alter its
own future course of action based on where it is now. The ability
to test and make decisions is central to microcomputer intelli
gence.

Conditional instructions usually involve flags. If the flag is in one
state, the instruction decides "YES!" and goes somewhere else to
continue. If the flag is in the other state, the instruction decides
"NO!" and essentially behaves as a NOP, going on to the next
instruction as though nothing happened.

On the 6502, all the conditional instructions are called branches,
and their mnemonics always start with a "B." These branch instruc
tions use relative addressing and hop so many squares forward or
backward using 2's complement signed binary.

Other micro families have conditional jump instructions that also
test flags, such as a)NZ (short for "jump if not zero ").

179

There is one very big advantage of relative branches over absolute
jumps. Relative branches are relocatable and let you easily move
your code around in the address space, where absolute jumps
require recoding when you try to move your program somewhere
else in memory.

Any of these conditional jumps or branches can be called IF
instructions ...

Let's look at an example. Here's the 6502's BNE (short for Branch
IF Not Equal) ...

BNE I BRANCH IF NOT EQUAL I DO

(RELATIVE addressing)
2 Byte 3 clocks if taken,

I BNE $267A I
2 clocks if not.

no
flags

Tests the Z flag. If the Z flag is a one or set, does nothing and goes on to the
next instruction. If the Z flag is a zero or cleared, jumps forward or backward
by the 2's complement amount held by the second instruction byte.

2678- DO FD Goes to $267D IF the Z flag is set and goes to $267 A
IF the Z flag is cleared.

2678- DO 03 Goes to $267D IF the Z flag is set and goes to $2680
IF the Z flag is cleared.

NOTE - Assembler notation shows absolute address, but second
op-code byte is in 2's complement binary.

What this instruction does is check the zero flag. If the zero flag is
not equal or set, that branch is taken. If the zero flag is equal or set,
that branch is not taken, and the program continues as if nothing
had happened.

The direction the relative branch goes in is decided by the value
of the second byte. If the second byte has its MSB cleared (values
$00 to $77), then the branch goes forward through memory. If the

180

second byte has its MSB set (values $80 to $FF), then the branch
goes backward through memory.

A forward branch is usually used to skip over part of the code,
while a reverse branch is often used to repeat previous instructions
as part of a loop.

With a 6502 relative branch, you can go plus or minus 127 bytes
from where you are. If you have to go further, you use a branch to a
JMP absolute instruction. This lets you reach any part of the address
space with a test and branch.

One of the most painful things about tapping the power of the
relative branch involves ...

calculating relative branches

When you decide you want a relative branch, you have to tell the
instruction how far to go and in which direction. This sounds easy
enough, but it can be a real hassle if you are new to micros.

There are at least three good ways to find relative branches ...

FINDING A RELATIVE BRANCH VALUE

(1) Look it up
(2) Count blocks
(3) Calculate it

Once again, the problem is to put some value into the second
byte of a relative branch instruction that makes us go just far
enough in the right direction to pick up exactly the point at which
we want to continue computing.

The simplest way is to look up the answer somewhere. Almost
any assembler will automatically figure out the 2's complement
value for you. All you do is tell the assembler which address you
want to go to, and it does the dogwork, even down to filling in the
actual value into your program.

Many personal computers and trainers also will help you with this
task. For instance, the old PAIA 8700 has a built-in branch calculator
in its monitor, and the Apple II will do hex arithmetic directly from
its keyboard.

There is an automatic circular slide rule calculator built into Chroni
cle 6 of The He-x Chronicles (Howard W. Sams 21802) that instantly
gives you the answer, following the simple use instructions.

Any of these methods work quickly and simply.
Our second method is a "by rote" one called the block counting

method. Here is how it works ...

181

BLOCK COUNTING METHOD

Always remember that the WORST possible value
you could ever put in a relative branch second byte
is $FFI So-

(1) Draw a branch arrow and show the EXACT
square you wish to branch to.

(2) Lightly put a FF and a 'T' in the second branch
byte.

(3) Count OCCUPIED blocks to find the branch
value.

For FORWARD branches, count frontward "FF-
00-01- ... "once each occupied block.

For BACKWARD BOXES, count backward "FF
FE-FD- . ." once each occupied block.

The method is fully automatic and it easily works by rote. You
complete your program except for the second byte of your branch,
making sure that you show the "branch taken" absolute address as
an operand following the mnemonic. You then lightly put the worst
possible value-$FF-in the second byte of the op code and simply
count occupied blocks frontward or backward.

For forward branches you count "FF," "00," "01 ," "02" ... and so
on till you hit the square you are trying to reach. Each time you
touch a square, call out loud one higher value. When you get to the
correct square, replace the FF with the correct value.

Like so ...

[

182

COUNTING BOXES FOR THIS IS THE "PROBLEM" SQUARE.

A FORWARD BRANCH WE HAVE TOPUT THE RIGHT

-
Ul,£1D 7:

.n
,£.3

�
t.S..{,_

�tli
--

-_ VALUE ($00 to $7F) HERE TO
GO FORWARD EXACTLY THE RIGHT
NUMBER OF SQUARES.

�- � ::J A FF IS ALWAYS WRONG. so TOUCH .. --T-miP + ---t/ THIS SQUARE AND SAY FF.

-

1
A

8

-
COUNT ONLY FILLED SQUARES.
COUNT ONLY DOWN AND ONLY
LEFT TO RIGHT.

lfiL?i' ""'\
"'\
"'\

�
7

7

a

THEN, TOUCH A9 & SAY 00.
THEN, TOUCH 08 & SAY Ot.
THEN, TOUCH EA & SAY 02.
THEN, TOUCH 4C & SAY 03.
THEN, TOUCH 09 & SAY 04.
THEN. TOUCH 26 & SAY 05.
THEN, TOUCH 18 & SAY 06.

BUT 18 IS WHERE WE WANT TO
GO, SO WE PUT 06 INTO THE
?? SQUARE. THAT'S IT'

If you don't yet know how far forward you want to go, just
take a guess for the operand address, and put a "??" in the
magic square. Later, when you get on down the programming
form to the address you really want to forward branch to, just go
back and replace the guess operand with the real address, and
count the blocks to replace the ?? with the needed value. One
big advantage of assemblers is that they use labels that let you
name things before you know where they really are.

Be sure to show those branch arrows on the left margin of
your programming form.

A "backward" branch means you are going to go "uphill" on
your programming form. It also means that the "branch taken"
value is less than your present address, and that the branch
value will be a number from $FF down to $80 in 2's complement
form.

Here is how you do a backward branch by the block counting
method ...

[

COUNTING BOXES FOR

COUNT ONLY FILLED SQUARES.
COUNT ONLY UP AND ONLY
RIGHT TO LEFT.

THIS IS THE ''PROBLEM'' SQUARE.
WE HAVE TO PUT THE RIGHT
VALUE ($FE TO $80) HERE TO
GO BACKWARD EXACTLY THE
RIGHT NUMBER OF SQUARES.

FF IS ALWAYS WRONG. SO
TOUCH THIS SQUARE AND
SAY FF.

THEN. TOUCH DO AND SAY FE.
THEN. TOUCH CO AND SAY FD.
THEN. TOUCH 81 AND SAY FC.
THEN. TOUCH AD AND SAY FB.
THEN. TOUCH EA AND SAY FA.
THEN. TOUCH AC AND SAY F9.
THEN. TOUCH A2 AND SAY F8.
THEN. TOUCH 98 AND SAY F7.

BUT. 98 IS WHERE WE WANT
TO GO, SO WE PUT F7 INTO
THE?? SQUARE. THAT'S IT'

And that's all there is to it. Don't think about it. just put an
absolutely wrong FF into the magic square and count occupied
blocks. The method does, of course, get tedious if the branch
goes more than a dozen occupied blocks in either direction. But
most branches are short ones.

If all else fails, you have to find the branch by the method that
the math freaks would have forced on you in the first place. This
requires both thought and an insight into what is happening.

Anyway, here is the "real" way to find a relative branch
value ...

183

THE OFFICIAL "MATH FREAK" WAY

(1) Write down the absolute address of the op
code at the BRANCH TAKEN address.

(2) SUBTRACT the absolute address of the op
code at the BRANCH NOT TAKEN address
from the above.

(3) If the answer is negative, convert the answer to
2's complement signed binary.

(4) Put the answer in the magic block that follows
the branch op-code byte.

Whichever method you use, you are allowed to go only plus 127
or minus 127 byfes from where you start. Any branch beyond this is
out of range, and instead of going frontward, you end up going
backward, and vice versa . . .

On 6502 relative branches-

FORWARD branches above $7f are a no-no!

REVERSE branches below $80 are a no-no!

So, finding a branch value is no big deal. But you must very care
fully check each branch value to make sure it goes exactly where
you think it does or your program will bomb. Branches must always
go to a valid op code and never to an operand or a data file value, or
you will end up in deep trouble.

timing

The timing on a relative branch is interesting. If the 6502 relative
branch is not taken, the timing is the same as a NOP, or two clock
cycles. But if the branch is taken, the branch takes one additional
clock cycle, for a total of three. The extra cycle is needed to change
the program counter to its new value.

So, if timing is critical, you have to add up the branch taken val
ues separately as three cycles and the branch not taken values as
two cycles each.

Oh, yes. There is an even more subtle timing gotcha. It doesn't
happen very often, but it sure can foul you up if your timing is very
crucial.

184

Most of the time, branches move forward or backward to
addresses on the same page. If you cross a page boundary, the
branch will still work the way you expect it to, but it will take an
additional clock cycle. This happened to me on a very touchy tim
ing program in the Enhancing Your Apple II series and it was very
hard to pin down. If your timing seems inexplicably off by one,
check this page crossing detail.

Otherwise, the extra cycle is so rare that you can ignore it.

IF revisited

IF instructions usually come in pairs .

IF instructions usually come in pairs.

If the right one don't get you then the left one
will.

For instance, we'll find there's a BEQ, or branch if equal, that does
the exact opposite of the BNE. This one takes the branch on a zero
result and does nothing on a non-zero result.

If you find a decision backward from how you would like things
to be, check into the opposite or complementary instruction and op
code, and it will usually be just what you need.

There are eight relative branch instructions on the 6502, a pair for
each of the C, N, V, and Z flags. Looks like card time again .

DOING IT:

If your trainer is from the 6502 school,
complete the BCC, BCS, BNE, BEQ, BMI,
BPL, BVC, and BVS cards at this time.

If not, complete all cards for all IF instruc
tions that test a flag and alter the program
flow as a result of that test.

Other micro schools may have conditional jumps rather than
conditional brar1ches. Most conditional jumps in most other micro
families use absolute long or absolute short addressing modes
rather than relative addressing. On the 8048, there are separate con
ditional jumps available for each page of memory.

185

On some newer 16-bit micros, you also have long branch relative
jumps that can hit any point in a 64K address space. These long
branches are calculated the same way you do the short ones, only
the forward values can range from $0000 to $7FFF, and the back
ward values from $FFFF down to $8000.

You can, of course, fake a long branch on the 6502 by doing a
branch to a jump absolute address. You lose relocatability, though,
since you will have to modify the absolute jump address if you
move the program elsewhere.

By the way, and again on the 6502, it is very easy to get BMI and
BNE mixed up in your head. Use Branch if Not Equal for the Z flag
instruction, and Branch if Minus for the N flag instruction. As a
memory jogger, remember to "Never think NEgative."

Also, note that the "odds" are different on these different branch
instructions. With random results, a BNE gets taken an average of
255 out of 256 tin;Jes. A BEQ gets taken an average of 1 out of 256
times. But a BPL or a BMI each will get taken, on average, about half
the time or 128 out of 256 tries.

If you aren't careful, you can easily miss a BEQ and end up never
taking the branch. This happens if, say, you have an odd number in
a register and keep counting it down by twos. You go from $01 to
$FF and miss the BEQ every time.

Most beginning student's problems with 6502 programs involve
not understanding how to do a relative branch or ending up with a
branch that goes to the wrong place. If your branch goes to the
wrong place, the wrong op code will be picked up on the next
instruction, and the program will bomb and plow everything up. It's
usually a good idea to single step IF instructions very carefully to be
sure they go where you want when you want.

Time for another discovery module ...

DISCOVERY MODULE

�
AUDIO TONE

Write a program that puts an audio tone
out a port.

Use a pair of loops in your program.

r �
Looks like we are about to build a music synthesizer. We'll guess

that "an audio tone" means a 1-kilohertz square wave for now, and
that it looks like this .

186

1 KHZ SQUARE WAVE

14
1000JLS

ltl - 1 ms

Jj--------,11 r---------. I I
f..- 500 JLS -1- 500 JLS --...J

This square wave has a frequency of 1 kilohertz and a period of 1
millisecond. It is high for half a millisecond, or 500 microseconds,
and low for another 500 microseconds.

One obvious way to handle this waveform is simply to add NOPs
to our existing ultrasonic square wave of the previous discovery mod
ule. To get from 9 microseconds to 500 microseconds takes another
491 clock cycles. We can delay 491 clock cycles with 244 NOP
instructions and a compensating JMP. Naturally, we will have to do
this twice, once while the clock is high and once while it is low.

The program ends up over 500 bytes long! And, if you think this is
bad, j!Jst wait till you try doing an 0.1 second square wave or a 1
second time interval. The number of NOPs you need will turn out
to be ridiculous.

This "brute force" method is sometimes called straight line cod
ing . . .

Straight line coding ends up being the simplest and fastest you
possibly can do but at a terrible penalty in program length. Some
times, particularly if speed is important, straight line coding can
solve problems faster and better than any other method. It may, in
fact, be the only possible way to meet stringent timing needs.

But we certainly aren't interested in doing things as fast as we can
if we purposely are trying to stall for half a millisecond at a time.

Instead of using 244 NOPs in a row, could we maybe use one
NOP over and over again 244 times?

187

To do this, we use a very important programming concept called
a loop . . .

Say we fill a working register with some number and then knock
one off that number. We then test to see if we got to zero. If we
didn't, we knock another number off. We keep this up till we hit
zero. Instead of using lots of NOPs to burn up clock cycles, we use
a pair of "knock one off and test for zero" commands, a total of five
bytes of code.

This particular type of loop is called a delay loop, because its
main goal in life is to take up a certain number of clock cycles . . .

Here is the flowchart for a simple delay loop .

DELAY LOOP

FILL

X REGISTER

X=X-1

NO

188

What you do is fill a register with a value and the·n knock one off
that value over and over again until you reach zero. The net result is
a long time delay that reuses the loop instructions over and over
again as long as needed.

Loops have lots of other uses. Some loops search through a text
file to print out a message. Some patiently wait for someone to
press a key on a keyboard. Some do a calculation exactly the
number of times that is needed for a certain accuracy.

Loops are extremely important and are the preferred way of han
dling many programming problems, since loops can be very com
pact and can use the same code and the same working registers
over and over again.

There are some rules for intelligent use of loops in your pro
grams . . .

LOOP USE RULES

(1) loops always take longer than straight line cod
ing because of unavoidable overhead time.

(2) loops almost always need far fewer bytes of
code than does straight line coding.

(3) loops must have at least one exit. Preferably,
loops should also have no more than one exit.

(4) loops within loops within loops are permitted,
but one loop should never try to cross another.

(5) It is usually easier and shorter to count a loop
down to zero rather than up to some number.

Let's check into these rules in more detail. The reason that loops
always take longer than straight line coding is that there usually are
some instructions that are needed to set up the loop, such as put
ting a number into a working register to set the number of loop
trips. Even more important, a test is always needed to exit from a
loop, and this test always takes time. So, if speed is very important,
a loop may not be the best answer.

Sometimes you can speed up a loop by "sharing" the overhead in
as many ways as you can. For instance, if your loop only does one
task, all the overhead gets charged to that one task. But if you do
thirty-two different tasks with your loop, each task gets charged
only one thirty-second of that loop's overhead.

If a loop has no exit, you will stay stuck in the loop forever. One
way to get stuck is to branch back to the instruction that fills the
counter with the initial value, rather than to the location that
knocks one off the value each trip. The loop sees the register full,
empties by one, checks for zero, and then goes back and fills the

189

register again, repeating forever. Another way to hang a loop is to
check for a value that never shows up, like looking for a zero value
when only odd numbers will result.

Some "high level" loops are intended more or less to repeat forever.
The service loop in an adventure that first reads the keyboard, then
parses the words, then checks the action, and then goes back to read
the keyboard again, would continue over and over again until the
game is won or until disaster strikes. But even this type of loop should
have a Q (for Quit) option or some other means of exit.

It is considered very poor form for a loop to have more than one
possible exit. This can happen if you are either checking for a value
match or are exiting with a default "no match" value. There are
other cases as well. Loops should have one clear and obvious means
of exit to continuing code.

If you try this sort of multi-exit looping with a higher level lan
guage, you usually end up with a "NEXT WITHOUT FOR" error
message or something similar fouling up the works.

Keep your loops simple and modular, with one obvious place you
end up after the loop is complete.

You can nest loops ...

One way to get a very long time delay is to put a loop inside a
loop. This makes the inner loop go completely through all its paces
for each count of the outside loop. This way, you end up with the
product of the inner loop time and the outer loop trips.

Most micros will let you nest loops and subroutines to any rea
sonable depth. But you should never let two loops "cross" each
other. Crossing happens when you test one loop and branch
through the other one. This leads to disaster nearly every time.

So, unless you know exactly what you are doing, always design
your loops to have one and only one exit point, and design each
loop so it always finishes before it falls back to the next outer
nested loop.

We've already seen that you usually do better to count a loop
down to zero rather than up to some value. The first and main rea
son is that it is shorter, easier, and faster to BNE than it is to CMP, or
compare against some fixed value. The second is that the loop is
"cleaner" if you try to change it, since the "fill" value is at the
beginning rather than in the middle of the code. Finally, a count-

190

down loop always holds the number of trips remaining in it. This
can be helpful for debugging.

Okay. We want to use a pair of loops to do a pair of time delays
to extend an ultrasonic square wave so it becomes an audio tone.
So, what do we count, and how far do we count it?

Now, we could go out ahead of time and calculate exactly what
we need, but it is far better to . . .

LAZY =

SMART Rather than do any involved math ahead of time,
just stab any old data values into your code and
get the code working first.

+'
I've seen it happen time and time again. Someone spends hours

meticulously calculating exactly what they think they want and
then eventually get around to punching in code. The code ends up
not working, and all that time and effort is lost. Or the code shows
a much better way to do the same job.

And, again, all that work goes down the drain.
Since the odds are very high that new code will not behave the

way you expect it to and that any code at all will teach you some
thing, there is no point in doing involved calculations ahead of
time.

We will find out how to get an exact time delay out of a loop
after we get the loop working and debugged. This is far and away
the best order to do things.

For the counter in a loop, you can count anything countable. This
can be a working register or any RAM location in the entire address
space. Since the accumulator may be needed for other uses, it is
usually not a good idea to use the accumulator for the counter in a
loop.

On the 6502, the X register is often a good choice for a loop
counter ...

On the 6502, the X register is often a good
choice for the counter in a loop.

You should already have done a card on LOX immediate.
This puts a value into the X register, just as LOA immediate fills

the accumulator with a fixed value.

191

Whatever register or RAM location you use for a loop counter, it
must be able to be incremented or decremented . . .

For instance, if you have an $06 in the X register, incrementing
once gives you an $07, while decrementing once instead drops you
to $05. Note that incrementing a register with $FF in it overflows to
$00, and that decrementing a register with $00 in it underflows to
$FF, going round and round.

Now, you can increment or decrement almost any register or
RAM location by moving a copy of the contents to the accumulator,
adding or subtracting one to it, and returning it to the original loca
tion. But this is inefficient and sloppy. What you want to do is use a
register or RAM location that can be counted up or down "in place"
with no hassles.

Another card ...

DEX I DECREMENT X REGISTER I CA

(IMPLIED addressing)
1 Byte 2 Clocks

I DEX I N and Z

flags

Removes one count from what was in the X register. Sets the Z flag on a
zero result and the N flag if the MSB is a one. Used to count down the X

register, often as part of a loop.

Assume that the X register holds an $06.
2A18- CA Changes X register to $05, clears N and Z flags.

Assume that the X register holds an $00.
2Al8- CA Changes X register to $FF, clears Z flag and sets N flag.

192

You can also decrement the Y register and separately incre
ment both the X and Y registers. The 6502 also has eight very
powerful increment and decrement commands that will work
anywhere in the address space, using absolute long, absolute
short, and indexed instruction modes. Naturally, you can incre
ment a location in the address space only if it contains RAM. A
very few 1/0 devices will also be incrementable and decrement
able, provided the target location can both be read from and
written to and provided that that location holds and saves the
previous value for you.

Always check for compatibility before you try incrementing or
decrementing anything in the main address space. Note that
decrementing something in the address space takes lots of clock
cycles, since you have to get the value, add one to it in the CPU,
and then once again replace that value in the address space. For
instance, a DEX only takes two clock cycles to do but a DEC
absolute long takes six. These read-modify-write DEC and INC
instructions are super powerful, but you have to give them
enough time to work.

More cards . . .

DOING IT:

If your trainer is from the 6502 school,
complete the. DEX, INX, DEY, and INY
implied commands and the INC and DEC
absolute long cards at this time.

If not, complete all cards for all implied or
absolute long instructions that increment,
decrement, set or clear working registers
or RAM locations.

Interestingly, the older 6502s have no immediate way to incre
ment, decrement, or clear the accumulator. Presumably this was
done to encourage you to use the X register as a counter. You can,
of course, clear the accumulator by loading a $00 into it in the
immediate mode. You can also increment by adding one and decre
ment by subtracting one, but these take more than one byte and
may burn up extra clock cycles.

Here's the flowchart for our 1-kHz audio tone square wave . . .

193

AUDIO TONE:

TEACH
PORT

OUTPUT

A "0"

DELAY
LOOP

OUTPUT

A "1"

DELAY

LOOP

And here is the actual code shown on the machine language pro
gramming form . . .

AD DRESS OP CODE BYTE #2 BYTE #3 MNEMONIC HOW? NOTES

�L. VENIF""t' "BINARY
1 .D, TEAC POR-r

1111 Clll " "
- 'Ill .D� ·pu A ZERO

:m T ;('., " " "

L

.c
llE " .

HN !IJ/11) " "

:us :IMP ;2ibi.J Et:JUA< •:ZI" Jl •.<
3 If) J)A ��/1)1 A t:WE

15 B Cli STA ;(!(J8.J. . " H

C
liB 6 1.:0)< �lh:l. Sri/J . .L '19, us

'A :OEX " "

� i/J(R .Tl F. JHJF ;:utuA ,, "
- ·� � .,., ';.I) 7vlP 'tbr/J{, AN.b Jf£P€Ar

. dJ. tiJ -
-

......_ - -

-

194

The code is simply our old square wave code, with extra room
made in it for two delay loops, one loop to stall when the output is
high, and one loop to stall when the output is low. The three-cycle
timing compensation of the "jump to nowhere" probably won't be
important or needed for most audio uses, but I have included it
anyway.

You can check this code with an oscilloscope. If you have no
scope, a voltmeter should read 2.5 volts when the code is running,
as it averages out" the ones and zeros for you. This assumes a NMOS
or CMOS parallel port. A TTL port will probably give you a reading
of 1.3 volts or so when the code is running.

But it is much more fun to listen to the code running, since it is
an audio tone. See if you can't dig up an old mangy test instrument
called a signal tracer somewhere. If not, add this "listener" probe to
any old audio amplifier, cassette recorder with a monitor mode, or
whatever ...

LISTENER PROB:

FROM • II TO AUDIO
PORT .. YVIo T . .. AMPLIFIER

2z� O.lt-tF

IK

The reason for this "listener" probe is to knock the 5-volt square
wave down to something that won't overload the sensitive input of
your usual audio amplifier. The tone should, of course, be there
only when the program is running. Try stopping and starting the
program to verify that you are actually generating the tone with
your software.

A shielded audio cable is the best way to connect this circuit to
your amplifier. Otherwise, you may get bunches of power line hum.
Be sure the ground lead of the cable connects to the common of
the microcomputer.

By the way, you might be able to drive a speaker directly with
some ports on some micros, but the results won't be very loud. Try
it and see what happens.

After the tone is working, you can go on to get the frequency
correct and do any math that is involved. This way, any surprises or
new ideas that running the code gives you do not waste your time
and effort.

195

Let's see. A DEX takes two clock cycles, and a BNE takes three
clock cycles if the branch is taken, and two clock cycles if not.
Apparently, if we are making N trips through the loop, there will be
5N -1 clock cycles used up, since all but the last trip will take 3 + 2
= 5 cycles and the last trip will take 2 + 2 = 4, and since 4 =5 -1.

The LOX will add two clock cycles to the loop time, so the final
formula for this particular loop will be 5N + 1 cycles, where N is
the hex number we put in the X register.

Math details will, of course, change with the number of instruc
tions in the loop and how you use them, as well as the clock fre
quency and the micro chip in use. just add everything up as usual.

For our 1-kHz squarewave, and a 6502 trainer with a 1-microsec
ond clock cycle, we want a delay of 500 microseconds when the
clock is high and a delay of 500 microseconds when the clock is
low. But, we already used up 2 + 4 + 3 = 9 clock cycles in the
code outside the loop with the load immediate, the store abso
lute, and the jump. This leaves 491 microseconds. Plug in the
math.

5N + 1 = 491
N = 98

So apparently we want decimal ninety-eight trips through the
loop to exactly hit a 1-kilohertz square wave. But ...

DOING IT:

Put a 98 into the loop code following LOX
and the frequency ends up way too low.

Why? What did you forget to do?

The correct value, for a 1-kHz square wave using the math above,
is $62. Do you see why?

Never forget this all-important detail.
Sometimes you will not be able to hit the precise frequency you

are after. This happens if the number of loop trips ends up too high
for one count and too low for another. If this occurs, you can some
times add NOPs to pick up multiples of two clock cycles and)MPs
to pick up multiples of three clock cycles, as needed.

A better way to pick up three clock cycles of delay is to do a

branch to the next location with the flags correct for taking the

196

branch. This method is relocatable, but an absolute jump is not. It
can be real tricky to pick up one clock cycle of delay. Sometimes
you can do this based on the difference between a two-cycle and a
three-cycle delay. Newer 65C02s do have one-cycle NOPs.

Another thing you can try is making the square wave slightly
asymmetrical and taking up different totals of clock cycles on the
high and low sides. This will introduce a very slight amount of FM
frequency modulation and a very slight amount of second harmonic
distortion into your waveform.

Most of the time, though, the micro can give you far more accu
rate timing than you need. If this tone is for a burglar alarm, what
difference does a frequency error of 0.1 percent make? For that mat
ter, what difference does a 20 percent frequency error make?

Always adjust your timing and clock cycles to be only somewhat
better than the accuracy of the results you are after. Any more is a
waste of time and effort.

The hidden nasties in this discovery module include finding out
about IF instructions, calculating relative branches, incrementing
and decrementing registers, finding delay values, and using loops.

Before we go on to the next discovery module, we need to pick
up details on ...

THE STACK

Have you ever taken a close look at one of those automatic tray
feeders at the cafeteria? ...

y "'---/
�

197

The tray feeder obeys the rule that the last tray on always is the
first tray off. We never have to worry about addressing a given tray,
for there is always one on top of the stack ready for use.

I have avoided using the term RAM to mean "random access
memory," becase just about everything in a microcomputer has ran
dom access. All that random access means is that you don't have to
climb over the contents of some other addresses to get to the one
you are really after. Things were not always this simple. Very old
dino computer memories consisted of serial shift registers that went
round and round. You literally had to catch what you needed when
it came by on the next time around. So RAM today is not the big
deal it once was.

But there are times when you might want not to have random
access. Instead, there is an alternative to random access in most
micros called a stack . . .

The advantage of a stack memory is that you don't have to
address it. You simply push things down onto the top of the stack
or pull them back off the top as you need them. Using a stack to
store and retrieve things in order is short, quick, and easy.

One use of a stack is as a handy temporary stash to hold program
values. A stack can also be used to move things qetween registers,
particularly between the accumulator and the processor status or
phlag register.

But in their most important use, stacks are untouched by human
hands. The CPU uses the stack to remember things it needs to save
for later on. For instance, in a subroutine, you have to save the page
and position bytes for the address you were on when you started
the subroutine. On an interrupt, you also have to remember the
return address, but you will want to save all the flags by pushing the
phlag register onto the stack as well. If there are other things that
you want to save, you can also add these on your own to the essen
tials saved by the CPU.

Some newer microcomputers have two stacks. One of these is
the system stack that saves things the CPU needs, while the other is
the user stack that saves things the programmer wants to hold on
to. But most older micros have a single stack that holds, in order, a
mix of user data and system saves.

198

While you could build a separate and fancy hardware circuit that
behaves as a "last in, first out" memory, this is seldom done.
Instead, an area of plain old RAM is set aside and has its access
restricted so that it appears to behave like a stack . . .

Most micros do not have a true last-in, first-out
stack.

Instead, an area of RAM is set aside and made to
appear like a true stack.

There are several advantages to faking a stack out of RAM rather
than using a real "last-in, first-out" memory. The first is that no spe
cial hardware is needed. Second is flexibility. Third is power,
because you can manipulate the stack both in its intended way, and
also by any of the usual address space instructions. A fourth advan
tage of a faked stack is that you do not have to move any data from
location to location. Instead, you simply move a separate pointer to
show the new location.

The foremost rule of stack use is .

Normally, the only way you have to address a stack is with the
time sequence with which you put things onto the stack and

199

remove them. Thus at all times you must keep exact track of what is
on the stack and in what order.

Let's list some other stack rules ...

STACK USE RULES

(1) Stacks work on a LAST-IN, FIRST-OUT basis.
(2) Stacks must be initialized so you know where

they start.
(3) Stacks have a certain capacity. You must not

overfill them.
(4) You must not fill a stack faster than you empty it.
(5) You. must not empty a stack faster than you fill it.
(6) You must keep track of the order in which things

are put on the stack.
(7) The stack must normally be protected from non

stack program access.

Most of these rules are fairly obvious. You use a stack just like the
tray feeder at the cafeteria. The last thing you put in is the first thing
you get back.

Since in RAM, stacks are usually faked, you always have to know
where to start the stack. This stack start is usually done by initializ
ing the stack pointer to some value. More on this shortly.

All stacks on all micros have a maximum stack size or capacity.
The capacity is just like the capacity of the trays on the feeder. More
details on this shortly, But our main concern here is that you are
allowed to put only so many values into the stack without the stack
overflowing and causing problems.

If you put something on a stack and never take it off, this takes
one away from the stack capacity and keeps you from getting at
anything older on the stack. Do this often enough, and the stack
overflows. Thus, you must be sure to remove every item you put
onto the stack.

And you can remove an item only once. If you put things onto
the stack and do not use them, the stack destroys by overflow. If
you remove things from the stack that you didn't put there in the
first place, the stack destroys by underflow. It is real easy to save
something on a stack as part of a loop and then exit the loop, leav
ing the value stuck on the stack on the loop exit. Every time you go
through the loop, one more item gets stuffed onto the stack, and
the program sooner or later bombs.

If you have a long program that uses the stack only every once in
a while, stack overflow or underflow may not take place for a long

200

time and may be very hard to pin down. Always be sure that when
you put something on the stack, it is the first thing to get removed,
and that it always gets removed exactly once.

You also have to make sure that what is really on top of the stack
is what you think is there. For instance, if you save something on
the stack, go to a subroutine, and then get something back off the
stack, instead of getting what you thought you saved, you get part
of the subroutine address, because the CPU used the stack to save
that address for you. This is one big advantage of having separate
user and system stacks-the two can be kept separate. Regardless,
you always have to be certain you know what is on the stack and in
which order.

Finally, you must normally protect your stack from "illegal" or
RAM-style access. Any program that writes to the memory area set
aside from the stack will bomb the program, since it messes up all
the values, particularly return addresses, stored in the stack. You
can, however, if you are very careful, use "illegal" stack access to do
all sorts of mind-blowing things, like popping a subroutine, or find
ing out inside a subroutine or interrupt which part of the main pro
gram called it.

So much for the rules and when to break them.

stack size and location

To review, a stack is a last-in, first-out memory that is faked by
setting aside an area of system RAM. This forms a handy "address
free" stash that is usually available both to you for program use and
to the CPU for system purposes, such as saving return addresses for
subroutines.

The size and location of a stack depends on the microprocessor
chosen and on the system used. On smaller and dedicated micros
such as the 8048, the stack is only a few words long, and you are
very much limited in what you can put there.

Some microprocessors, including the 6800 family, let you put the
stack anywhere in memory and make it any size you want. The
advantage of this is flexibility. The disadvantage is that if the stack
runs away, it can take the entire machine with it. This type of stack
also needs a full width or 16-bit stack pointer, so the stack will be
harder to initialize and control as well.

The 6502 uses a nice compromise between these "too much" and
"too little" approaches to stack design. On the 6502, the stack can
be up to 256 bytes long and always occupies memory page one, or
addresses $0100 through $01 FF. In normal stack use, you should ini
tialize your stack to $01 FF and work your way down in memory as
you push things onto the stack.

Thus ...

201

The 6502 stack fits on page one of memory and
can be up to 256 bytes long.

Usually, the stack is started at $01 FF and works
down through RAM.

The stack must, of course, be in RAM. Because the stack always
goes on page one and because the powerful upcoming absolute
short addressing mode can best use RAM on page zero, all 6502
microcomputer systems normally have RAM at the bottom of their
address space.

A 256-byte stack is more than enough for practically all program
uses and, since there is no way the stack can ever leave page one,
there is no way it can plow anything but itself.

If you are absolutely sure your stack will be very short, and if you
are very careful of your stack use, you can use the low bytes on
page one for other uses. But this is dangerous, since a collision of
the stack with other locations is certain to plow your program.

Card time once more . . .

PHA I PUSH ACCUMULATOR ON STACK I 48

(IMPLIED addressing)
1 Byte 3 Clocks

IPHA I no
flags

Takes a copy of what is in the accumulator and pushes it into the next
available stack location. Then decrements the stack pointer by one.

Assume A holds an $06 and S holds an $FD.
28BD- 48 Puts a $06 in location $01 FD and then decrements stack I

pointer S to $FC.

I
By the way, pushing consists of entering something onto the

stack, and pulling or popping consists of removing something from
the stack .

202

You PUSH things onto the stack and PULL things off the stack.
There is also a term, popping. Popping a stack is almost the same
thing as pulling the stack, but popping is used in a special sense. It
means throwing away the things you are taking off the stack so you
can get at what is underneath. For instance, if you pop the stack
twice on the 6502, you cease being a subroutine and continue just
as if you were in the main program.

A dangerous yet powerful technique.
Anyway, PHA simply puts a copy of what 1s m the accumulator

onto the stack. If you want to save the X register onto the stack, you
do a TXA and then a PHA, since there is no direct PHX command on
older 6502s. The Y register, and anything else anywhere in the
address space, can be saved by putting what is to be saved first into
the accumulator and then pushing it onto the stack. Thus, anything
in the machine can be put onto the stack or removed from the stack.

We use a stack pointer, or S register, to keep track of where we
are in the stack. The S register is a dedicated use 8-bit register inside
the CPU that saves the stack's position address for us. The 6502's
CPU always and automatically adds an $01 to the stack pointer
address, so that the stack absolute address is always in the range
$0100 through $01FF, yet can still be stored as a single 8-bit word.

On the 6502, the stack pointer is normally intialized to $01 FF, and

the stack works down through memory ...

On the 6502, a dedicated use S or stack pointer
register remembers the next available stack loca
tion for us.

The CPU always adds an absolute $01 to the 8-

bit S register so that the stack pointer always
points somewhere between $0100 and $01FF.

The stack pointer is normally initialized to $01 FF
and the stack works its way down through page
one.

The stack pointer must never be allowed to go below $00 or
above $FF. Going below $00 means you have completely filled all
available 256 locations with stack values and have overflowed.

203

Exceeding $FF means you have emptied all locations and have
underflowed.

Here is how the stack and the stack pointer interact .

'"'ll!illl" ' "" \,.... THE !STACK POINTER IIS
OF RAM IN THE A DEDICATED REGISTER
ADDRESS SPACE INSIDE THE CPU

F8 F9 FA FB FC FD FE FF �
't'ffl I ?? I ?? I ?? I ?? I ?? I ?? I ?? I 0 sP �:{�!_ ??

PAGE 01.-;f t I OF A
6502 "POINTS TO CD HERE WE HAVE INIT1ALIZED THE STACK POINTER NEXT AVAILABLE

BUT HAVE NOT YET USED THE STACK. STACK LOCATION

F8 F9 FA FB FC FD FE FF

�· ?? I ?? I ?? I ?? I ?? I ?? I ?? I A3 I 0 sP

t I
0 PUSH AN $A3 ONTO THE STACK. STACK POINTER

MOVES DOWN ONE.

F8 F9 FA FB FC FD FE FF

0 sP

t I
CD PUSH A $26 ONTO THE STACK. STACK POINTER

MOVES DOWN ANOTHER POSITION.

F8 F9 FA FB FC FD FE FF

i&ffl�t ?? I ?? I ?? I ?? I ?? I ?? I 26 1 A3 I 0 sP

t I
0 PULL THE $26 OFF THE STACK. STACK POINTER

MOVES UP A NOTCH. THE $26 WILL GET
OVERWRITTEN ON THE NEXT PUSH.

Remember that the stack is a bunch of cleverly disguised RAM
on page one, while the stack pointer is an 8-bit dedicated use
register inside the CPU. You initialize the stack pointer to $FF,
which becomes $01 FF when the CPU gets done playing with it.
As you push things onto the stack, the stack pointer decrements
itself to $FE, $FD, and so on down. As you pull things off the
stack, the stack pointer increments itself to $FD, $FE, $FF, and so
on up.

204

Note that nothing moves around in RAM. Once you shove some
thing onto the stack, it stays in the same RAM location until it is
overwritten. Only the value in the stack pointer changes.

In fact, even after you pull a stack location, the data in that RAM
location does not change. It is only when you rewrite to that loca
tion with a new PUSH command that any location changes. Thus,
your stack may be able to save a partial past history of stack access
for you.

You should already have done cards on the TXS and TSX transfer
commands. If you want to initialize the stack pointer, you put some
value, often $FF, into the X register and then do a TXS. This moves
the value from X to S. If you want to find out where the stack is
pointing now, you do a TSX, putting a copy of the stack pointer into
X. You mentally have to add an "$01" in front of this value to find
the actual page one address.

System monitors or other operating systems will usually do this
stack initialization for you. But if your program is to be the only one
ever run in the machine, then you will have to carefully initialize
the stack pointer very early in your program.

DOING IT:

If your trainer is from the 6502 school,
complete the PHA, PLA, PHP and PLP
cards at this time.

If not, complete all cards for all instruc
tions that push things onto or pull things
off of any stack areas.

Also find out how to initialize and read the
stack pointers.

Another stack trick that you can do is push things onto the stack
with one command and pull them off with another, moving data in
the process. For instance, if you do a PHA followed by a PLP, you will
move a copy of the accumulator into the processor status register, or
our phlag register. This lets you simultaneously set all your flags on
the 6502. If you do a PHP followed by a PHA, you have moved all of
your flags into the accumulator where you can look at them.

One final time. The stack is an area of RAM set up in an oddball
way so you can have "address free" or last-in, first-out access. You
as programmer can push data v.alues onto the stack or pull them off.
The CPU can also push and pull the stack and does so most often to

205

save return addresses for subroutines and both return addresses and
flags for interrupts.

The stack pointer, on the other hand, is simply an 8-bit dedicated
use register in the CPU that keeps track of the next available stack
location. The 6502's CPU automatically adds a free "$01" to this
pointer so that this pointer always leads to an absolute address of
$0100 through $01 FF. Normally, the 6502 stack pointer is initialized
to $FF, which the CPU translates to $01 FF. The stack builds down
from $01 FF, with each pointed location being the next available for
use.

Here is our next discovery module ...

�

DISCOVERY MODULE

PITCH REFERENCE
�

Create a musician's A-440 pitch refer
ence using a subroutine.

Once again, it's a square wave out a port. It turns out that practi
cally any real-world use of micros will involve square waves and
similar waveforms out a port or into one. So hitting away at this
fundamental need six ways from Sunday is very worthwhile.

Except for a subtle gotcha, more on which later, all we need do
for a musician's pitch reference is to change our existing 1-kilohertz
square wave into a 440-hertz square wave. The pitch standard for
international note A above middle C is 440 hertz. You can do this
simply by increasing the delay values in the earlier program.

But, what is this subroutine nonsense?
Look back over your earlier code. Do you see how we have used

exactly the same code twice? The delay loop when we are high is
exactly the same code as when the output is low. Wouldn't it be
nice if we could use the same block of code over again in two dif
ferent places in our program?

Hence subroutines ...

206

There are two main uses of subroutines. Subroutines shorten pro
grams by letting code be used over. Subroutines neaten programs
by separating high level code from low level details .

SUBROUTINE USES

Subroutines SHORTEN programs by letting code be
used over again in several different places.

Subroutines NEATEN programs by separating high
level code from low level details.

The shortening part is obvious. If we need a delay loop in ten
different places in our program, we can instead use one subroutine
and ten subroutine calls, greatly shortening the program.

But it is the neatening feature of a subroutine that is far more
important. What this neatening does is keep the nitty-gritty details
of your code out of the mainstream of the big program. For
instance, you can now separate the details of how you delay from
the main part of the program that simply wants to delay. With subs,
there's no need to rewrite "high level" code whenever some tiny
detail changes.

Neatening, of course, doesn't only look nice. It greatly simplifies
debugging and developing programs and very much eases docu
mentation and explaining to others how the program works.

So it is not only proper to have subroutines that are called only
once by the main program; it is also a darn good idea that should be
strongly encouraged.

Naturally, nothing is ever completely free. If you use subroutines,
there is some unavoidable overhead in your subroutine call and
return that burns up CPU clock cycles. So, using subroutines will
always be slower than using straight line coding. If you want speed
at all costs, do not use subroutines.

But for practically all other needs, you should use subroutines.
And sub-subs. And sub-sub-subs. And so on. Break things up and
reuse things where and whenever possible.

Another trick with subroutines is that you can use existing code
that is already in the machine. Most systems will already have lots
of subroutines inside their monitors that give you delays, ways to
output text, ways to handle 1/0, means of lighting displays, and so
on. By "stealing" these existing utility subroutines, you can simplify
your code and shorten your pmgram. Even if you can't directly use
these subs, you can lift them out, modify them, and put them into
your own code with little time and effort.

207

One mind-blowing use of subroutines involves something called
re-entrant coding. Re-entrant coding lets a subroutine call itself
over and over again. This is useful in repetitive calculations, such as
series approximations. When you use re-entrant coding, you do, of
course, have to provide for an orderly exit and must not exceed the
stack capacity. But it's very heavy stuff that can do an awful lot with
a surprisingly few bytes of code. FORTH freaks are often very much
into re-entrant subs . . .

·

Subroutines are the greatest.
You use a subroutine by calling it from your main program. A

subroutine call differs from a jump in that the jump, when taken,
never expects to return. But, on a subroutine call, the CPU very
carefully keeps a record of where you are in the main program by
stuffing the program counter onto the stack. Later, when the sub is
finished, the return process will look at the stack and automatically
know where to return.

A card ...

JSR I JUMP TO SUBROUTINE I 20

(ABSOLUTE LONG addressing)
3 Bytes 6 Clocks

I JSR $236A I no
flags

Jumps temporarily to subroutine whose low or position address is shown
by the second byte and whose high or page address is shown by the third
byte. Used for subroutine access.

2004- 20 6A 23 Jumps temporarily to 236A for subroutine code.
Resumes at $2007 after normal sub return.

208

The)SR command needs more clock cycles than most other
instructions, since it has to remember where to return to after the
subroutine is complete. To do this, the JSR instruction pushes the
program counter high and the program counter low onto the stack
and then resets the program counter to the starting address of the
first op code in the subroutine.

Note that the CPU saves only the return address for you. If you
want to save anything else, such as the flags, the accumulator, the X

register, or theY register, or any address space value, you have to do
it yourself with extra code.

To get back from a subroutine, we use an RTS, short for ReTurn
from Subroutine. Here's the card ...

RTS I RETURN FROM SUBROUTINE I 60

(IMPLIED addressing)
1 Byte 6 Clocks

I RTS I no
flags

Returns automatically to the next instruction in the main program that
called the subroutine. Fully automatic.

2AD4- 60 Automatically returns to next instruction in the main pro-
gram that called this subroutine.

The RTS is a 1-byte implied instruction that is fully automatic. The
CPU looks into the stack to find the return address and then goes to
the next instruction in the calling program.

An obvious rule ...

ALL subroutine code must
ALWAYS end with an RTS.

CAN'T GO BACK
WITHOUT A ROUND
TRIP TICKET!

~
209

If you do not end your subroutine with an RTS, the program stays
in the subroutine and moves down one address level in the stack as
well.

Now, it is possible to have different entry points in a subroutine.
Sometimes, you will let one subroutine fall through to another. But
you always must use an RTS when you are finished with your sub
routine code and want to return to the main program.

DOING IT:

If your trainer is from the 6502 school,
complete the JSR and RTS cards at this
time.

If not, complete cards for all instructions
that access and return from subroutines.

Let's look at some sneaky tricks you can do with your subroutine
code.

If you are having problems debugging a program, just put an RTS
temporarily as the first code line in your sub. Then single step. If the
main program works, then the problem is in the sub, and vice versa.
This separates the "high level" problems from "detail" ones. Be sure
to remove this "immediate return" when you are done with it, or it
will haunt you forever.

Be careful if you are single stepping a subroutine all by itself, for
when the RTS comes up, the CPU may not know where to return to
and may put you into the monitor or plow things up for you. Always
stop at the RTS if you did not JSR to the sub in the first place.

If you are in a subroutine and want to know which part of the
program called the sub at the present time, check the top two stack
locations for the calling address page and position. You can also
pop these two locations to continue as if you were back into high
level code, or change them to return somewhere else.

Force feeding return addresses on a subroutine return can be a
very powerful indirect addressing scheme, one that even will work
on a micro that normally cannot handle indirect addresses. To do
this, shove the position byte and then the page byte that you want
to go onto the stack. Then do an RTS. You end up at your new
address at the same code level you started with. Note that the two
pushes and the two pulls of the RTS cancel out, leaving the stack as
it was originally.

210

When you are first writing a program, it's usually a good idea to
put each subroutine on a separate page of memory, well away from
the main program. This lets you change details of one sub without
affecting any of the others. Later on, you can reassemble everything
into minimum address space, but there is no point at all in doing
this till after you are sure you have all the code working exactly as
you want it to.

Here is the flowchart for our pitch reference module .

PITCH

REFERENCE

START

�
TEACH
PORT

l
t

OUTPUT
A "0"

�
STALL

VIA SUB

�
OUTPUT
A "1"

�
STALL

VIA SUB

I

($2000)

- �

- �

STALL

SUBROUTINE:

NO

FILL
X REGISTER

X=X-1

EQUALIZE

($2100)

Note that our flowchart is now in two pieces. We have the high
level flowchart that includes a box called "STALL VIA SUB." And we
have the low level flowchart that gives us full details on how we

211

use a subroutine to do a delay loop. When you look at the code for
this sub, you will recognize the same loop that we had before,
except for some extra NOPs needed to hit an exact delay value.

We have also added, in parentheses, addresses that show which
code goes where in the machine. This helps in relating code sheets
to flowcharts, but it also means you have to redo the flowchart if
you move the program somewhere else.

Our program code is now in two pieces. We will put the program
on page $2000 and the subroutine on page $2100. Here is the code
for the program ...

.(MAIN PROGRAM

ADDRESS OP CODE BYTE #2 BYTE #3 MNEMONIC H OW? NOTES

_;1,. 1/1) 18 L VE/llF'L _BINAifY
I� L_ll, �SJLJ.. /£ANI >nRT

.:J (!IJJ ST, It' IIIli� ,. u

[
:J. L_ll, >Ill Q, rri'LIT A ElfO
:1. C..6 STJ 11 ,, " u

!2 •m -A. VIA SI.IB
�c!l r/11 £, •uA. •ZE .3 •s

'1. LD
3 1.1 t'Afl ST II!!. " " "

I (f) :z. :rsR /'])() S:'A VIA •B
" ' ttl! J"MP t2 lA!. A. R£P,:AT

-
-

- -

And here is the subroutine code ...

� SUBROUTINE

ADDRESS OP CODE BYTE #2 BYTE #3 MNEMONIC HOW? NOTES

:1 •171 -A Tl £/ L 7> ll #j;F"1 DE .. AY .u.s

C
:1 'A ll=ll {VIA �ooP
:1 Ill\ F. 'RtJF �:11 Ill I " u

£A 1\Jni> Er;. IA,jZ£ 4ll.:
2 t:A Ali'IP II "
.2 bdJ '"'"'
.2. /l'S -

-

- -
-

The subroutine code is nothing but one of our earlier delay loops,
modified with extra NOPs, and followed by the RTS needed to
return to the main program. Instead of rewriting the code twice in
the main program, we write the delay loop once in a subroutine,
and then call the sub twice in the main program.

212

Be sure to load both the program and the subroutine in your
micro when you test or use either of them. If you jump to a subrou
tine address and there is no subroutine there, the program will con
tinue as if a sub really was there and will start executing nonsense
code, eventually plowing up the works.

In this particular example, we just break even on total bytes using
our subroutine, compared with writing two separate delay loops.
This happened here because the sub is very short and is used only
twice, and because there are those new overhead bytes needed to
call and return from a sub. Had we needed the sub in three places,
or had the sub been longer, we would have been ahead on code
length. Your average subroutine will usually save you bunches of
bytes of code.

We also have definitely neatened up our program and separated
the high level code from the delay details, so we gain much on
structure and appearance even if we only break even on bytes.

timing details

There is one extra complication in timing a program that uses
subroutines.

You have to allow six CPU cycles for each subroutine call and six
CPU cycles for each subroutine return, for a grand total of twelve
extra cycles.

Let's look at a 440-hertz squarewave again ...

STANDARD PITCH A·440:

--

L...-

1 :
1136 JLS 2;7� :s

1136 JLS

: I

The exact time period of a 440-hertz square wave is 2272.72

microseconds, or 1136.36 clock cycles per half cycle. But the closest
we can hit this is 1136 cycles on a trainer with a 1-microsecond CPU
cycle time. Is this accurate enough?

213

Musicians speak of a cent as one hundredth of a semitone. A

semitone is the pitch difference between two adjacent piano keys.
A 1-cent musical pitch accuracy is roughly 0.06 percent in fre

quency. Only the very best musicians can recognize a 1-cent differ
ence, and a 3 -cent pitch accuracy is usually tolerable.

In our case, the pitch is high by 1136.36/1136 or 1.0003. This is an
error of + .0003. Converted to percent, this is 0.0 3 percent, or half a
cent in pitch and twice as good as the best musician.

So, a delay of 1136 cycles per side will be more than good
enough. The high level program code takes nine cycles, and the
subroutine overhead takes twelve, so our loop inside the subrou
tine must take 1136 - (9 + 12) = 1115 clock cycles.

The loop formula is still 5N + 1 cycles, but we can't hit 1115
exactly. Let's try for 1111 clock cycles ...

5N + 1 = 1111
N = 222

Of course, that is in decimal, so we convert to hex and end up
with a loop value of $DE.

Since we are four cycles shy, we throw in two NOPs for good
measure, and we precisely hit what we need, a nearly perfect 440-

hertz square wave out a port for use as a pitch reference.

a lesson learned the hard way

But surprise, surprise. You proudly haul your pitch reference off
to a musician and he sneers at it' He also mumbles something
vague about the timbre being "too bright" or some such nonsense.

Later, after cooling off, you find a musical type who is also scien
tific. He explains that a pitch reference should be an exact
sinewave, since any higher harmonics will mask the true pitch. This
is particularly sticky on instruments like the piano. The overtones
on a piano are not true harmonics because of the string lateral stiff
ness, and its overtones are sometimes as strong as or stronger than
the fundamental.

The lesson learned the hard way is ...

214

No matter how "perfect" your program is, if the
final user doesn't like it, it is utterly and totally
worthless!

So back to the drawing board. Since this is a single-frequency
square wave, you can probably tack three resistors and three capaci
tors onto the end to form a simple RC low pass filter that gets the
harmonics down to something liveable.

But, naturally, once your musicians actually use your pitch refer
ence, they will want other notes for other instruments or different
piano strings. So a heavy brute force filter may not be the answer.

Instead, you can digitally synthesize sinewaves and route them
out your port. Here is one waveform you can generate and the out
put port resistor network involved ..

DIG ITAL SINEWAVE GENERATOR:

N C 22K 41K 54K 58K 54K 41K 22K

0011-'F OUTPUT "SINEWAVE''

EPA I

CM
PARAll

- : - ;
: :

� �
PORT l l

OR POR" _ FFER ! �

BIT PATTERN SEQUENCE IS:
$0F-1 F-3F-7F-FF-FE-FC-F8-
$FO-EO-C0-80-00-01-03-07 -(OF)

-----,--:-: L----1 ;

-:-----1 r-----7'" ; L----1 ;
: I

ry
I

rr
j I j-

.iJ

...l.J I
.______;__

�
11111111111111111

16X "CLOCK"

What you do is take all eight port lines and provide just the right
pattern in just the right way to synthesize a good sinewave. This
particular one will have its first two "loud" harmonics as the fif
teenth at 1/15 amp I itude and the seventeenth at 1/17 amp I itude,

215

both of which are easily stomped into nothingness with a small
capacitor. You "clock" the pattern, or advance the waveform, at six
teen times the desired output frequency.

Full details on this appear in the CMOS Cookbook (Howard W.

Sams 21398).
There are some upcoming shift and rotate instructions that you

might like to use for a sinewave generator. You can also use files
and a 0/ A converter, rather than custom resistor values for table
lookup.

Let's do it ...

DOING IT:

Create a musician's pitch reference that a
musician can actually use.

HINT: Go find a real, live musician before
you start.

Remember, while doing all this, that you are competing with a
$2.40 pitch pipe and had darn well better have more to offer.

ABSOLUTE SHORT ADDRESSING

Now is probably a good time to explore absolute �hart address
ing. Many microcomputers have one or more ways to reach a small
and known area of the total address space with commands that are
both faster and shorter than absolute long. Absolute short address
ing has speed and program length advantages but often limits itself
to one area of memory and can cause turf fights over valuable loca
tions.

On the 6502, one important use of absolute short addressing is to
make available another 256 locations that are almost as fast and
easy to use as the working registers in the CPU.

The 6502 school lets their absolute short addressing go by the
name of page zero addressing ...

216

Page zero addressing is also available in the 6800 micros, where it
goes by the grossly misleading term direct addressing, whatever
that means. Sounds good on the data sheet, though.

Almost every 6502 instruction provided in absolute long address
ing is also available in absolute short or page zero addressing.

With page zero addressing, you need only the position byte fol
lowing the op code, since the leading "$00" is assumed by the CPU.
Thus, page zero instructions are only two bytes long rather than
three.

Also, since the CPU doesn't have to wait around to look at the
third byte of the op code, page zero instructions usually execute
faster than absolute long instructions by at least one clock cycle.

Another card . . .

STA I STORE ON PAGE ZERO I 85

{PAGE ZERO addressing}
2 Bytes 3 Clocks

I STA $36 I no
flags

Puts a copy of what is in the accumulator into the page zero location shown
by the second byte. Shorter and faster than absolute long addressing.

Assume the accumulator holds an $6F.

2CB3- 85 36 Stores a $6F in location $0036. No flags are changed.

I

Note that the assembler notation is the mnemonic followed by
two hex numerals. The ST A page zero command workings are obvi
ous, but the related page zero LOA command seems to cause new
comers all sorts of problems.

The LOA page zero command has an assembler format of LOA
$35 and an 85 op code. This command takes a copy of whatever
happens to be in location $0035 and puts it in the accumulator. The
data value put in the accumulator can be any 8-bit value at all that
happens to be in this address location, ranging from $00 to $FF.

On the other hand, the LOA immediate command has an assem
bler format of LOA #$35 and an A9 op code. This command uncon-

217

ditionally puts the value hex three-five, or decimal fifty-three into
the accumulator. A reminder ...

DON'T get LOA immediate and LOA page zero
mixed up!

LOA immediate puts an 8-bit value into the
accumulator.

LOA page zero goes to an address and puts a
copy of whatever it finds into the accumulator.

In assembler notation, immediate always MUST
have a # symbol in front of the operand!

Watch this particular detail very carefully. One place it shows up
is on the AIM-65 trainer where you can just punch in programs in
assembler notation. If you forget the"#" in front, all your immedi
ate loads become page zero loads with variable rather than fixed
values.

More cards ...

DOING IT:

If your trainer is from the 6502 school,
complete the page zero versions of all of
your present absolute long addressed
cards at this time.

If not, go through your existing cards and
do a new one for every card that has
available absolute short or other simpli
fied addressing modes.

If you have nothing comparable to page zero addressing in your
particular micro, then the micro will have some other way of doing
interesting addressing. You might check into register indirect
addressing at this time or otherwise explore the op codes to find
alternate ways of reaching the address space that are both faster
and shorter than absolute long.

Our next module will use absolute short addressing .

218

DISCOVERY MODULE

�
".Y" TIME DELAY

Write a subroutine that provides a time � delay of first one-tenth second and then
write another one that delays . Y or "Y
tenths" second.

Demonstrate your subs first with a 5-hertz
square wave and then light an LED lamp·
for 0.3 seconds on and 2.0 seconds off.

����������
There are several new things to pick up in this module. One nasty

involves using a new addressing mode, page zero for the 6502.
Another involves a "loop within a loop" and finally a triple-nested
loop. We also have to figure out how to pass a variable to a subrou
tine and, finally, how to make code easier for the "high level" user
to apply.

What is wrong with our plain old delay loop? This loop is fine for
fairly short time delays, but it can't reach a tenth of a second. No
way.

Let's see why. The absolute maximum value we can put in our
delay loop is $FF for 255 delay cycles, right?

Wrong.
We can get super sne.aky and do very slightly better than that. If

you put a #$00 as your loading value into your loop, you immedi
ately decrement it to $FF, take the branch, and round and round
you go. Thus, we can have a full 256 trips around the loop.

We saw that a simple delay loop takes 5N + 1 cycles, so, plug
ging in the math, our total delay in this case is

(5 ,, 256) + 1 = 1281 clock cycles

Add this to the 9-cycle square wave main program time and the
12-cycle subroutine overhead time, and we end up with a flat-out
1302 clock cycles per square wave hal(or a total square wave
period of 2604 microseconds. This translates to a minimum fre
quency of 384 hertz, which is bunches above our 5-hertz goal.

So the math tells us we can't hack a tenth of a second with a
single delay loop. Now we could add NOPs or whatever inside our

219

loop to make it longer, or we could use our loop over and over
again by repeating the code two, three, or more times. But these
will only buy a little more time, not the major increase we need.

Instead, we will use a loop-within-a-loop, or a nested loop ...

If you do one loop and then do a separate second loop, you end
up with the sum of the two loop delay times. But, if you put a loop
inside a loop, you end up with the product of the inner loop delay
time, multiplied by the number of trips around the outer loop.
Products, of course, rack up much faster than sums. Instead of 1281

clock cycles for a loop, we can get over 256 * 1281 clock cycles, or
over a one-third second delay by going this route.

Time out for a side trip ...

"user friendly" code

Two very important things to work toward whenever you do any
microcomputer programming is to make the code user friendly and
designer friendly . . .

You have probably heard lots about user friendly code. For a
good example of what not to do, just take any public domain pro
gram out of any old user library and study it.

User friendly code must, first and foremost, be written in
machine language so that it can most fully utilize all of the available
resources of the target microcomputer in the most flexible and cre
ative way at the fastest possible speed. Check into the top thirty
programs for any personal computer, and you will find almost all of
the greatest, best, and most profitable programs will be written

220

either totally in machine language or will make very extensive and
creative use of machine language subroutines and modules.

So the main reason to write user friendly code is that it will make
you filthy rich.

User friendly code is just that. It interacts with the person running
the program in the simplest, most convenient, and most effective
way. This means you must use sound, color, and graphics anywhere
they can help and improve the program but not to the point where
they become obnoxious or tedious. The user should need only an
absolute minimum of keystrokes. Extra RETURN or ENTER keyhits
are so much of a no-no these days that we won't even talk about
them.

User friendly code should normally be menu driven, so that the
user can move from one selection to another in the simplest and
most obvious manner. The code must be totally self-prompting and
self-tutoring. The code must be consistent. What happens in one
part of the program should also happen in the same way in other
parts of the program, and those ways should be reasonable and pre
dictable.

Naturally, user friendly code must be unlocked and available to
the user for backup, modification, and customizing. User friendly
code should provide all source code to all users. In fact ...

The ONLY justifiable reasons for NOT giving a
user a completely unlocked program and com
plete source-code documentation are-

1. You are so ashamed of the code that you
don't want anyone to see it;

OR
2. You have so blatently overpriced your work

that you don't want anyone to laugh at you.

Error trapping on user friendly code must be complete. No matter
how stupid or dumb the input or how random the keystrokes, the
code must safely and sanely return to a reasonable point in the pro
gram. Under NO conditions should the final user EVER be pre
sented with a cryptic computerese notation: "SYNTAX ERROR LINE
5436," or "DOS CODE ERROR $08." And under NO circumstances
should the final user be dropped into the monitor or into some high
level language without a full and polite explanation of what hap
pened and why.

221

To end up with user friendly code, the micro has to be trans
parent, in much the same way that a great book is transparent if
it transfers ideas or thoughts to you without calling attention to
the ink and the pages and the words. More ideas on trans
parency appear in The Incredible Secret Money Machine (How
ard W. Sams 21562). The microcomputer should be involved
only in relating to the user and solving a problem for the user.
The micro should not, under any circumstances, bring to the
user's attention that it is in fact a computer and that a computer
is involved at all.

Many of the user friendly software rules are survival skills, for any
software that is not user friendly is certain to get unbought out of
existence.

Designer friendly software is a somewhat different concept, and
not too many people are yet paying much attention to it.

When you build up a program, you normally build it up out of
machine language program modules. These modules should let you
work with the highest level system concepts at all times. This in
turn, makes the final 'high level' program as easy to put together
and use as can be.

So far, we have used only simple modules. What can we do to
make these modules as useful as we can in final programs?

There are lots of things that will help. First and foremost is to use
lots of subroutines. Subs neaten and separate the high level code
from the low level code in any application. Changes in details don't
change the main program this way when you use subs. Each sub
should have one or more obvious entry points and one-repeat,
one-and only one exit. The state of all registers and all flags in the
machine must be known and consistent on sub exits.

Data files are another way to build designer friendly code. We
will see much more on data files shortly. What a data file lets you
do is put anything changeable into a separate block. To change the
program action or results, you change only the data file entries
instead of mucking around with the code. An obvious example is an
adventure. If you use extensive data files, you can simply change
the files to create a whole new program without any low level code
debugging or changes.

A third and most important route to designer friendly code is to
use high level system concepts when and wherever you can. Make
the subroutines and modules work in ways that the high level
designer can use directly.

A big example will drive this home. Suppose we need a long time
delay in a final program, such as a 10.2-second delay. We could put
a custom loop inside a loop inside a loop to give the needed
10,200,000 cycles of delay, and it certainly would work. But any time

222

we needed a long time delay after that, it would be back to square
one. We would have to redesign everything.

Suppose, instead, we build a subroutine that gives us exactly so
many tenths of a second of time delay, rather than so many
machine clock cycles. Wouldn't this be much easier for the high
level designer to use? The designer simply would rip off the module
and pass the number of tenths of a second of delay needed to the
sub.

That fast and that easy.
A rule . . .

For designer friendly code, make all code mod
ules work with "high level" concepts that make
sense to the final program designer.

A time delay that stalls in 0.1-second units,
rather than so many machine cycles, is an obvi
ous example.

The reason for making all your modules work with "high level"
concepts and constants is that it makes the final program much sim
pler and easier to debug. The final program designer does not have
to go clear back to square one and mess around with individual
machine language instructions. Instead, the designer picks up
building blocks that can be used directly to do system-level things
conveniently and quickly.

Designer friendly code is also easy to adapt to new problems and
easy to modify for custom changes.

So we will find out how to do a 0.1-second time delay, and then
we will adapt this to a . Y or Yltenths of a second delay. And any
time you need a long time delay in any high level program from
now on, you simply rip off this module rather than going back
through all the gory details.

Naturally, there are lots of different ways to con a microcomputer
into delaying a tenth of a second. One way involves interrupts. You
can let the power line interrupt your program sixty times a second
and count every sixth cycle. Some micro peripheral chips include
timer circuits that can do the same thing for any desired time inter
val. Special real-time clock chips are also available for date and
"people time" entry. You can also look around in the existing moni
tor and see whether there is any delay code utility subroutine ready
to go. Another way is to use the accumulator and the stack together

223

to give a delay loop. The WAIT code beginning at $FCA8 in the
Apple II monitor is an elegant example of this.

In th-is module, however, we will explore using a loop within a
loop of page zero variables for our 0.1-second delay, and we will
then later count out Y of these tenth of a second delays.

Here's one possible flowchart for a 0.1-second delay subrou
tine ...

224

0.1-SECOND

DELAY SUB:

NO

NO

FILL

OUTRLP

FILL

INNRLP

INNRLP =

INNRLP- 1

OUTRLP =

OUTRLP- 1

We could use the accumulator and the X andY registers together
to handle a long delay, but chances are there are more important
things for these working registers to do. So, we will set aside two
locations down on page zero using absolute short addressing. We
will call these two locations OUTRLP and INNRLP for "outer loop"
and "inner loop." We will make the inner loop go completely
around once for each single count of the outer loop. The outer loop
will go once around for the entire delay, which will give us the
product of the inner loop time and the number of outer loop trips.
This product we will then adjust to 0.1-second.

In our MYTH- 1 trainer, we'll assume that location $50 can be used
for INNRLP and $51 for OUTRLP. On your trainer, you will have to
find "safe" locations for your absolute short variables. Note that we
put the faster running, or "less valuable" variable first, and the
slower or "more valuable" variable second, so we are consistent
with the "position-page" coding used in absolute addresses and
other 16-bit stores. Always try to have as much consistency in your
programs as possible.

Here's some code ...

ADDRESS DP CODE BYTE #2

2. lq {,
:s

G
1'1

(j
"(/)
c.

�4-

- -

to.1:.SECOND

DELAY SUB

BYTE #3 MNEMONIC HOW?

>A t6F
-A "51

DA
TA
E

Eo
INE I
�TS

....

NOTES

Ft. OUTI:R LOOP
" ,, "

!="ILL !AU/Ell �POP
.. " �

rNA/Ell AfJA/U, bAI€

OUT�L IHJA/U.S OAIE"
Pl. "EA! E.A7Jf'TY !-'
.DoAIE -- �E "k'�N

...........
-

--...,.......-

In this delay subroutine, we first "fill" both OUTRLP and INNRLP
with magic numbers that will give us the correct total delay.
Remember, when you are first debugging code, it is best just to
punch in any old number and get the code working more or less the
way you want it to. Later, after the code is debugged, you can go
back and change the magic numbers to exactly what you need.

The reason for this two-step process is that any calculations you
make ahead of time will probably be wrong anyway and end up a
waste of time, particularly if you change the code or find problems
with it. Again ...

225

At the start of a program, just punch any old rea
sonable numbers into locations that set timing
values.

Save the exact values until after you are sure the
code is working and doing what you want.

And, as a reminder, don't forget that you can simplify and shorten
things for debugging. For instance, you can temporarily replace the
first op code of a subroutine with an RTS command. This lets you
find out whether a problem is in the main code or in the sub. And
you can put very low magic numbers into loops, such as #$01 or
#$02, so you can watch the loops go around only once or twice,
rather than making hundreds of trips.

Anyway, we fill OUTRLP and INNRLP with the magic constant
values. Then we start counting INNRLP down, just as we did with
the previous single timing loop. When INNRLP hits zero, we knock
one count off OUTRLP and then reload INNRLP and count it all the
way down again. The process repeats over and over. Finally, when
OUTRLP hits zero, we are done with the subroutine and exit to our
main program. This can be our 5-hertz square wave program, or any
other that needs a 0.1-second delay.

Note that the inner loop goes completely around for each single
decrement of the outer loop. This gives you the product of the
inner loop time multiplied by the number of trips set by the outer
loop. Note also that the loops are in fact nested and do not cross.

DOING IT:

In this subroutine, one relative branch
value is $FC. In the previous single-loop
delay sub, the relative branch value was
$FD, yet both programs only back up one
instruction at this point.

Why the difference?

Always be sure you know EXACTLY where your relative branches
go to. If a relative branch misses your op code and hits an operand,
it will try to execute the operand as if it were a legal op code and

226

then will proceed to whomp off into left field and bomb every
thing. Naturally, the CPU is doing exactly what you told it to do.

You can also get into trouble by looping to the wrong address.
For instance, if you loop back to the TEST instruction, you will keep
testing forever with no change in results. If you loop back to the
FILL instruction, you will never exit the loop, since you fill it, knock
a count off, fill it again, knock a count off, and so on forever.

To do a 5-hertz square wave, just use the pitch reference main
program with this new "0.1" subroutine. A 5-hertz square wave will
have a period of 0.2 second, so it will be high for 0.1 second and
low for 0.1 second.

Several points. Be sure to defeat the "auto" triggering on any
scope when you view slow waveforms or you will not be able to
lock to what you want to see. A 5-hertz square wave on a meter
should have obvious kicks to it and any old VOM can be used for a
test. If you use a speaker or a signal tracer, you should get continu
ous clicks that sound something like the rotary dial on a telephone.

timing again

How do we find out how long a loop inside a loop will take?
Obviously, we count up all the clock cycles and multiply that

number by the time per clock cycle to get the total delay. But the
math looks messy.

Ugly, even.
Any time and any place you find messy math, ask yourself if some

quick and dirty approximation will do the job instead. Even if it
won't, always approximate first to be sure your final answer is rea
sonable.

And it pays to never spend time or effort being more accurate
than you really have to. If our 0.1-second delay is for a traffic light or
a sprinkler system, being off by a percent or two is no problem. If it
is to track sidereal time for a telescope, you'll need to be a lot more
accurate.

Generally, however, things other than the microcomputer op
code will gang up on you and ruin "perfect" accuracy for you. For
instance, if you are using the power line interrupt method for tim
ing, you will end up with a short term accuracy of 0.1 percent or so,
no matter how accurate your math is. The actual frequency of your
clock will also get into the game. F'rinstance, the Apple II normally
has a clock cycle that's only 0.978 microseconds long, rather than a
full microsecond. Forget this timing detail and all frequencies end
up low by 2.2 percent.

·

Any crystal on any trainer will have some tolerance. Don't expect
better than .05 percent accuracy unless you calibrate the crystal
against a standard like WWV or unless you are using an expensive,

227

precision crystal and temperature regulating oven. A few very low
cost trainers do not even use a crystal. Instead they use a clock
oscillator whose frequency is set by a resistor and a capacitor or by a
ceramic resonator. If you have one of these, don't expect much in
the way of accuracy or unit-to-unit repeatability.

I guess what I am really saying is . . .

Never make things more accurate than they
really need to be.

Never waste your time and effort on things that
won't matter anyway.

Let's look at three different methods of calculating the OUTRLP
and INNRLP values, in order of increasing hassle and accuracy.

Method 1 on calculating magic numbers is to punch any old
value in and then change the numbers around by comparing the
results against the time base on an oscilloscope. Three percent
accuracy and no hassle. Or count the loop over and over again and
compare 200 trips against 20 seconds on a kitchen clock.

In Method 2, we approximate the results without going into the
gory details. A quick look at the inner loop code tells us that we
have a 3-cycle branch taken time and a 5-cycle decrement time, for
a total 8-cycle inner loop time. This is different from the single loop
time of five cycles since we are decrementing a page zero location
rather than the X register. You can decrement the X register very
quickly in two clock cycles since it is inside the CPU. But to decre
ment a page zero location, you have to go to page zero, get the
value, put the value in the CPU, decrement the value, and then
return the new value back to page zero again. All of this assumes, of
course, that there is RAM in the page zero location to be decre
mented.

Anyway, if there are N counts in the inner loop, we will use up
roughly 8N clock cycles in the inner loop. The outer loop won't
normally take up much of the time, so we can often ignore this
"overhead." Then, if there are M counts in the outer loop, our total
delay time will be slightly more than 8*M*N.

Continuing with our quick and dirty timing approximation. If
8*M*N is to be 100,000 clock cycles of 1 microsecond each for a
total of 0.1 second, then M*N will be 12,500 cycles. Now, within
limits, we can have any values of M and N as long as their product
equals 12,500 and the values of M and N range between 0 and 255.
A quick thing to do is to let M equal N and then, if M * N = 12,500,

228

either value will be the square root of 12,500, or decimal 1 12. This
equals hex $70 and will give an approximate delay of 12544 * 8 =

100352 cycles. Just for kicks, we will knock one count off the one
loop to get under 100,000 cycles and use $70 for the INNRLP magic
number and $6F for OUTRLP.

Method 3 should be used ONLY if you are sure you need a pre
cise number of clock cycles. This rarely happens. One place where I
ran into it is in exact field sync for the Apple II, where you need to
delay exactly 17030 clock cycles to get to the next field, no ifs, ands,
or buts. Details on this in Enhancement 4, Volume 1, of the Enhanc
ing your Apple II series (Howard W. Sams 2 1846).

At any rate, if we have to count clock cycles, we have to count
clock cycles. The inner loop actually takes 8N - 1 cycles for the
loop and five cycles to fill the inner loop magic number. The filling
process needs two cycles for an immediate load and three for an
absolute short store on page zero. Thus our total inner loop time is
apparently 8N + 4 clock cycles. Now if there were no inner loop,
the outer loop time would use up 8M + 4 clock cycles. Add the
inner loop and we have to reuse the inner loop M times. And, we
have to allow for the twelve clock cycles needed for the JSR and
RTS overhead. So, our total loop time will be ...

Loop Cycles = 8M + 4 + M(8N + 4) + 12

which simplifies to ...

Loop Cycles = 8MN + 12M + 16

Now this looks a lot like our quick and dirty approximation of
8*M*N. Note that the first term is ridiculously bigger that the sec
ond term, which in turn is very much bigger than the third term.
That is what good approximations are all about. If we try our values
of M = 11 1 and N = 112, we get a total number of loop cycles of
100,804. This is within a tenth of a percent and is good enough for
many uses.

Note that our 5-hertz square wave will be even slightly lower in
frequency, since we haven't subtracted the time needed for the
"high level" code instructions. In this example, the difference will
be utterly negligible, and besides, our goal is to provide a subrou
tine with exactly 0.1-second delay.

But what if we have to be exact? In that case, you have to keep
trying different values of M and N to find either the exact value you
want or some number slightly below it. You then make up the dif
ference by throwing in NOPs or whatever to hit things exactly.

229

It is a lot of fun to write a program that calculates values for you
and then runs through all the numbers it knows. To save on time
and paper, you tell your program to give you numbers only near the
final values you want.

Try it ...

DOING IT:

Write a program for a personal computer
that calculates the exact OUTRLP (M)
and INNRLP (N) values for a delay of 0.1
seconds using a 1.0-microsecond clock.

If you miss, take the nearest low value
and equalize it with NOPs or whatever.

How close can you come? Can you hit
exactly 1 00,000 cycles without any equal
izing code?

Stuff like this is lots of fun. It's called numeric analysis. This is
most useful for calculating timing loops, musical notes, approximat
ing complicated functions, and so on. Numeric analysis often works
on a trial and error basis. Rather than actually solving some messy
equation, you just punch in values and see what you get.

Our formula will work on this particular subroutine only for a
trainer that has an exact 1-microsecond clock cycle. In other uses,
the math changes but the idea stays the same.

Well. We now have a loop within a loop that gives us an "exact"
or at least a "good enough" tenth of a second delay. And working
with a 0.1-second module is very designer friendly, compared to
messing around with clock cycle counting and low level code. All
you do is rip off this ready-to-go sub and you have a hassle-free
tenth of a second delay ready to go.

But it would be even more designer friendly to build a subroutine
that would give you any number of tenths of a second delays. This
is even better and more convenient and can become a universal
timing module for solving lots of different high level problems.

Time out for another side trip ...

passing variables to a subroutine

The way we can do a .Y-second subroutine is to put some value
into the Y register or another working register, and then jump to the

230

subroutine. We say the value in the working register geh passed to
the subroutine

PASSING VARIABLES-Any method of taking values in
a main program and letting subroutines or inter
rupts use them and vice versa.

Also any scheme to move values between high
level languages and machine level code modules.

Passing variables is fairly easy to do. You put something some
where and then tell whatever needs it where to go to look for it.
When the sub is done and has a result for you, you put that result
somewhere else and let the main program find it.

Simple
Yet profound. It is very important to be able to move things

between subroutines, interrupts, main programs, and high level
code in an orderly way without surprises.

There are many different ways to pass variables .

WAYS TO PASS VARIABLES

() Use working registers
() Use the stack
() Use absolute short RAM
() Use absolute long RAM

The working registers are an obvious choice, as long as those reg
isters are not needed for other things and as long as you understand
just which register gets affected which way.

You can also use the stack to pass variables, but be sure you
exactly empty the stack in precisely the same way you filled it. This
gets messy fast, since the CPU will pile addresses on top of your
pushed stack values on a subroutine call and demand a return
address when you go back. But variables can be saved on the stack
by creatively messing with the stack pointer.

Stacks are normally used in just the opposite way, though. Stacks
are often used to save working registers and other values to prevent
any damage to locations that get used by the subroutine or what
ever.

231

For instance, say you have something useful in the X register
that you want to keep for the main program to use later. Say fur
ther that you have a subroutine that needs the X register to do its
particular thing. What you do is save the initial X value onto the
stack, go ahead and use the X register as needed by the subrou
tine, and then come back to the main program and restore the
original X value.

The first choices to pass things back and forth between pro
grams and subroutines are your working registers. If you run out of
spare registers, then use absolute short addresses. To do this, let
the main program store values into absolute short locations, such
as the page zero addresses on the 6502. The subroutine then uses
these values as needed and adds results to other page zero loca
tions.

Actually, any location in the entire address space can be used to
pass things back and forth, as long as that location is protected
from other uses. For instance, if you are using both machine lan
guage and a higher level language such as BASIC, you can find out
where the variables are stashed in the BASIC program and read
these locations as needed by the machine language parts of the
program.

This sort of variable passing can get tricky. You have to know
exactly where everything is at all times. Thus, the high level lan
guage must define its variables in exactly the right order.

Some rules . . .

PASSING RULES

() Variables that are to be passed must be put
somewhere reachable by both passer and
passee.

() Variables and registers that are NOT to be
passed must be protected against destruc
tion by the passee.

() No location or variable can have more than
one use at any one time.

Sometimes you can speak of global variables that can be used by
any part of the program and local variables that can be used only by
a single subroutine or other code sequence .

232

It is very important to be sure that the code in a subroutine or an
interrupt does not damage things it is not supposed to. This can
happen very easily if, say, both the main program and the subrou
tine have definite about ideas what to do with the accumulator or a
working register. After the subroutine or interrupt return, the wrong
value may be stuck in the wrong place and the main program will
get into deep trouble. We will see an example of the bad scene that
can result when we look at interrupts.

So, on any fancy subroutine, it always pays to save everything
onto the stack or into a "safe" memory area before anything else
happens and restore everything back off the stack or from memory
to the way it was just before the return. This way, the main program
gets everything back the way it thought it was ...

On any fancy subroutine, it is ALWAYS a good
idea to save all flags and working registers as the
FIRST thing the subroutine does and then
restore all flags and working registers as the
LAST thing the sub does before its return.

On the 6502, only the program counter high and low values get
saved automatically for you on a subroutine call. If you want to save
the accumulator, you do a PHA. If you want to save the X and Y
working registers, you do a TXA or a TYA and then a PHA. Flags are
saved with a PHP. You have to be careful to undo the stack in
exactly the opposite way you filled it. If the flags were the first one
on, they must be the last one off. Note that the accumulator has to
be used to save and restore X andY, so the "real" value in the accu
mulator should be the first thing pushed onto the stack and the last
thing pulled off.

On non-6502 micros, you would do the same thing, saving any
flags and working registers that you want to protect from subrou-

233

tine damage. Always save flags first, so values pulled off the stack
don't hurt them.

You also have the option of saving to "safe" memory locations.
But watch the trap of more than one part of your code saving to the
same memory area and fouling up previous saves. The Apple II
monitor routines of IOSAVE and IOREST are deadly this way.

There are exceptions to the "save everything" rule. Saves take
time and use up space. If either time or space is so important that
nothing else matters, then you may have to save only the stuff that
absolutely must not be destroyed. And if the subroutine is very sim
ple and you are very sure exactly what is going to change in just
which way, you can also skip saving everything in sight.

Back to our discovery module. To do a .Y subroutine that delays
from 0.1 to 25.6 seconds for us in 0.1-second increments, we fill the

Y register in the main program with the delay value and then go to a
new subroutine that uses the 0.1-second delay over and over again

Y times.
Here .is the flowchart for a .Y-second delay sub ...

234

. Y-SECOND

DELAY SUB:

NO

DELAY
0.1 SECOND

Y=Y-1

(2100)

All we have to do here is rip off the code for the 0.1-second delay
and remove the bottom RTS. Then we decrement Y, testY for zero,
and repeat the 0.1-second delay Y times. When Y hits zero, we
finally return. The number of tenths of a second delay you get is set
by the number you put into the Y register, which in turn sets the
number of trips through the ".1" code.

Here is the actual code . . .

ADDRESS OP CODE BYTE #2
21dJ 14' 6F
�;-tj"2 !:<= -:IT

iA: iQ �

:v .:

2! iQ r.. .�
i7 --.::
�I'. .I;

E

:lJ/fiJ

,.
.Y-SECOND

+ DELAY SUB
BYTE #3 MNEMONIC HOW? NOTES

LDA �db Fit., 0 I TE"Jfl �DDP
TTA [I;" ,. "

LJl� �I?: N '�" "Ol>
'TA d ,. "

EC '.ci /NAJSi hll/11 /JS n, I I""
� fill i/JAJ�Jl>
)F, r.<' nun::-Q M!IVU5 n.

"" ?

E DNE I..ESS Y � ., , ED hi. uhd. .TlM.Jr •y" TIDVT!IS.
� ... R fi'�T�fliA.

"cu

� - -

Now let's use the code for an 0.3-second on, 2.0-second off light
flasher. We will have to connect some sort of lamp driver to the
output port, per the details upcoming in Chapter 8.

Here is one possible circuit . .

LAMP FLASHER

CIRCUIT:

NC

d7 d6 d5 d4 d3 d2 d1 dO

INIT INIT
AS INPUTS AS OUTPUT

+5V

Our main program is only slightly longer than the earlier delay
programs. We use a .Y-second delay subroutine, but we have to
pass Y a value from the main program before we go to the .Y-sec
ond delay subroutine.

The flowchart . . .

235

LED

FLASHER:

START

I
TEACH
PORT

1
t

LIGHT
LED

!
DELAY .3
SECONDS

!
UN LIGHT

LED

�
DELAY 2
SECONDS

I

($2000)

and the high level code . . .

[
236

LED
(FLASHER

ADDRESS OP CODE BYTE #2 BYTE #3 MNEMONIC HOW? NOTES

IJll(j 1q LJ)) IJ;,S, TFgH POJtT
ll:tU. I.D t'.m sr. IC.#JI� •• "

1ifl<; 1q .})� -d rli. !T J.FD
iM C.IIJ r. rr..n ,. ,

• .D� 3 S£r .l>E J'IY

.o, Ill NJ.IGH; /.ED·
.COl_ T , If

"i LD . 14- SET" J>Et.AY
1/Jo .2J jS tJIJ 1JEUIV VIII UB
IIJ'• .2(/J rMl :2,1 .. .o; /i'�;PEAT FO�EVER

./
_......,.

First, we fill the variable to be passed in the main program and
then use the variable in the subroutine.

DOING IT:

If you fail to fill the Y register in the main
program, after a trip or two around, you
will default to a very long time delay of
25.6 seconds.

Why?

As a hint, remember that a working register will always hold its
last value until something new gets put into it.

The second point on our light flasher is that we are now using
one subroutine to do two different things for us in two different
parts of the program. This is designer friendly code nearly at its best.
Instead of worrying about tenths of a second, we now worry only
about total delays. To get a delay, just put the delay value into Y,
call the sub, and you are home free.

Sure beats counting cycles each time.
But even this is not optimum. We will get even more designer

friendly when we use the files of Discovery Module 8.
Some further comments. Be sure to load both your program and

your subroutine each time you use them. They obviously will need
each other to work properly. Also, note that the Y values will be in
hex and not in decimal. Two seconds will be twenty tenths of a
second, or hex $14. Finally, a casual glance at our code shows us
filling the accumulator with an $01 value twice in a row. This is not
wasteful, for first, it is a coincidence to this program, and second,
we need a new value of $01 after every trip around. Watch details
like this and don't try to cut corners.

Note that our .Y subroutine destroys what was in the accumula
tor, uses Y to pass variables, and ignores the X register. If the old
contents of A are valuable, you'll have to save them somewhere,
such as in the stack or memory, before using this subroutine.

Before we go on, we ought to look into some ...

bit twiddling

So far, all of our op-code commands have used entire 8-bit wor�s.
It was all or nothing. Either the entire word got loaded or stored, or
nothing at all happened. It sure would be nice if we could do any
thing we like to any number of bits in any bit position at any time.

We can handle sixteen bits at a time by using 8-bit words in pairs.
We have already seen several examples of this in the absolute long
addressing where one 8-bit byte handles the page address and a

237

second 8-bit byte handles the position-on-the-page address. By
working with pairs of words, anything that you can do with 16-bit
words in a 16-bit micro can also be done with pairs of 8-bit words in
an 8-bit micro. All it takes is some extra commands and extra time.

We can also go the other way and mess around with individual
bits. Bit twiddling consists of isolating and working with individual
bits . . .

Bit twiddling gets very important whenever you want to sense
what a single input line is up to or want to alter only one line of
eight ports routed to an output. With bit twiddling, you can mix
and match input and output pins on some ports and sense and
change them at will. Most 8-bit micros have lots of different bit
twiddling commands available in many different address modes.

There are three basic types of bit twiddling commands. These are
logic commands, sideways shovers, and testers .

Let's look at some examples of each type of bit twiddler.
Logic commands are instructions that do any of the traditional

"Boolean" functions, such as AND, ORA, EOR, and so on. On an 8-
bit microcomputer these instructions will do a separate bit-by-bit
logic action on each bit in each position. The logic is usually done
by working the accumulator against a fixed and immediate mask or
by working a mask in the accumulator against some location in the
main memory. So, you can think of one 8-bit micro instruction as,
say, eight separate hardware AND gates, each of which works on a
single pair of bits.

The sideways shovers are used to move bits from left to right or
right to left. Shift and Rotate commands are typical. These instruc
tions can also move bits into the Carry flag where they can be

238

tested. Moving all the bits to the left one place is the same as multi
plying the straight binary number in that word by two. Moving all
the bits to the right one place is the same as dividing the straight
binary number in that word by two. Sideways shovers are also use
ful for converting hex to ASCII and for packing pairs of 4-bit words
into a single 8-bit location.

Some newer microprocessors have a sideways shover that can move
you any number of bits right or left with a single instruction. This abil
ity is called barrel shifting. Barrel shifting can be faked through
repeated shifting or rotating of a single bit position at a time.

The testers let you test individual bits to see whether they are
ones or zeros. The results of these tests usually end up setting or
clearing one or more flags. You can then test the individual flags
and use IF instructions to alter what is happening. The CMP, or
compare, function lets you find out if one number is equal, larger,
or smaller than another. The BIT test, and similar commands on
other micros, directly lets you investigate what a single bit is up to
without damaging anything else in the machine.

Let's look at some examples of bit twiddlers. Here's the 6502 card
for the AND immediate logic command . . .

AND I AND ACCUMULATOR WITH MASK I 29

(IMMEDIATE addressing)
2 Bytes 2 Clocks

I AND #$20 I Nand Z

flags

Performs a bit-by-bit logical AND of the contents of the accumulator against

a mask in the second instruction byte. The result ends up in the accumulator.

AND instructions can be used to force certain bits in a word to zeros.

Assume the accumulator holds an $60.

2B4D- 29 20 ANDs the $20 of the mask against the $60 in the
accumulator, giving us a $20 result in the accumula-
tor, while clearing the N and Z flags.

Here is what happens: there is a bit-by-bit logical AND done on
each position in the accumulator, working against the same posi
tion in the mask. The results of each individual AND are then
placed back in the accumulator.

Remember that the AND rules say that 0 AND 0 = 0; 0 AND 1

0; 1 AND 0 = 0; and finally 1 AND 1 = 1.

239

Each bit position is treated separately. What is happening in, say,
bit 6 has no effect on bit 2, and vice versa.

It is only when there is a one in both the accumulator location
AND the mask location that you get a one result in any bit position.
Thus, the AND instructions will force zeros into any position that
does not have a one in the mask.

If you force zeros in only a few locations, you make room for new
things that can be put in these bit slots. For instance, an AND #$OF
will clear the top four bits and convert an ASCII numeral to a 4-bit
hex or BCD number.

If you force zeros into all but one location, you end up testing a
single bit to see if it is one or zero. For instance, if we have a #$01
mask, we can get an $01 result only if there is a one in the LSB of
the accumulator. So, if there was a one here, we get a one result,
which clears the Z flag. If we had a zero here, the AND operation
will give us a zero result, which sets the Z flag. You can then BNE or
BEQ to alter what you are going to do next.

You can do the same thing to any other bit position. The eight
magic mask values to check any bit location are $01, 02, 04, 08, 10,
20, 40, and 80, going from right to left. Each masks out its own bit
for special treatment.

Note that the AND instruction destroys what is in the accumula
tor. If you wanted the other bits for something, you should have
saved them elsewhere first. The upcoming test instructions are not
as destructive and can be more useful.

There are usually many different address modes available for the
AND instruction. Among others, the 6502 has page zero and abso
lute long AND addressing. With AND instructions that work with
the address space, the value in the accumulator is ANDed against
the memory location, and the result goes in the accumulator. This
time, the value stashed in main memory is not destroyed but, once
again, the old accumulator value is, since the old value gets
replaced by result of the logical AND.

The mask works differently in both cases ...

240

In an AND immediate, the mask is found in the
second byte of the instruction and the result
ends up in the accumulator.

In an AND against a location in the main address
space, the accumulator usually holds the mask
and the result ends up in the accumulator.

Time to do the other logic instructions ...

DOING IT:

If your trainer is from the 6502 school,
complete the AND, ORA, and EOR cards
for immediate, page zero, and absolute
addressing at this time.

If not, complete all cards for all instruc
tions that perform logic operations in
immediate, absolute short, absolute long,
or any other address modes that you
have already have used.

The immediate ORA instruction does a bit-by-bit logical OR of
the accumulator against the mask and puts the results in the accu
mulator. This time, any one in either the accumulator or the mask
forces a bit location to one. So, OR instructions can be used to
force ones into certain bit locations.

OR instructions can also be used to combine bit groups into an
entire 8-bit word. For instance, if you had a hex $04 in the accumu
lator and ORed it immediate with a mask value of $30, you would
end up with a $34 in the accumulator, which is the full ASCII equiv
alent of the 4-bit hexadecimal $4.

As with AND, the OR instructions usually can also work any
where in the address space. The mask starts in the accumulator and
the result ends up in the accumulator. The value in main memory is
not altered.

The EOR, or Exclusive OR, instruction works in much the same
way that AND and ORA do, only it changes individual bits. If the
bits being logically acted on are the same, you end up with a zero
result. If the bits being logically acted on are different, you end up
with a one result.

One use of the EOR instruction is to complement 8-bit words. If
you do an EOR #$FF, you change each and every bit in the word in
the accumulator to its complement, making each one a zero and
each zero a one.

A very fancy use of EOR is to add and remove images from a
graphics screen. If you do this just right, and if you keep a separate

241

copy of the new image somewhere else, you can "un-EOR" the dis
play and remove the new image without hurting the background.
This is essential for animation and other applications which have
something moving against a background.

Other uses of the EOR instruction involve binary addition, con
trolled complementing, change detection, and driving liquid crystal
displays.

As with AND and OR, you can also go into the absolute address
space and do an EOR. The mask usually sits in the accumulator and
is destroyed, leaving the result in the accumulator.

Remember ...

AND logic functions force ZEROS into certain
bit locations.

ORA logic functions force ONES into certain bit
locations.

EOR logic functions force CHANGE into certain
bit locations.

With these three logic functions, you can twiddle any bit loca
tion in any word into a one, a zero, leave it whatever it was, or
make it into whatever it was not. You can do this with a word in
the accumulator worked against a fixed set of masks, or you can
put masks in the accumulator and work these masks against any
thing in the address space. Either way, the result ends up in the
accumulator.

You can also use these three logic instructions as building
blocks to do any logic function, although this is not very com
mon. For instance, you can AND and then EOR #$FF to get the
NAND logic function. The EOR #$FF simply acts as an output
inverter.

The only disadvantage of these logic commands is that they
destroy what was in the accumulator in the process of getting a
result. If you want to do something different with some of the
other accumulator bits later, you have to save a copy of the
word as it was before you start doing any logic commands on it.

Here's a card for a sideways shover .

242

ROR I ROTATE RIGHT THRU CARRY I 6A

(IMPLIED addressing)
1 Byte 2 Clocks

I RORA I N, Z, and C
flags

Takes what is in the accumulator and moves each bit one to the right. The
rightmost bit goes into the carry flag and the old carry value goes in the
most significant bit.

Assume that the accumulator holds a $61 and the carry flag is cleared.

2C31- 6A Leaves a $30 in the accumulator and the carry flag set,
since everything gets shifted one to the right.

And the bits go round and round. LSB goes into the carry flag.
Carry goes into the MSB. MSB moves one to the right. All others
move one to the right, just like musical chairs. Some micro families
give you the choice of going through the carry flag or just going
round and round through the bits only.

Several gotchas. You can rotate any location in the address
space, provided it has RAM in it that can be both read from and
written to. This rotate scheme takes a while but is very powerful,
and no register values are destroyed in the process. The N, Z, and
C flags are all changed, giving you a powerful way to alter and test
memory locations without using the accumulator or another
working register.

On the 6502, there are a few quirks involving the shift and rotate
instructions. The ROR immediate instruction that rotates the accu
mulator has to be entered in some assemblers as the four-letter
mnemonic RORA. Thus, a page zero rotate would be ROR $06, an
absolute one would be ROR $FE06, and an accumulator rotate
would be RORA.

In a masterpiece of PR flak, the 6502 people separate out the four
"accumulator" mode shift and rotate instructions and classify them
as a separate addressing mode. Accumulator addressing is simply an
implied instruction that works only with the accumulator.

Shift and rotate instructions are usually best shown with a small
sketch, like this ...

243

� 7����7� J ROR � d7 d6

CARRY
FLAG

d5 d4 d3 d2 d1 dO

t ACCUMULATOR ,. OR RAM
LOCATION

There is a ROL command that also shoves things round and
round, only this time around things move to the left, with the MSB
going into the carry flag, the old carry value going into the least
significant bit on the right, and so on. Each bit moves one to the
left, through the carry.

You can also shift without rotating. The 6502 uses different
sounding names for two commands that do the exact opposite of
each other. The ASL, or Arithmetic Shift Left, command shifts every
thing to the left, feeding zeros into the MSB each time, and putting
the LSB into the carry flag. The LSR, or Logical Shift Right, command
shifts everything to the right, feeding zeros into the LSB each time,
and putting the MSB into the carry flag. The N and Z flags pick up
the usual result in the usual way.

If we were to have an ASR, or Arithmetic Shift Right, command,
it would have to preserve the MSB so that 2's complement arith
metic would still work. This command is available on some micros
but not on the 6502. ASR is sticky to use, so be very careful with
this one.

One obvious use of rotate commands is to move a bit value into
the carry flag where it can be saved or tested with IF instructions.
Note that after nine identical rotate commands, you end up back
where you started. This is one way to output serial bit patterns and
not destroy the original word.

Shift commands can be used to multiply or divide a straight
binary word by two. Shift to the left to multiply and to the right to
divide. One place where you multiply by two is in picking pairs of
addresses out of a table. Your pointer to this table can be doubled
by an ASLA command to point automatically to the start of a new
position-page address pair.

Note that eight shift commands in a row empty the byte to all
zeros. Shifts are destructive. Rotates are not necessarily destructive,
as long as you go exactly once around.

More cards .

244

DOING IT:

If your trainer is from the 6502 school,
complete the ROR, ROL, ASL, and LSR

commands for implied (accumulator),
page zero, and absolute addressing at
this time.

If not, complete all cards for all instruc
tions that move bits sideways in a word,
using those address modes you already
know.

Here's a family portrait of the 6502 sideways shovers .

£[6/ I I j I I I I � LSR

O

d7 d6 d5 d4 d3 d2 d1 dO

G---1 I I I I I I I j.-o ASL

LB=illillll� ROR

� llj II II� ROL

To recap, there are four sideways shover classes of instructions
available in the 6502 that may be used on the accumulator or may
act on any location in the address space.

Two rotate commands move everything round and round
through the carry, one clockwise, and one counterclockwise. Two
shift commands move the bits in the word to the right or the left. A

zero is put in the one end of the word, while the other end of the
word overflows into the carry flag.

245

Our final class of bit twiddlers can be used to test bits or entire
words. These are very powerful, but you have to be very careful and
be sure you know exactly how they work.

Let's start with a CMP for compare card . . .

CMP I COMPARE ACCUMULATOR I C9

AGAINST MASK

(IMMEDIATE addressing)
1 Byte 2 Clocks

I CMP #$041 N,Z, and C
flags

Compares the valve of the accumulator against the mask pattern of the sec-
ond byte. Sets the Z flag if the two are equal, resets Z otherwise. Sets the C
flag if the accumulator is greater than or equal to the mask, resets C other-
WISe.

Assume that the accumulator holds an $A3.

2C41- C9 02 Sets the carry flag since the accumulator is greater
than the mask. Clears the Z flag since the accumulator
does not equal the mask.

You could also think of the CMP instruction as an EXCLUSIVE
NOR logic command. We call it a test instruction since CMP is
almost always used as part of a test.

This instruction compares the accumulator against the mask. If
the two are equal, the Z flag sets. Checking for equality is the most
common use of the CMP instruction. If the accumulator is bigger
than or equal to the mask, CMP sets the carry flag. If the accumula
tor is less than the mask, the carry flag clears. You can easily remem
ber this by thinking of carrying a large mouth bass. Then remember
that the "Big A SetS."

The carry flag can check to see if the accumulator is smaller than
the mask. The zero flag can check to see if the accumulator equals
the mask. The two together can be used for a "greater than" check.

Compare instructions are almost always followed by an IF instruc
tion, such as a conditional branch. Since other instructions can
change the flags, it is a good idea to always put the IF instruction
immediately following the compare instruction in your code .

246

Compare instructions should be immediately
followed by their IF instruction.

Think of a test as a two step operation. First, we compare against
a mask or a memory location. Certain flags will change on the com
parison. Then we do some conditional branch or jump based on the
flag results of that compare.

One use of "greater than" tests is for range checks ...

DOING IT:

Show how a pair of compare instructions
can check the value in the accumulator to
be sure it is an ASCII character from
uppercase A through Z.

Range checks are very important any time you could end up with
the wrong value somewhere. In this example, we might have a
twenty-six selection menu. We want to pick only legal letters, and
we want to either ignore anything else or perhaps provide some
error message.

More cards ...

DOING IT:

If your trainer is from the 6502 school,
complete the CMP, CPX, and CPY cards
for immediate, page zero, and absolute at
this time.

If not, complete all cards for all instruc
tions that compare a register against
something using all address modes that
you already know.

When you compare against a memory location, pretty much the
same thing happens as when you compare against a mask. If the

247

accumulator is equal to the contents of the memory location, the Z

flag sets. If the accumulator is larger or equal, the C flag sets. In this
case, the accumulator is usually the mask, and memory is what you
are comparing the mask against.

Unlike the other logic commands, the CMP does not destroy
what is in the accumulator. Thus you can compare what is in the
accumulator over and over again until you find the match you need.
While the CMP command will not test a single bit in a single posi
tion for you, it will test for a complete match of all eight bits in all
eight locations at once.

On the 6502, the CMP instruction also subtracts the mask from
the accumulator and lets this result set or clear the N flag. This spe
cialized test result is confusing to most beginners and is not used
nearly so often as the test for equal or greater than. Again on the
6502, compare instructions involving the X and Y registers are also
available in the' immediate, page zero, and absolute addressing
modes.

The advantage of the CMP is that it lets you test a whole word for
equal or smaller than. The disadvantage is that CMP by itself does
not normally let you test a single bit at a time.

To test single bits at a time, we have, of all things, a BIT test . . .

BIT I TEST BITS IN MEMORY I 2C

(ABSOLUTE LONG addressing)
3 Bytes 4 Clocks

I BIT scosej N,V, and Z

flags

Tests the bits in the memory word selected by the position or low value in
the second instruction byte and the page or high value in the third instruc-
tion byte. Puts a copy of the memory MSB into the N flag. Puts a copy of
the next-to-MSB into the V flag. Does a non-destructive AND against the
accumulator and sets the Z flag on zero result.

Assume an $04 in the accumulator and an $85 in $C056.

211 E- 2C 56 CO Tests contents of $C056. Sets N and Z flags but
clears the V flag.

Wow. This one is sort of hairy. On the 6502, our BIT test has three
different actions. Details will change for other micros.

248

First, and most handily, the BIT reaches into memory and uncon
ditionally puts a copy of memory bit 87 (the most significant bit, or
MSB) into the N flag.

It then goes one bit to the left, picks up 86, and puts a copy of 86

into the V flag. Note that the positions of the V flag and the N flag
in the processor status or phlag register are the same as those bits
tested in your target word.

Huh? A sketch makes it obvious ...

A BIT TEST OF �
THIS .LOCATION
WILL. ...

d7 d6

I I I I I I ! \d5 d4 d3 d2 d1
MOVE A COPY

MOVE A COPY Q) OF BIT ?INTO

CDOF BIT 6 INTO THE N FLAG r:l r:l .�
� THE V FLAG AND .. ·

�L.!:J � ..,...... AND ...

(";\ WILL LOGICALLY AND THIS
\!..) LOCATION AGAINST THE

ACCUMULATOR AND SET
THE Z FLAG ON A
ZERO RESULT, AND CLEAR
THE Z FLAG ON A NON-ZERO
RESULT.

dO

In this first way to use the BIT test, everything happens free and
automatically. You don't have to worry about what is in the accu
mulator. Since only bits 6 and 7 get moved into the flags, though, it
always pays to put the things to be tested on the highest two bits of
any word . . .

The 6502's BIT test quickly and simply tests bits 6
and 7 of a memory location.

It pays to put any bits that need testing in these
locations.

This automatic BIT test operation is very handy when you inter
face 1/0 peripherals to the 6502, since many peripherals automati-

249

cally provide service requests and other command information on
the high pins. If you are doing your own 1/0 using mixed inputs
and outputs, it pays to put the inputs on the high pins and the out
puts on the low pins.

Once you have isolated your bits 6 and 7 in the flags with a BIT
test, you can branch on bit 7 with a BPL or BMI and separately
branch on bit 6 with a BVS or a BVC.

The second way to use the BIT test does tie up the accumulator.
You can test any of the bits in a word by putting a mask value in the
accumulator and then BIT testing. The AND of the mask value in
the accumulator taken against the location you are BIT testing sets
or resets the zero flag. Unlike the AND instruction, the contents of
the accumulator are not destroyed.

For instance, if you want to know what bit B6 is up to, you simply
use the BIT test by itself and then check the V flag. If you want to
know what bit 132 is up to, you store a $04 in the accumulator and
then do a BIT test. The third bit to the left in the accumulator gets
ANDed with the third bit to the left in the memory, and the Z flag is
cleared if both bits are ones, since 1 AND 1 gives a non-zero result.
The $04 in the accumulator is not hurt and stays there for further
use. Note that this is backward from the 6502 CMP instruction,
where equality sets the Z flag on a match.

There is a third and sneaky use for a BIT test. Sometimes you only
want to address a memory location rather than read from it or write
to it. This happens in the Apple II with its soft switches and in other
systems where you only want to flash an address to let some hard
ware respond. One important use of this is resetting keyboard
strobes. The BIT test gives you a quick and dirty way to flash an
address without any worry about changing any register or memory
values. The N, Z, and V flags will change during the address flash
ing, so be careful, or you can do a PHP, BIT, PLP sequence to restore
the flags to the way they were.

To summarize, the BIT test is a powerful way to test individual
bits in a memory word. On the 6502, bits 6 and 7 automatically get
copied into the V and N flags. If you put a mask value in the accu
mulator, the BIT test will AND on this mask, letting you alter the Z

flag, clearing the flag on a one match. The usual IF instructions then
let you decide what to do as a result of the condition of the bit you
just tested. Finally, the BIT test automatically flashes a memory
address for special uses. More on this in the next chapter.

BIT tests work differently on different micros, but there is usually
some way to isolate the bits for test ...

Some micros will combine their test and branch actions into a
single instruction. The new 65C02 does this on some exciting new
op codes, but the old 6502 does not.

250

DOING IT:

If your trainer is from the 6502 school,
complete the BIT absolute and BIT page
zero cards at this time.

If not, complete all cards for all instruc
tions that test or change individual bits in
memory or working registers, using those
address modes you already know.

If you have a very old or very strange micro, there may not be
individual bit tests. But you can always do something to test bits,
such as saving the word and then rotating the word through the
carry flag until the bit you need sits there, or else by isolating a bit
position using an AND mask. As with almost everything in the
micro world, there are many different ways to do things, and no
one way is necessarily the best or only way to handle a problem.

Pay particular attention to the Z flag on the micro of your choice.
CMP and BIT tests in different families may have different use rules
for when the Z flag goes to a one, so always check. Once again,
CMP sets the 6502 Z flag on equality, and BIT clears the 6502 Z flag
on a bit match.

Just for kicks, the next time you want to torment a COBOL freak,
just ask them to show you the code sheets needed to read the third
bit over in a port. The BIT test in COBOL takes page after page of
garbage to replace five or less bytes of machine language code!

Let's see how to use some commands that mess with individual
bits in our next discovery module ...

���
DISCOVERY MODULE r::z; I

NITE LITE I
Write a program that lights a 1 00-watt
light bulb when a photocell thinks it is
dark outside.

251

Once again, you will need some more 1/0 details from Chapter 8.

We need a photocell and a conditioning Schmidt trigger circuit for
an input. We'll separately need an optocoupler, a triac driver, and a
light bulb for an output.

Let's use a circuit something like this . . .

cos
PHOTO

CONDUCTIVE
CELL

+5V

BIDIRECTIONAL
MICRO PORT

NITE LITE CIRCUIT

+5V �

I NIT
AS INPUTS

I NIT
AS OUTPUT

100-WATT
BULB

110V
60-

'------•uNE

WARNING: SEVERE
SHOCK HAZARD
THIS SIDE OF
DOTTED LINE!

We route the output of the photocell circuit into an input on one
bit line of a single port. We route the output of the microcomputer
to an output bit line of a port. We'll assume you have a bidirec
tional 1/0 port, and that you will input on the MSB line 87 and
output on the LSB line BO of the same port of our MYTH-1 trainer.

Note that some ports on some trainers may need a bias resistor or
even a buffer to drive an optocoupler reliably, per details in the next
chapter. Note further that a severe shock hazard exists on the right
hand side of the nite lite circuit, since it is connected directly to the
AC line. Think!

Let's do our nite lite with some logic instructions and some side
ways shovers. You read the port and then move a copy of the port
code sideways till the input bit aligns with the output bit position.

252

This takes two ROLA commands, one to move the MSB into the
carry flag, and a second to move carry into the LSB. Now that the
input bit and the output bit are in the same position, we can com
pare them. We can EOR these two to see if any change is needed
and update the output. We will also very carefully exclude the
other bits from the EOR with a suitable AND mask, so that no other
bits are allowed to change.

A lit photocell tells us it is day by giving us a zero to the input
port. If the output port is also a zero, this means we do not want to
light the bulb. An EOR of zero versus zero gives us zero, and we
make no change to the output. Similarly, if it is night and the lamp
is on, a one EORed against a one still says to make no change. Only
when there is a difference between input and output do we make
the change.

Here's one possible flowchart .

NITE LITE

START

+
TEACH

PORTS

1
+

READ

PHOTOCELL

�
COMPARE

CELL AGAINST

LIGHT

l
CHANGE

LIGHT

IF NEEDED

I

One very important thing when you are manipulating individual
bits is to make sure that no other bits in other bit positions get
upset in the process. If we have only a single input line and only a
single output line, this is no problem. But more often than not we
have to be super careful to make sure nothing else gets disturbed.

253

Our EOR logic will do this, since we will end up changing only a
single output bit, and then only if the change is needed.

Fail to do this and the windshield wipers will turn on when you
switch to high beam. Or the toast will pop up when you change FM
stations. Or something else equally poor.

And ungood.

I
'

11 r
'

�

I
�·�--�_ ' �-. . "

� - I
SAMS n:l I
�OOKS [L1

Here's the code for the nite lite . . .

NITE LITE CODE �
ADDRESS lOP CODE I BYTE #2IBYTE #3IMNEMONICI HOW? I NOTES
'Till. "' i.JJA &Hm1 rii-�riJPf1RT
:zmlh �iii' I'll> TA � . "

7 771 11 l!fliljjj" N�AIJ PtJR'
?n, �L/f./1/ INP/Ir
'?DL 77:J tJurPur

J:l.l ���� '="08 lll!IU11 CH8N6€ IE NUt? Cl c. 7iS 7af .;rm.p K2ille§l li'EPR�r F�:�lfEni�R
�ifH4.

__,
-

We first teach the port that line 0 is an output and line 7 is an
input. In the interest of safety and good practice, we'll also make all
the other port lines inputs.

254

Then we read our port by loading it into the accumulator. We
then rotate the mask two steps to the left with a pair of ROLA com
mands. One to get into the carry, and one to get out of the carry
and into the LSB. This aligns the input bit in the accumulator with
the output bit still in the port. We then EOR the accumulator
against the port, and the resulting bit in position zero will be a one
if the port needs to be changed and a zero if it does not. An AND
immediate #$01 then masks out all the other bits in the accumula
tor and forces them to the no-change zero state. We then once
again EOR the accumulator against the port. This time, the output
bit will change if needed, but all other port lines will stay the way
they were. The corrected port value in the accumulator then gets
restored back to the port, completing the update process.

Note that our flowchart has no IF diamond in it, since the pro

gram flow always goes in the same direction. We do not test and
branch. Instead, the EOR command will change or not change the
output as we wish, but it always does so in the same program
sequence.

A final jump lets the program repeat forever. Note that we have
not changed any of the other bit lines. Only the output line
changes, and then only if it needs changing.

Some variations ...

DOING IT:

Show five other ways of doing the nite
lite, using other commands that manipu
late individual bits in a word. Use as many
different bit twiddling instructions as you
possibly can.

Show how you keep your other port bit
values intact while you do this.

Which is the "best" program? Why would
you use the others?

As usual, there is no single best way to write a program. It
depends on your style, on what has to be done, and on the micro
you chose to work with. Obvious goals in any program are to keep
the code short, have it run fast, and make it easy to understand.

255

These three goals usually fight each other and you often have to
seek a balanced middle ground.

Did you think of just connecting the photocell to the
optocoupler without using the micro at all? Or just using your
micro to "borrow" some supply power? This is clearly the cleanest
and simplest solution with the shortest program. But this teaches us
nothing about bit twiddling, and if we make any change at all, it's
back to square one.

Nonetheless, it always pays to ask, "Do we really need a
microcomputer for what we are trying to do?" The most elegant
solution is often the simplest of all.

Time out for some foolishness ...

DOING IT:

Let the light bulb's light shine onto the
photocell in dim room light.

What happens? Why?

Now, rewrite one of the nite lite modules
so that the light goes ON in the daytime
and OFF at night.

With this new module, a dark room, and
feedback from bulb to photocell, show
how you can light a light bulb with a
match, and then blow it out by cupping
your hands around the bulb and blowing
on it.

Both of these involve feedback from output to input. One is neg
ative feedback, while the other is positive. Which is which? What
does this tell you about any micro interface application where out
puts may affect inputs?

The hidden nasties in this discovery module included learning
about instructions that manipulate individual bits for logic, side
ways shoving, and testing. You also have to do a 1-bit AID conver
sion to interface a photocell to a port and do an output isolating
and amplifying optocoupler triac interface that will drive a big light
bulb. More details on 1/0 in the next chapter.

256

FILES

Let's take a peek at our next discovery module .

�
DISCOVERY MODULE ®

M
TEXT OUTENBLATTER M
Write a program that places the name of
one of sixteen animals onto a video
screen or out to a printer or terminal.

M
M

Use a text file and a pointer stash. Use the W
. . keyboard or keypad on your trainer to �
W select each animal by typing the first let- nJ
M ter of its name. �
������

The best possible designer friendly code will use files, so that we
need only to change data values in files and do not have to rewrite
the program for each new use.

Of course, everyone knows what files are and how to use them
properly, right?

Uh, that's not quite it. He's not even wrong this time.

257

A file is a block of data accessed by a program ...

Depending on who is using one for what, files can go by different
names. A text file holds messages or message-related things like
printer or DOS commands. A table lookup is a file used for scien
tific or math purposes where one number gets substituted for
another. Error correction of non-linear analog signals is one use of
table lookups. A code converter is a table lookup used for code
conversion, such as, say, going from Baudot to ASCII or from
QWERTY to DVORAK. An address block is a file of addresses that
tell us where to go next, possibly in response to a menu selection. A
pattern file is a series of dot patterns needed to put colors onto a
video screen or combinations of ones and zeros out a port. These
are sometimes called shape tables or sprite maps, depending on
how they are used. A pointer stash is a file to access another file
holding addresses or index values that show where each new thing
starts in a second and longer file.

Like so ...

258

TEXT fll�-,.Holds ·a message or a string of printer or disk
comrndnds.

TABLE LOOKUP FILEk.,Qiv.es a ·new· .\lolue in . e>�change

for on· old · one .•

CODE CONVER1'ER FILE+El<cnonges on .input code for a

different output cod�:

ADDRESS FILE-Holds a serl�� ofaddr�sses that give a

choice of where to go. next

POINTER FILE-Shows where to access a second file to
get a. certain message or· otner longer sequence.

PATTERN FILE�Keeps graphics images or other shape
information . . until needed.

Higher level languages will also use files for mailing lists, inven
tory, word processing, employee records, data base management,
and so on. Many of these are variations on the text file. Regardless
of the language, all file concepts are pretty much the same. Let's
worry only about the more fundamental file concepts here.

One very important thing to remember about any file is that a file
is NOT a program and is NOT capable of running by itself. Files are
separate blocks of data that are used elsewhere by some pro
gram ...

Files are NOT programs and they are NOT capa
ble of running!

Files are blocks of data used by machine lan
guage code placed elsewhere in the address
space.

Thus, if you have a program that involves itself with files, the
machine language code will be in one place and the file will be
somewhere else in the address space. More often than not, the file
will shortly follow the machine language code. The machine lan
guage code NEVER jumps or branches to the file, and there is
NEVER a time when the microprocessor tries to execute op code in
a file. The contents of a file are used by loading a location into

·
a

program or else by receiving a stored value generated by a program.
If you access your file one word at a time in sequential order from

some starting point, you have a sequential access file. If, instead,
you can get at any file entry at any time, you have a random access
file . . .

used in �quen�ial order, from beginning to end.

RANDOM ACCESS FILE-A file where any value can be
used at any time in any order.

The telephone book is a good example of a random access file,
since most people get only the number they want, rather than
starting·at the beginning of the book and reading every number

259

till they get to the one they are after. This paragraph is an example
of a sequential access file. Most people will start at the beginning
of the paragraph and read it rapidly from left to right and slowly
from top to bottom, picking off the letters and the words in
sequential order. Note that the meaning of this paragraph will
change dramatically if you don't read these words in the order that
I intended you to. Try it.

It doesn't matter to the file whether it is accessed randomly or
sequentially. The program that is accessing the file will decide
whether to do a sequential access, a random access, or a combina
tion of the two. A text file for a word processor will usually be out
put strictly sequential, for we want the words always to come out in
the same order. When we edit this file, though, we will interrupt
the sequential access long enough to go where we want in the file
and make any changes we like. A text file for an adventure will be a
mix of sequential and random access. Normally there will be doz
ens of rooms and hundreds of response phrases that can show up in
any order. But each of these responses will be printed out one letter
at a time in sequential order, when and if needed.

Files are very important in the micro world because they are so
designer and user friendly. If you set up and debug a program that
uses files, you can make the program do many other things simply
by changing the file values. The working code does not change, and
debugging becomes far simpler and much quicker.

Files also force you into thinking much more generally and into
working with code that does many different things in many differ
ent ways. As an example, you could write a traffic light program that
does not use any files. But any changes at all in that program would
require you to go back to square one and start all over again with
new code. If instead you write a program to generate any number
of light patterns combined with any number of matching delay val
ues and then set up a pattern file for the lights and a delay file for
the time delays, you will not only solve your particular traffic light
problem but solve any and all traffic light problems at the same
time.

Further, by using the files, you can easily change the traffic light
program to a pendulum model, or a disco chaser, or a theater light
ing system, or whatever. The general program that uses files is
almost always far more convenient and easier to use than a dedi
cated program that does only one single task.

And doing things in the most flexible and general sort of way, of
course, is what micros are all about.

Most microcomputers have some way that you can pick values
out of a file. Sequential values are normally handled with an
indexed instruction mode or else by a register indirect process.

260

Either access method makes it quick and easy to get values out of a
file.

Here is an example of a 6502 indexed instruction . . .

LOA I LOAD A INDEXED BY X I BD

(ABSOLUTE INDEXED addressing)
3 Bytes

[LOA $0900,X I
4 Clocks

N and Z

flags

Adds the absolute base address found in the second or position byte and
the third or page byte to the index value in the X register. Then goes to
that address and puts a copy of what is there into the accumulator. Used
for rapid file access with short code length.

Assume that the X register holds a $06 and that $0906 holds a $A3.

2C34- BD 00 09 goes to location $0900 + 06 = $0906, reads the
A3 there, and puts it in the accumulator. The Z flag is
cleared and the N flag is set.

'

I

Indexed addressing gives us a very simple way to pick values out
of a file. It is the same as the counterperson in the donut store who
can pick one donut off the rack at a time in sequential order.

There are two parts to an indexed address. The first is called the
base address and is built into the instruction. The second part is
called the index value and is held in a working register . . .

You need two separate pieces of information to find an indexed
address. First you find where to start and then you find how much
to add to the starting point to get to where you really want to go.

261

The big advantage of indexed instructions is that code using
indexed instructions is far shorter and far more convenient to use,
compared to brute force coding.

For instance, suppose we wanted to pick off the contents of a
dozen locations ranging from $0900 through $090B and route them
to a port. Here is the brute force way to do it .

LOA $0900
STA PORT

LOA $0901
STA PORT

LOA $0902
STA PORT

LOA $0903
STA PORT

LOA $0904
STA PORT

LOA $0905
STA PORT

LOA $0906
STA PORT

LOA $0907
STA PORT

LOA $0908
STA PORT

LOA $0909
STA PORT

LOA $090A
STA PORT

LOA $090B
STA PORT

I have just snuck some assembler notation in on you here. LOA
$0906 tells us we want to absolutely load the accumulator from

262

location $0906, and will have the 6502 machine language coding of
$AD $06 $09. We know this is absolute addressing since there are
four digits in the address and since there is nothing following in the
way of commas, parentheses, or index register names.

STA PORT tells us to route the accumulator out a port. Which
port? Ahead of time you tell the assembler where your port is. One
way is to tell your assembler "PORT EQU $FDOC," short for "any
time from now on that I use the label "PORT," I really mean loca
tion $FDOC." So, if we taught the assembler that PORT was $FDOC,
a command ST A PORT would mean $80 OC FD in 6502 machine
language. Once again, since the address called PORT has been
defined as four digits and no commas, register values, or parenthe
ses, we know to use absolute addressing.

Note how much more meaningful is an address labeled PORT,
compared to $FDOC.

Anyway, back to the file reading code. We see that it takes six
dozen bytes to read twelve data values and then output them to a
port. Six bytes are needed per word, three for the load and three for
the store. And, this in fact turns out to be the fastest possible way to
read a file with the 6502.

But it certainly is not the shortest.
Let's try the same thing using indexed addressing .

LOX #$00

C
EAD LOA $0900,X

STA PORT
INX
CPX #$0C
BNE READ

Well, even if it looks like gibberish, it is obviously much shorter

gibberish than before. Let's see. First we load the X register with a
zero value, and then load the accumulator with what is at $0900
plus zero, or simply the contents of address $0900. We then shove
this out the port.

Next, we add one to X. We then check to see if it went one past
where we wanted to stop. If not, we repeat the loop. The label

READ following the BNE tells the assembler to run back through all
the code till it finds a READ label at the start of some code. The
assembler automatically figures out all the relative branch nonsense
that you have done by hand so far. We go through the loop twelve
times. Each time, we advance the index by one and go to the next
location in the file. Each file value goes out in turn ...

263

DOING IT:

Convert the two previous assembly lan
guage sequences into machine language
code.

You should end up with fourteen bytes using the indexed load
instructions and seventy-two bytes using brute force absolute loads.
In this case, that's nearly a 6:1 improvement.

But, should you read a hundred values out of your file, the
indexed method still only takes fourteen bytes, compared to six
hundred bytes needed for the brute force.

So, indexed instructions dramatically shorten the length of code
needed and make it much easier to read files as well. It is also far
simpler and much more flexible to change an indexed loop than to
do brute force coding.

There is, however, a speed penalty. One load and store done the
brute force way takes only eight CPU cycles, while one load and
store done indexed can take up to sixteen CPU cycles, allowing for
loop overhead. So, you pay a 2:1 speed penalty for the convenience
and flexibility of indexed code. This, of course, is typical of any
loop. You have to pay the loop overhead every time you go through
the loop. This speed penalty is often negligible, especially when
outputting text, since printers and video screens communicate at
fairly slow rates.

264

DOING IT:

If your trainer is from the 6502 school,
complete the LDA,X and LDA,Y absolute
and page zero cards at this time.

If not, complete all cards for all of the sim
pler indexed instructions available on
your micro.

If your micro lacks indexed instructions,
do cards on other ways of reading file val
ues, such as register indirect.

Some microcomputers may not have indexed instructions.
Instead, they may offer some other way of doing the same thing. An
addressing mode called register indirect can often do the same as
an indexed instruction can.

In register indirect addressing, the accumulator or whatever is
loaded from an address specified by another register. Since it is usu
ally easy to increment, decrement, or compare this address register,
you can read sequential file locations just as you can with an
indexed instruction.

On the 6502, there are no register indirect commands available.
Instead, there is a very rich variety of powerful indexed instructions
that mix and match address modes. There is "absolute,X" address
ing. There is also "absolute,Y" addressing, "page zero,x'' addressing
and "page zero,Y" indexed addressing available. There are even
more powerful modes that mix and match indexed, indirect, and
page zero. More on these shortly.

Here are some hints on using files in programs ...

FILE USE HINTS

1. Always set up a sample file before you write any
program code.

2. It is a good idea to start a file on an even page
boundary, unless space is a severe problem.

3. You should always do a range check to make sure
you do not read or write outside the boundaries
of a file.

4. Generally, the more files, the better. Use pointer
files to access bigger files.

5. Use the shortest, most flexible, and most powerful
address modes you can to access files, unless
speed is a severe problem.

6. Make the allowable meanings on file values as
general as you possibly can.

7. Special layout forms can ease file design. So can
any powerful assembly program.

These points are fairly obvious.
If you make a model file ahead of time, it will show you how

much room it will take and get you thinking about how you are
going to organize and access the file. In longer machine language

265

programs, the files will usually take up the lion's share of the
address space. More often than not, you will have short and com
pact code that accesses long and detailed files.

Even file boundaries, such as a file starting at location $0900 or
$0AOO, are a good idea to keep structure in your programs. This also
simplifies keeping track of index values. Even boundaries can be
slightly faster, for an extra CPU cycle may be needed if an indexed
instruction crosses a page boundary. If space is extremely impor
tant, you may want to crunch the files back together end to end.
But do this only late in the game and only if absolutely necessary.

A range check is a calculation that makes sure your attempt at read
ing a file or writing to it is in bounds. If you read outside a file, you will
get a bad data value for your program. If you write outside a file, you
could destroy the program as well. So, always be sure there is no way
any file read or write can get out-of-range address data.

The more files you use, usually the more general your programs
will be. Always think of the most versatile form of stuff you put in
files. For instance, in a traffic light program using files, think of "pat
tern" and "delay" values in two separate files. You can do vastly
more with a program that manipulates patterns and delays than just
emulating traffic lights.

Special forms will help you lay out files. We will see an example
shortly. If it takes a custom layout chart to simplify things for you,
then do it. Create your own custom form that works. Xerox is
cheaper than time.

text messages

One of the most important uses of files is to deliver text
messages. These can be user instructions or the responses in an
adventure or prompts in a business program. Almost all programs
need some messages put somewhere at some time. Text files are an
obvious way to do this.

How you do a text file depends on the length of the material you
want to output and how many total different messages are needed.
Four obvious routes to text messages are called brute force, short
file, long file, and the compacted or compressed code file .

266

WAYS TO DELIVER A TEXT MESSAGE

() Brute force
() Short file
() Long file
() Compressed code

You can use brute force coding for single and very short
messages. For instance, if you want to output the word "dog," you
could load the accumulator immediate with the ASCII character d,
and send that to a port, screen, or printer. Then you could output
the character o, followed by a g. Brute force coding is simple, obvi
ous, and horribly painful for long messages.

In short file text messages, you keep the total number of charac
ters to be sent under several hundred, and use indexed addressing
that can handle a block of up to 256 characters at a time. If you
need somewhat more than 256 characters, you can go to several
blocks of 256 characters. Two files are usually involved. One is the
text file that contains all the messages end on end, and the second
is a pointer stash that shows where each message begins .

USE A PAIR OF FILES TO SEND SHORT MESSAGES

THIS ENTRY TELLS YOU
MESSAGE #3 STARTS AT $2217 IN THE TEXT FILE

21
���g�� r�

I I ��o;�AGE #0. MESSAGE #1 02-2211 !V � •MESSAGE #2 •MESSAGE #3
�tl}Jf ' I DELIMITER

I •
MESSAGE #4. ETC

OR

L------;:=���M�AR
K

ER I�
THE I POINTER STASH (IS THE I TEXT FILE I HOLDS
A TABLE OF ADDRESSES OR THE MESSAGE YOU NEED IN
INDEX VALUES THAT TELLS SOME CONVENIENT ORDER
YOU WHERE TO GO IN THE MESSAGES CAN BE DIFFERENT
TEXT FILE TO FIND THE LENGTHS IF THEY ALL END
START OF A SELECTED IN THE SAME MARKER,
MESSAGE SUCH AS A ZERO OR AN ETX $D3

Each message ends with a marker or delimiter of some sort, such
as a 00 NUL or an ASCII "End of Text" ETX or $03 command . . .

MARKER�Something .to show the end of a text message,
such as an ASCII control character.

DELIMITER-A pair of identical somethings that show the
beginning ond end of a text message, such as a
pair of slashes.

Usually a marker goes only at the end of the message. Delimiters,
though, are usually found in pairs, one at the start and one at the
end of a message. Thus "/message goes here/" has a non-printing
delimiter slash at each end.

267

There are lots of possible markers. For our example, we'll use the
ETX, or End Of Text, marker. If you use the delimiter method
instead, you put some symbol at the beginning and the end of the
text. The first symbol is remembered and text is output until the
second delimiter arrives. Delimiters are often used in word process
ing search-and-replace commands and in assemblers that provide
ASCII text strings. Markers are common in adventures. Sometimes
these delimiters will be used to separate /old/new/ in replacement
commands.

Other markers could include a NUL or 00, which tests the Z flag
"free," or a shift of the last text character from High ASCII to Low
ASCII, which shortens the file by one character per message.

Anyhow, most of the text messages in a short file will have differ
ent lengths, so a separate pointer stash is used to point to the start
of the first message, the start of the second message, and so on. We
will see how to use a pointer stash in this discovery module.

If the messages are very long, or if you have a micro that can
handle 16-bit-wide indexed instructions, you can go to "full width"
or 16-bit file access. This is called the long file method. Your base
address is sixteen bits and your index is sixteen bits, letting you hit
any spot in the entire address space. On the 6502, this is best done
with the upcoming indirect indexed addressing methods.

Normally, you put ordinary ASCII characters into your text file.
Sometimes you will use ASCII with the most significant bit set and
sometimes with the MSB cleared. This depends on the system. The
Apple II normally uses the alternate ASCII code with the MSB set.

The advantages of ordinary ASCII characters are that everyone
can use and understand them. This can become very important in
interfacing, say, a word processor to a phototypesetter. And, of
course, any attempt to hide the contents of a file through sneaky
coding is not only futile but also a red-flag challenge and open invi
tation to others to tear into your code.

But what if your message is so long that it won't fit into your
address space if it is ASCII coded? Why did it take so long to dis
cover that the entire original Colossal Cave Adventure text would
easily fit into an ordinary Apple all at once?

The solution to these "make it fit" questions is to use text com
pression . . .

268

An ASCII-coded character takes up one 8-bit word. This is obvi
ously inefficient, since there aren't 256 different characters you nor
mally would like to display. If cramming long messages into mini
mum space is very important, y9u can go to any of a number of text
compression schemes.

For instance, in the Zork adventures, three characters are stuffed
into two bytes. This is done by letting upper case characters be one
5-bit code subset, the lower case characters a second, and numbers
a third. Special commands let you get between the subsets, some
thing like the old "figures" and "letters" case shifts in the Baudot
code. Since three characters now fit into two bytes, your compres
sion efficiency is 67 percent compared to ASCII. A 10K message file
takes only 6700 bytes this way.

In the Adams version of the classic Colossal Cave Adventure,
pairs of characters are given unique code values using up byte val
ues that ASCII does not need. Every time a pair of characters is
replaced by a single byte, you save 50 percent of the file space you
would otherwise need.

There are also worthless compression schemes involving special
variable-length codes called Huffman codes. The more often the
letter is used, the shorter its coding. But Huffman codes do not see
too much micro use because it is extremely hard to quickly manipu
late variable bit-length words with a micro.

The theoretical limit to text compression for long ordinary English
texts is something like two bits per character, or around 25 percent
of the space that ASCII needs. Some dictionary and speller programs
actually come close to this limit. You might beat this limit by exactly
matching the code compression used to the specific message to be
delivered.

You should consider using text compression if you clearly do not
have the room in your micro for the whole text. Another advantage
of text compression is that it can eliminate the need for repeated
disk access, or even can let you cut down on the total number of
diskettes needed.

A much simpler text compression scheme, often overlooked, is to
substitute single byte code values for things that will repeat often.

For instance, only one code value byte is needed to store hun
dreds of different "town, state, zipcode" strings. A single T on the
bottom line of an address in a mailing list can point to a second file
containing "Thatcher, AZ 85552." This is an 18:1 text compression!
It's also simple and easy to do.

Anyhow, for this discovery module, we will use a standard ASCII
coded short file with a companion pointer stash.

Let's put a dozen animals into our file into alphabetical order,
using a custom form. Like so . . .

269

270

ANIMALS FILE

BASE ADDREss l 2 3 l 00 I

INDEX VALUE

MESSAGE

CODE

INDEX.VALUE

MESSAGE

CODE

INDEX VALUE

MESSAGE

CODE

INDEX VALUE

MESSAGE

CODE

INDEX VALUE

MESSAGE

CODE

INDEX VALUE

MESSAGE

CODE

INDEX VALUE

MESSAGE

CODE

INDEX VALUE

MESSAGE

CODE

00 01 02 03

A A R D
'11 '11 52 '1'1

10 11 12 13

�tx C A M

�3 'f3 '11 liD

20 21 22 23

L E p H
'1-C '15 5¢ 'f8

30 31 32 33

H y E N
'18 5' '15 'IE

40 41 42 43

K A L ��
1/B '11 ifC ¢3

50 51 52 53

M A etx M
40 '11 ¢3 '1-D

60 61 62 63

GA L E
'17 '11 lfC l/5

70 71 72 73

H 0 N e+l<

Lf8 ifF lfE ¢3

04

v
5{,

14

E
lf5

24

A
'11

34

A
41

44

K
'fB

54

0
'IF

64

etx

¢3

74

FILE I ANIMALS 1.0

05 06 07 08 09 OA OB oc OD OE OF

A R K •t,. B u F F A L 0
'11 5l 'IB ¢3 'IZ 55 'f{, tf{, '11 'IC lfF

15 16 17 18 19 1A 18 1C 1D 1E 1F

Let D 0 L p H I N et� E
"'C ¢3 if 'I ifF ifC 5� 'fB tt3 1ft r/13 '15

25 26 27 28 29 2A 28 2C 20 2E 2F

N T l!lt� F 0 X eri)(G N u e
iX

if£ 5'1 ¢3 'flO IfF 58 03 '17 'IE 55 ¢3

35 36 37 38 39 3A 38 3C 3D 3E 3F

etl< lM p A LA e+l< J A c
r;?J '19 lfD 5¢ 111 'fC ifl ¢3 1IA ifl if3

45 46 47 48 49 4A 48 4C 4D 4E 4F

A N GA R o 0 e+x L l A
'11 liE '+7 41 52 JfF 'IF ¢3 4-C 'fC '11

55 56 57 58 59 5A 58 5C 50 5E 5F

0 5 E etx N I G H T E N
4F 53 '1-5 ¢3 4£ if' '17 liB 5/f '15 'IE

65 66 67 68 69 6A 68 6C 60 6E 6F I
0 c T 0 p u s � p y T
l/F l/3 57' IfF 5¢ 55 53 ¢3 5¢ 5' S'f

75 76 77 78 79 ?A 78 7C 7D 7E 7F

We will start our animals file at a base address $2300 and use
standard ASCII with the most significant bit cleared. Our end of
message marker will be an ASCII End Of Text or $03. Here is a
repeat of the first few locations . .

2300- $41 "A"
2301- $41 "A"
2302- $52 " R "

2303- $44 "D"

2304- $56 "V"
2305- $41 "A"
2306- $52 " R "

2307- $4B "K"

2308- $03 ETX

2309- $42 ,." B"
230A- $55 "U"

230B- $46 "F"
230C- $46 "F"
230d- $41 "A"
230E- $4C "L"

230F- $4F "0"

2310- $03 ETX

You get these ASCII file values from back in Volume 1 or out of
the Hexadecimal Chronicles (Howard W. Sams 21802). We have
shown all capital letters. For lower case letters, you would add $20
for each lower case value desired.

Now, we could access this file directly, starting at $2300 for the
Aardvark message and starting at $2309 for Buffalo and at $2311 for
Camel and so on. But, since the names all have different lengths
and since the starting points are mostly oddball values, it is better to
set up a separate pointer stash.

The pointer stash tells us the starting address of all the animals in
the file from Animal #00 through Animal #OF.

Looking at our pointer stash on the next page, we see that Animal
number 0, the Aardvark, has a pointer value of $00. Animal number
1, the Buffalo, has a pointer value of $09. This pointer tells us to start
at the base address of $2300 plus an index value of $09, or 2309 for a
Buffalo. To print the word Buffalo, we first decide we want Animal
number 1. Then we go into the pointer stash to find the index value
of the start of the message. Then we get the message out starting at
$2309 and continuing till we get a marker.

Here is what the pointer stash and the flowchart for the program
look like .. .

271

272

ANIMALS POINTER STASH

ADDRESS

MAIN

PROGRAM:

ANIMAL
SELECTION

INDEX
POINTER

BASE ADDRESS l.2:z.lp¢1

MESSAGE

ANIMALS FLOWCHARTS:

PRINT

SUBROUTINE:

YES

($2000!

($21 00!

And here is some code . . .

ADDRESS DP CODE BYTE 112 BYTE 113

[
Jf .:Zd "11! Fl.

.:l
,:t, A,
.2. :;s, /1)/!J .:t
.2

-

-

ADDRESS OP CODE BYTE 112 BYTE 113

£E
111J B tfJ/{) 23

ifj3

'7 IIJ.
c

i/il)

:> -

MNEMONIC

l.

1M

MNEMONIC
L
f'M.

'N'

LD
rs.
llTS

ift ANIMALS MAIN
.... PROGRAM

HOW? NOTES
tFUI! Rlf'AI> 1</!,VI>itii

122MJ . "
nur4"r Auutd •

-

ift ANIMALS PRINT
.... SUB

HOW? NOTES
C.,.,..D

.. t,n ANI!'""T"X 1
��"';:; •

·n,:irJ>ur C"""
ITDJN"T"EIIl ... ,

11.-0D c
I.F'IOD " "

AAI.Ii """ Allr.J.-

--

To go with our code, of course, we need a pair of files. These are
the pointer stash and the actual animals file. Here's a repeat of
these in hex dump format .

ANIMALS POINTER STASH

ANIMALS

..._...
LINE LINE ADDRESS PLUS

ADDRESS +00 +01 +02 +03 +04 +05 +06 +07 +01 +09 +OA +08 +ot +OD +OE +Of

2. 3 ¢¢ if 1 4 1 52 1'1 '+ 56 if 1 52 lf.B ¢.3 '12 55 'f6 .tf-6 .tf-1 JIC �� F
2 11¢ ¢ 3lif if 1 LID 45 if c ¢ 3 '+If IfF l.fC 5¢ 'fiB q!} ifE ¢3 '15
2 3 21¢ LfC if5 51¢ 48 l.f l "'E 54 ¢.3 '16 'IF 58 ¢3 'f7 'fE 55 1¢1.3
23 .3¢ Lf 8 5 � if5 'f E 14 1 3/f::J DS '+ 1 LfC If 1 I(?J 3 iiA 1#3
23 1/.f ¢ 'f B 1"1 1 4C 1¢3 '+ B '+ 1 'fE 4 7 #l 52 Fil F¢ 3# Cif C.tf-1
235 'f D Lf 1 103 'fD IfF lfF5 5 3 'f E. :1 'f 74 5"14 E
23 '¢ 'f 7 'f1 l"f c 'f5 1¢.3 IfF l.lf 3 5./f- 'fF 5111) 55 53 I?J 3 51 5:J 5/f
2.� 7¢ 'fiB l'f F If El¢ , r -

273

We see that our main program sits on page $2000, and we have a
text outputting subroutine on page $2100. The pointer stash starts at
$2200, and the main Animals file begins at $2300. You could move
things much closer together, of course, but it is a good idea to keep
file areas larger than you think you'll need and always to start them
on even page boundaries.

Several points here. We are assuming that our MYTH-1 trainer has
an output port or a video display subroutine at location $F900. Any
time we want a character to appear on screen or go out to a printer,
we do a JSR to this location. Your own trainer, of course, will have a
different location that does the same thing. This location receives a
character value in the accumulator, does whatever it has to do to
put it on a screen or out a serial printer line, and then returns to
your calling program.

We read the keypad of our trainer with a subroutine located at
$F67C. This subroutine automatically scans the keyboard until a key
is pressed and then returns with a hexadecimal digit $00 through
$OF in the accumulator. Again, there should be something similar
on your micro. If you would rather input letters, and if your trainer
has a full keyboard, note that subtracting $C1 from high ASCII val
ues gives you an A=O, B=1, C=2, and so on.

Now, you could have read the keypad yourself as part of your
calling program, but if you check into the monitor of almost any
trainer, you will find all sorts of ready to go utility subroutines that
can be adapted to your program ...

Most trainers and all personal computers have
ready-to-go utility subroutines in their monitor
that do all kinds of useful things for you.

USE THEM

And, while you are at it ...

274

DOING IT:

Make a list of all the available utility sub
routines in a micro trainer and personal
computer of your choice.

Then show how you use these utility subs
and how you pass variables to and from
them. What registers are used? What is
destroyed? What ends up where?

Our program is short and simple. We start with a JSR to read the
keypad. The keypad returns with a number 0-F in the accumulator,
but just to be darn sure, we do a range check by ANDing against an
$OF mask. This forces the answer to be in the safe range of the six
teen values of the pointer stash.

Next, we transfer this animal number to the X register and
load the Y register indirectly from the pointer stash at $2200.

This puts the starting index value for any animal into theY regis
ter for us. The LDX,Y indexed command is one of the sneakiest
ones available on the 6502. If your micro can't do this, then get
the index value out of the pointer stash, put it into the accumu
lator, and then move it where you can use it. T A Y ought to be
helpful here.

The animal number goes into the X register and picks a value out
of the pointer stash. The pointer stash value then goes into the Y
register, where it becomes the index value to begin printout of the
actual animal. Thus, you put your keypad value into X and use this
to get Y from the pointer stash. You then use Y to find the start of
the message.

Then we reach into the main animals text file at $2300 plus Y and
get the first character of our animal. We do this with an indexed
"LDA,Y" command that goes to the sum of the base

.
address and

the Y register.
Next, we test to see if this is the last character. If it is not, we

output the character by jumping to the utility subroutine in the
monitor that outputs characters for us.

Again, if it is not the last character in the animal string, we incre
ment Y to tell the index to move on to the next character. Then we
branch back and get the next letter from the file and output it.

We keep reading the file and outputting characters until we get
to an ETX marker. At that time, we stop outputting characters, pro
vide a carriage return, and then jump back to reading the keyboard
agam.

If you press a "0" on the keyboard, you should get an Aardvark on
the screen. A "1" gives you a Buffalo, and so on. This is a random
access file, since you can get any animal in any order by hitting the
numbers at random.

If this was a real part of a real program, the main program might
pick the animal by loading the X register with an animal number.
Then it would jump to a similar message printing subroutine. At the
end of the subroutine, it would return to the main program until it
was time to print another animal.

If your trainer offers absolutely no way to display characters (Not
even a Teletype output? Come on now!), switch to a personal com
puter for this particular discovery module. The Apple II does this
one beautifully, but no, I won't tell you here how to put characters
on the display or read the keyboard. Find it out for yourself. Or

275

check into the Enhancing Your Apple II series, particularly Enhance
ment 3, in Volume 1 (Howard W. Sams 21846).

DOING IT:

Rework your files so that your module
now gives you vegetables instead of ani
mals.

Do NOT make any program changes!

Several points here. First, the NUL, or 00 marker, is easier to use
than the ETX that I've shown, because it is testable "free" with a
BNE branch.

Second, the file values do not have to be in any particular order as
long as each pointer correctly points to the start of its correct text
string. Thus, you can easily add to the end of your file.

Third, note that you can also put prompting or default strings into
your file for easy error checking. Use messages like "Please try
again," or "That's not a letter, Turkey!" Try it.

The hidden nasties in this enhancement include learning new
and powerful indexed instructions or their equivalents, finding out
how to design and use files, discovering how to work with existing
utility subroutines, and picking up some hands-on practice using
the ASCII code.

Should you not want to use pointer stashes, there are lots of alter
nate ways to set up your files. You can stash a number that tells
how long each file is as it comes up. Or, you can put all the files
that are the same length in the same area in memory. Another pos
sibility is to count markers, but this gets old fast and takes forever.
You can even make each file entry a fixed record length and count
records. But this gobbles up memory. You can also shorten long
files into a shorter and separate key, and then mess only with the
key if you need sorts or whatever. This is sometimes called ISAM,
short for the Indexed Sequential Access Method.

getting fancy

So far, we have only looked at the simpler indexed instructions
that are available on the 6502. There are also two very complicated
and very mind-blowing classes of instructions that combine
indexed addressing, page zero addressing, and indirect addressing.
These two instruction classes are the innermost keys to the 6502's
success. Let's see just what they do.

276

The two names are very confusing. One is called indirect indexed
and the other is called indexed indirect. To keep them apart, note
where the word "index" appears in the name and use the terms
"pre-indexed" and "post-indexed" instead . . .

Here's one way to remember which is which .

(ZPAGE,X)

RARE ;
ZPAGE),Y

"""'t WELL DONE

Confusing, no? Let's try the oddball pre-indexed op code first.
Take LOA ($06,X) as an example. Note the parentheses that are
around the whole works. This says we go to the address that is the
sum of $0006 plus the X index value, get what is stored there, and
save that value as an address low or position byte. Then we go on to
the very next location and get and save that value as an address high
or page byte. We then load or store indirect to or from that address.
Adds, subtracts, compares, and logic are also done the same way.

277

What this lets you do is calculate a bunch of address pairs and
then selectively use one of the pairs to find something. This is
handy in processing certain forms of interrupts and has other
sneaky uses. Unfortunately, page zero is usually far too valuable for
space gobbling uses like this. So forget indexed indirect unless you
really want to get into the 6502 in a big way.

But the opposite address mode of indirect indexed, or post
indexed, is so powerful and so useful that you must learn to use it if
you are to become 6502 literate. Say we have a STA (06),Y com
mand. Note the parentheses only around the page zero address.
This says to find the low address in $06 and the high address in $07,
then add the Y value to it, and then store the accumulator in that
location.

What this lets you do is calculate a base address so that one pro
gram can service many different files in many different locations.
This also solves the dilemma of reaching more than 256 bytes at a
time, for all you have to do is increment the base address pair, and
you can continue all the way through the entire 64K address space.

A simpler use for indirect indexed is to let Y = 0. Then you have
faked a load or store indirect, something not otherwise available on
older 6502s. Once again, you can also add, subtract, compare, or do
logic.

Anytime you work with several blocks of files in a 6502 program,
or involve yourself with calculated addresses, you will need the
indirect indexed instruction. So ...

DOING IT:

If your trainer is from the 6502 school,
complete all indexed indirect and all indi
rect indexed cards for those commands
you already know.

If not, complete all cards for all exotic and
powerful address modes useful for work
ing with files. Do cards only for those
commands you already know.

The ultimate test of whether or not you are a 6502 machine lan
guage freak is whether you can understand and use the indirect
indexed or post-indexed addressing mode to its full power. Can you
handle it?

A test .

278

DOING IT:

Create a file several thousand characters
long, made up of the typical adventure
responses such as "The Iron Statue
greedily wolfs down the antique egg
plant."

Then create a pointer file that holds pairs
of absolute addresses that point to the
start of each response.

Then create a "full width" text file access
program that uses the 6502's indirect
indexed commands to exchange an input
message number for an output text
message.

Do this, and you are into the very core of 6502 machine language
programming.

As an example of how to do "double wide" file manipulation, pick
a pair of page zero addresses, say $06 and $07, to hold an indirect
indexed address for you. Go to your pointer file and get your low
starting address and put it in $06. Go to your pointer file again and
get your high starting address and put it in $07. Set the Y register to
#$00. Then do an indirect indexed LOA ($06), Y to get the first char
acter out of your text fi I e. Test each character for a marker. If this
character is not a marker, output the character and increment the
address pair at $06 and $07. Do this by always incrementing $06 and
then incrementing $07 only on a zero result of the $06 increment.

Alternately, you can increment Y for each additional character in
a response, provided that each individual response is less than 256
characters long.

Be sure to reset Y to 00 when you finish.
"Double wide" file maneuvers will start you on any address in

the 64K address space and will output a message of any length.
There is no 256-character file length limit as there was with the ear
lier short file work. Also, you can now use one subroutine to handle
many different files, just by changing the addresses in $06 and $07
to point somewhere in new file.

There are lots of other uses of text files. For instance, you can put
control commands into a text file and use these commands to read
a disk drive, to turn a printer on or off, to change modes of an intel
ligent daisywheel, or to imbed typesetting commands.

279

While there are many different types of files and ways to use
them, if you understand the basic short and long text files, you
should be able to handle anything else in the way of files as the
need arises.

It pays to go out of your way to work files into all of your pro
grams in one way or another. Files are so powerful and so general
and so convenient that they should be one of your main program
ming tools.

INTERRUPTS

Many microcomputer programs simply run on forever, looping to
themselves. Others will do something as a subroutine or as a service
to another program and then return to a main control program or to
an operating system or a system monitor. But sometimes we like to
set up programs so that an outside world event can get their atten
tion.

One common way that an outside world event can get the
microcomputer's attention is with an interrupt . . .

An interrupt is a programming tool that combines hardware and
software to let outside world things "borrow" the microcomputer's
CPU for a while. Normally, one program will be running until it is
interrupted. At that time a new program begins that services the
interrupt. After that service program is finished, the old program
picks up where it left off.

Interrupts differ from subroutines in that a subroutine is code that
is run when called from part of a running program. An interrupt is
code that starts running when an outside world event requests or
demands attention.

As an example of an interrupt, suppose you want to water some
trees for an hour every second day. Now, you could set up a
microcomputer program that runs continuously, patiently waiting
44 hours, outputting a single ON command for six CPU cycles to a
latching solenoid water valve, waiting another four hours, and then
outputting a single OFF command to the same valve, again taking
another six CPU cycles.

This is obviously dumb, because the computer is completely tied
up waiting nearly forever for something that it can handle very
quickly.

280

Instead of going this route, suppose you build an external hard
ware timer. This could be a bits-and-pieces CMOS divider chain, a
single IC real-time clock, or even-heaven forbid-a backgear timing
motor and a microswitch. By using interrupts, the computer can do
many other things until it is time to water. Then the computer gets
interrupted from what it was doing long enough to service the
interrupt and water the trees. It then promptly goes back to what it
was originally up to.

So interrupts are one very efficient way to handle random outside
world events, particularly those that are unpredictable, changing or
don't show up very often.

There are at least three different types of interrupts. These are
called masked interrupts, non-maskable interrupts, and system
resets . . .

Maskable interrupts are the ones most commonly used. With a
maskable interrupt, there will be an interrupt flag that lets you
accept or ignore interrupts. If you decide to accept an interrupt, the
instant the interrupt arrives, the microprocessor finishes the pro
gram instruction it is working on and then shoves enough informa
tion on the stack to remember where it was. The microprocessor
then jumps to a point that services the interrupt. At the end of the
interrupt, a return command unwinds the stack and picks up where
it left off in the main program.

If you ignore the interrupt, you can go on computing as long as
you like. If the interrupt is still there or still trying when you decide
to accept it, you service it at that time. Otherwise, the interrupt gets
ignored. Important maskable interrupts should be hardware latched
to provide handshaking, so they will still be there when you get
around to using them.

281

A non-maskable interrupt cannot be ignored. You must service it
as soon as you can safely stop your program and save some return
information on the stack. Non-maskable interrupts are less com
monly used. Often, the single step and debugger code in a system
monitor will usurp the non-maskable interrupt line on a 6502

trainer, preventing you from conveniently using this line for your
own purposes.

System reset is a special, no-holds-barred interrupt that drops
everything and returns you to an orderly start-up sequence.
Depending on how it is set up, the system reset can put you in the
monitor, into an advanced operating system, or into the correct
starting place in a program of your choice. .

There are two important uses of system reset. The first is to get
the system up and started on the right foot when it is first powered
up. Remember that a microcomputer is always executing some
code somewhere. If that code is random garbage, you get garbage
quality results. System reset bypasses the garbage and gets you
started on the correct program at the correct point.

The second use of system reset is to recover from programs that
have bombed or otherwise gone astray. Some system resets are
"gentle" and try to save as much of your code and program condi
tions as they can. Others are violent and put you back on square
one. Properly designed system reset code should give you the
option of a cold start that sends you back to square one or a warm
start that gently returns control back to .your program for you.

Each micro family has a different approach to how many inter
rupts there are and how they are used. These approaches can often
be classified into one of two possible systems. One system is called
the polled interrupt and the other is the prioritized interrupt . . .

One example of a polled interrupt is that old "stop the train!"
cord .

282

Just as any passenger can pull the emergency stop cord, a polled
interrupt allows any outside world event that needs servicing to get
the CPU's attention. I f there is only one thing in the system that can
interrupt the CPU, then we are home free, for we know what is
doing the interrupting.

On the other hand, if there is more than one possible source of
interrupts, we have to go to some software routine that goes to
each interrupt source in turn and asks that source "Was it you that
wanted attention?" This is called polling, just as a delegation at a
political convention is polled by being asked one at a time what
their vote was.

The actual polling is done by reading bit lines on a port or by
talking directly to a peripheral chip. Details vary with the applica
tion.

Usually, some interrupts will be more important than others.
Some things must be serviced immediately, while others may be
able to wait around for a while. For instance, a "send me more text"
interrupt from a printer can usually be near the bottom of the pile,
because a slight delay in hard copy output probably is no big deal.
To place different values on different polled interrupt sources, you
simply interrogate the most critical lines first and give them top pri
ority.

Polled interrupts can use a hardware idea called daisy chaining to
enforce which interrupt gets serviced first. To do this, a more
important interrupt. will "pull the plug" on lesser ones when it
needs some action. The daisy chain is reconnected after the impor
tant interrupt is serviced. The Apple II has a seldom-used hardware

283

daisy chain on its 1/0 connectors set up so that slot 0 is top dog and
slot 7 is tail-end Charley. Hardware plugged into any slot can break
the part of the chain routed to higher numbered slots, and its own
requests can in turn be broken by lower numbered slots.

The advantage of polled interrupts is that they leave you with
very simple hardware, often only one wire and a single package pin.
The disadvantage is that you have to use software to sort out who is
doing the interrupting if you have more than one possible interrupt
source.

Prioritized interrupts do the opposite. In a prioritized interrupt
system, there are lots of package pins, each of which accepts an
interrupt line. The interrupt lines are given an interrupt priority.
Often, the lower the number, the more important the interrupt.
For instance, a system reset might be put on interrupt line 0 since
a reset normally is the most important possible outside world
event.

The advantage of prioritized interrupts is that each individual
interrupt is ready to go with no additional polling software needed
and the priorities of each interrupt are always known. The disadvan
tage is that this method ties up a lot of hardware and package pins
that can be put to better uses, especially if you are not going to use
lots of interrupts.

Let's look at the difference in connections between polled and
prioritized interrupts. Here is the setup for polled interrupts ...

POLLED INTERRUPTS

HAS ONE COMMON INPUT
LINE FOR ALL INTERRUPTS.

SOFTWARE FINDS INTERRUPT
SOURCE AND CODE.

OFTEN
USED IN 6500 &
6800 SYSTEMS.

And here is how you handle prioritized interrupts .

284

PRIORITIZED INTERRUPTS

HAS MANY INPUT LINES,
ONE FOR EACH INTERRUPT.

HARDWARE FINDS INTERRUPT
CODE.

OFTEN
USED IN 8085 &
Z-80 SYSTEMS.

MANY
INTERRUPT
PINS

The 6502 and 6800 schools tend to use polled interrupts with
their few package pins and use software testing to find an interrupt
source. The 8080 and Z80 schools often add a system chip called an
8259 that gives you eight or more prioritized interrupt lines ready to
go. But note that you can design a 6502 system with prioritized
interrupts, or an 8085 system with polled interrupts, if you want. It's
just not mainstream.

DOING IT:

Find out how many of what type of inter
rupt lines are available on the micropro
cessor of your choice, including their sig
nal polarities, use rules, and address
locations. Then, find out how many inter
rupts are available on the trainer of your
choice, how these lines are used and
addressed.

Note that there is a big difference between the way the micro
processor handles interrupts and the way a complete microcom

puter system handles them. Let's look at a specific example.
On the 6502, there are three interrupt lines that go into the CPU

package-called RST, NMI, and IRQ. All of these lines are normally held
high. To activate them, you briefly bring one line low as needed. For
instance, to do a system reset, you bring the RST line low for a frac
tion of a second. To do a maskable interrupt, you briefly bring the IRQ
line low. To do a non-maskable interrupt, you briefly bring the NMI
line low. Rules and conventions change with other micros.

Here's a diagram of the interrupt pins on the 6502 . . .

285

THERE ARE THREE DIFFERENT

INTERRUPTS ON THE 6502

6502

+5 �

THE I RESET I OR RSf LINE

�mA
TR�H'�����T��G��

FOOT. A LOW ON THIS
LINE FORCES A RESET.
NORMAL OPERATION CONTINUES
WHEN THIS PIN GOES HIGH
AFTER RESET, THE 6502
JUMPS INDIRECTLY TO THE
ADDRESS IN FFFC {LOW) AND
FFFD {HIGH)

4.7K

v

THE I NON-M ASKAB LE INTERRU PT I
OR NMI LINE FORCES AN
INTERRUPT THAT CANNOT
BE IGNORED. ON A + TO
GROUND OR NEGATIVE EDGE
TRANSITION_ THIS LINE IS
BEST PULSED WITH A
SIGNAL THAT IS LOW FOR
10 MICROSECONDS OR SO

AFTER FJMi, THE 6502 JUMPS
INDIRECTLY TO THE ADDRESS

+5 IN FFFA {lOW) AND FFFO {HIGH)

47K

l
THE '"J M-A"" S

_
KA

_
B

-
LE

-
1
-
NT
""

E
-

RR
-
U

-
PT
.,I OR

ii'ili LINE CREATES AN
INTERRUPT THAT CAN BE
IGNORED IF THE I FLAG IS
SET. A LOW LEVEL ON THIS
LINE KEEPS TRYING TO
INTERRUPT UNTIL SERVICED
THE ii'iQ LINE MUST GO BACK
HIGH AGAIN IMMEDIATELY
AFTER THE INTERRUPT IS
RECOGNIZED. AFTER AN ACCEPTED

ii'ili, THE 6502 JUMPS INDIRECTLY
TO THE ADDRESS IN FFFD {LOW)
AND FFFE {HIGH)

The resistor and capacitor on the RST line gives you an automatic
reset interrupt on power-up. When you first apply power, the
capacitor is slow to charge, and the system is held reset until the RST

line goes high enough to release the interrupt. At that point, the
computer starts off on a normal program. Should supply power be
removed, the capacitor quickly discharges through the diode so it is
ready to go on a fresh restart.

The technical details of the 6502's IRQ and NMI differ slightly.
IRQ must be held low till serviced. NMI is edge sensitive, with a
high to low transition, or negative edge, causing a NMI request.
Fine points I ike this, of course, change with each microprocessor.

One important and two-edged rule ...

286

Requests on interrupt lines MUST be short
enough that they do not interrupt themselves or
get serviced more than once!

BUT
Requests on interrupt lines MUST last long
enough that they can be recognized!

Suppose you yank an interrupt line low and hold it low. The com
puter interrupts itself. And then it interrupts the interrupting pro
gram. And the program keeps interrupting itself forever, or at least
till whatever is yanking the interrupt line low goes away. This is
clearly ungood.

Suppose instead that you only briefly pulse the interrupt line low
and your program is presently ignoring interrupts. The interrupt gets
missed. This is also ungood.

How you attack this detail depends on your system, how many
interrupt sources you have, and whether you ever need to tempora
rily prevent interrupts from happening.

For instance, if you are always going to accept interrupts and only
have one interrupt source, you can simply use a brief pulse of ten
microseconds or so to pull the IRQ line low. This always starts your
interrupting program. The first command in the interrupting pro
gram can be a SEI, or set interrupt, which acts as a lockout to pre
vent interrupts for a time that is at least long enough to let the inter
rupt go away. The interrupt flag and mask is later released with a
CLI command.

As a second example, if you have only one interrupt that may
have to wait till you can handle it, you latch a set-reset flip-flop or
some other memory element and hold the interrupt line low till it is
acknowledged. When you acknowledge the interrupt, one of the
first things you do with the interrupt code is unlatch the interrupt
line. This is a typical example of handshaking.

If you have more than one interrupt source and have times when
you don't want to be interrupted, you have to add external hard
ware to keep track of who is on first. Details vary with the system.

We'll see an example of how to handle a single interrupt in our
next discovery module. If you are confused on handling interrupts,
just find some way to obey the rule in the previous box and every
thing should work out correctly.

Note that some microcomputer operations must not be inter
rupted under any circumstances. For instance, an interrupt while
writing to a disk drive can destroy the diskette's contents.

Interrupting any timing loop will lengthen the loop time by the
amount of time needed to service the interrupt. Watch this detail.

What happens on an allowed interrupt?
The CPU first finishes up the instruction it happens to be work

ing on. It then does a jump indirect to an address stored some
where. There is a different address stored somewhere for each
interrupt or reset line that goes into the CPU. Details vary with the
micro family.

On the 6502, there are three interrupts. An NMI or non-maskable
interrupt jumps to the address stored in $FFFA low and $FFFB high.
The RST or reset interrupt jumps to the address stored in FFFC low

287

and FFFD high. Finally, an IRQ or maskable interrupt jumps to an
address held by FFFE low and FFFF high.

Like this ...

6502 CPU INTERRUPT ADDRESSES

NMI- jumps to the address held in FFFA low and
FFFB high.

RST- jumps to the address held in FFFC low and
FFFD high.

IRQ- jumps to the address held in FFFE low and FF.FF
high.

Note that these 6502 locations must be ROM or permanent mem
ory. Reset must know where to reset to, even on a newly powered
system. This is one of the main reasons that 6502 systems put RAM
on the bottom of the address space and ROM on top.

But, still in a 6502 system, you probably will want to change
where your IRQ programs and your NMI programs sit.. To handle
this relocation problem, the monitor or the operating system will
give you a RAM location that you can change. The fixed ROM loca
tion puts you into a monitor routine that does a jump indirect to
the new RAM location. This solves the dilemma of having your
interrupts always at fixed locations and yet fle)<ibly programmable.

Some fancy systems have what they call cold starts and warm

restarts . . .

On a cold start, you go into the monitor or operating system. This
gets you off on the right foot. One of the first things the monitor
does is check some RAM location for some magic value. If that
value is not there, the monitor concludes that this is a cold start and
proceeds from there. The monitor then puts the needed magic
value into the special RAM location. So long as the power stays on

288

and the magic value stays in the RAM location, any future resets will
be warm Testarts.

On a warm restart, you can be returned safely to your program
without dropping into the monitor or operating system.

The locations and rules for interrupts on a microcomputer system
are usually much different from those of a microprocessor's CPU.
For instance, interrupt lines will now be available on pins on expan
sion sockets and connectors. You will also have RAM locations set
aside that let you change the interrupt and reset vectors. This lets
you reset directly to your operating program, rather than the moni
tor, and lets you decide where your interrupt program code is going
to sit. What really happens is that the CPU goes to ROM to find a
fixed monitor location and then does a jump indirect to wherever
your RAM told it to go.

Often on a 6502 system, the RAM addresses needed will also
"just happen" to end in $FA through $FF. Thus, on the KIM-1
trainer, the RAM interrupt vectors sit from $17FA through $17FF,
while on the Apple II, they lie from $03FA through $03FF, in just the
order you would expect.

If your system is not from the 6502 school, the general idea will
be the same but the locations and use rules will change. You might
have many interrupt lines of progressively lower priority. Each of
these will vector via an address stored in ROM to a monitor or other
service program that will then do a jump indirect via some RAM
locations that you can change to go where you want.

If you have more than one interrupt source, note that interrupts
can interrupt other interrupts, and you have to keep track of who is
on first and who just struck out.

In simpler micro systems, you are better off not using interrupts at
all unless they really free up CPU time or solve some other big
problem. A single interrupt is preferable to many, but each system is
different and may take a different approach.

We have already seen how there is a SEI flag that sets the mask to
prevent interrupts in a 6502, and a CLI flag that clears the interrupt
flag or mask to allow interrupts. You should already have these
cards on hand.

Doing an interrupt is more or less automatic and is only slightly
more complicated than using a subroutine. When you service an
interrupt, the CPU has to finish what it is working on and then must
store the return address low and high onto the stack so it knows
how to pick up where it left off. This is the same as the subroutine
jumping process.

But that's not all. An interrupt servicing sequence in the CPU a/so

has to save the processor status or phlag register. By knowing the
stopping address and the condition of all the flags, you are well on

289

your way to picking up exactly where you left off. Should you want
to save the accumulator or other working registers, you can do so
on your own, as the earliest part of the interrupt program code. You
then restore what you saved in reverse order as the final part of the
interrupt code. You can save what you need onto the stack or else
where in system RAM.

Instead of a subroutine return, we now have an interrupt
return . . .

RTI 1 RETURN FROM INTERRUPT I 40

(IMPLIED addressing)
1 Byte 6 Clocks

I RTI I All flags
restored

Stops the interrupt program and returns to the main program by restoring
the program counter and the flags off the stack.

Assume· an interrupt occurred just before instruction $04FS.

$2AA2- 40 Resumes the main program at $04FS with all flags
restored.

Which leads us to an obvious but very important rule . . .

Just as the last instruction in a SUBROUTINE has

to be an

RTS

the last instruction in an INTERRUPT has to be an

RTI

Interrupts don't necessarily have to come from the outside world.
They can also come from add-on cards or from companion periph
eral chips external to your microprocessor, and they can even be
faked by an experienced programmer.

290

For instance, if you add a peripheral chip that has a timer on it,
the timer can demand the CPU's attention whenever it wants to.
This is one very useful way to handle short to medium sized time
delays without tying up your

�
CPU. A real-time clock chip can also

use the interrupt line to demand attention after some time delay.
Real-time clocks more often involve themselves with longer time
delays and events that have to be locked to people-type times or
dates.

Interrupts can also be used to tie two or more micros together
and are one possible way to let several different users take turns
interacting with the same microprocessor system.

Finally, ari experienced programmer·can force a "fake" interrupt
to stop a program somewhere or to debug or test code. This is
called a break. More on this shortly.

But first, let's get some practice using interrupts with our final
discovery module . . .

��'Ie.

DISCOVERY MODULE

®
BURGLAR INTERRUPT

Use interrupts to model a simple burglar
alarm.

The main program is to delay 20 seconds
after starting to simulate letting you leave.

Each grounding of the interrupt line is to �
sound an alarm for five seconds and light
an LED.

�

Anytime you work with interrupts, you must have a main pro
gram and some interrupting code. This is somewhat like using sub
routines, where you put the main code somewhere and some sub
routine code somewhere else.

But, unlike subroutines, the computer has to be told ahead of
time where the interrupt code will be found. The rules will change
with the microprocessor and the microcomputer system, but one of
the first things your main program has to do is teach the computer
where to go if it gets interrupted.

To repeat . . .

291

When you use interrupts, you need code for
the main program and separate code for each
interrupting program.

Your main program also must tell the micro
where to find the start of the interrupting code.

Let's think about our hardware first. We will assume that a
momentary grounding of the interrupt line will trip the alarm. To
get fancy, we will use a green LED, a yellow LED, and a red LED,
along with a small electronic buzzer.

When you first run your program, only the green light should go
on. No alarms should be allowed for the first 20 seconds so that you
can leave the building without tripping the alarm. After the first 20

seconds, the lights should switch to a flashing yellow, meaning the
alarm is armed but not tripped.

If the alarm is tripped, the buzzer should sound for 5 seconds,
and a red LED should be permanently lit. After the 5 seconds, the
red light should stay on, and the flashing yellow should continue. If
the alarm is tripped again, the same action should repeat.

The interface circuit looks like this . . .

292

BURGLAR

INTERRUPT

CIRCUIT

IN IT

AS
INPUTS

I NIT

AS
OUTPUTS

+5 v

�
L£0

+5 V

�
LED

+5 V

�
LEO

+5 V

More details on interface circuits in the next chapter. We use
CMOS inverters here to "amplify" the port signals to make them
"loud" enough to drive the LEOs and the buzzer. Note that the
polarity of the LEOs is critical and you have to provide series current
limiting resistors. The diode around the buzzer prevents spikes and
must point in the "backward" direction shown. The buzzer should
be a small electronic one that works on minimum current. You may
have to parallel two or more CMOS inverters to get enough buzzer
drive.

We will simply touch a grounding wire to the interrupt request
line of our trainer to simulate an alarm trip ...

TRIPPING THE ALARM:

MYTH-1
(Or Other Trainer)

What you do is ground the IRQ pin on the trainer's 1/0 connector
through a small resistor. Briefly touching the resistor to the IRQ pin
should trip the alarm.

Several important points. First, if your trainer does not have a
good ground post or terminal, it is best to provide one. Do this both
for this module and as a convenient place to tie your scope ground.
Second, the actual location of the IRQ pin will, of course, change
with your choice of trainer. Be sure to read the schematic or user's
manual to find the right pin on the correct connector.

Some 44-pin connectors on some trainers are labeled 1 through
22 on one side and A through Z on the other. On the lettered side
of a 22-pin connector, there is no G, I, 0, or Q pin. Note that the
pin on the top of a connector usually has a different signal on it
than the same pin on the bottom. Do not short these out with a clip
lead or you can destroy your trainer!

293

Be sure to keep the resistor leads very short, and be sure never to
ground any connector pin directly.

Hence, this warning . . .

If you use a wire to ground the interrupt line, be
VERY careful not to short any adjacent pins or
traces!

The best place to find the IRQ line is on one of the expansion or
1/0 connectors on the trainer, rather than trying to directly short
the pins at the microprocessor chip.

Depending on where you short pins on a trainer, you can do any
thing from destroying the program to destroying the machine.

Be careful!
We will use a main program starting at $2000, a .Y-seconds delay

subroutine starting at $2100, and our interrupt code that will start at
$2200.

Here is the flowchart for the main program .

BURGLAR INTERRUPT

MAIN FLOWCHART:

294

($2000)

($2100)

And the interrupt code flowchart .

BURGLAR INTERRUPT

IRQ FLOWCHART:

DELAY 5
SECONDS
VIA SUB

DISABLE
INTERRUPT

TURN
BUZZER

OFF

LIGHT RED
+BUZZ

ENABLE
INTERRUPT

($2200)

� I "Y'' DELAY
----- --1 SUB

($2100)

And this is the main program code .

BURGLAR MAIN CODE"

DDRESS OP CODE BYTE #2 BYTE #3 MNEMONIC HOW? NOTES
:2 '"'' St= lnrl.- nur ALAPM
'iji';i' f<' /) � � 'i>nfi>r

T " "
:u.o. ,.1'1 LIJ X!flD C.nDI!f'
l ""' ,;o- ,�,.., <r• " " "

" "
..,.. -= STii � " ,,

LEA fifi 1../&ilr'-' EE
linT C7 MlJ. " .

/../) '"a 1> '""' ::It? .SeCONDS
? ::rs :l ¥

1A joll Lll � .. .6 U'H'""-'T SR££A
!1' CtP r �t>,;il " ,,
� "11' L LU>IV /..

[
� "' 7'iiJ '1>. '.DJI. t>.= �wiu)

q Ei " "
� 1,3' �n ctP •inat " ,,

1.:>, 3 /../)} t;!, �3 I })FLAi 0.3 5B:OAI.D5
" .., >m J. .:!dxl> i/•11 UR '.Y11
G".l) c. 'd) � :crm � I
""

�
� - ..____ -

295

This code starts at location $2000. You will also need a .Y delay
subroutine like we used before, starting at location $2100. Refer
back to Discovery Module 6 for the correct code. Do not forget to
load your main program, your subroutine, and your interrupt code!
Forget any single part and your program bombs for sure.

Our program first initializes itself by ignoring interrupts and by
teaching the CPU where the interrupt code is to begin. We will
assume our imaginary trainer has to have the IRQ interrupt address
stored at $02FE low and $02FF high. This crucial detail will, of
course, change with different trainers.

Initialization continues by teaching a port that it has a green LED
line zero, a yellow LED line one, a red LED line two, and a buzzer
line three. Note that we have no port inputs to this program. We are
going to input an alarm on the interrupt line instead.

The program then turns on the green light and starts a 20-second
delay. We will use the .Y-second time delay to stall for us. Using
both an interrupt and a subroutine in the same program should
clear up the differences between the two, but it does introduce a
very sticky problem, on which we will see more shortly.

After the timeout is complete, the interrupt is enabled, and the
green light is turned off. Next, the program goes into a flashing yel
low mode, and continues this way until interrupted or shut off. We
flash yellow by carefully changing only port line one every 0.3
seconds. We want the yellow to flash regardless of whether the red
trip light is on or off, and we must not change any bit but the yellow
one. The yellow flasher also uses the subroutine for delay values.

Here is the interrupt code ...

BURGLAR INTERRUPT CODE\
ADDRESS DP CODE BYTE #2 BYTE #3 MNEMONIC HOW? NOTES

.:ui!M1 •8 _S€I t.nc.k OUT A LA/l/111

:Z.:l. A' J) r:Jiie J.iGIIT /lEJ) r BUZZ-
.:1:1. ... R. c� :r, cm·R; " " "

2_;1. '"' A .l..ru r:S3;J. .DEUY o
;I ?.�B :z .TS �:liD� VIA SuB'.Y"

3. D, z 0 F

� :1. ' C.IP S' :ct>s; ,, "

J. :u 'L >UIS
::1:2 CLI: AU.oW Jf/c .. M4'1

�· AJUI) ..;o BACk

!1:2/

- -
- - - -

-

An interrupt arrives when the IRQ line is briefly grounded. If the
20-second startup timeout is complete, the microcomputer will
then go to the start of the interrupt code by checking the address in

296

the magic interrupt slots. For our MYTH-1 trainer, the interrupt
checks into slots 02FE and 02FF and finds a $2200 address pair there
that tells us where the interrupt code begins.

The first thing the interrupt code does is set the I flag to prevent
the interrupt from interrupting itself. Then we permanently light a
red LED, and temporarily turn the yellow LED off. We also start the
buzzer buzzing at this time.

After our buzzer starts up, we timeout 5 seconds using the .Y sub
routine, and then shut the buzzer back off. Presumably, you want to
scare the burglar away without buzzing all night. The interrupting
code finally releases the I flag and returns to the main program with
an RTI.

·

After release, the main program resumes what it was doing,
namely flashing the yellow light. In fancier problems, the main pro
gram would most likely go back to doing some other high level task
that might be totally unrelated to the interrupting code.

You start the program by running the main code. Only the green
light should light. Twenty seconds later, green should switch to
flashing yellow. You trip the alarm by momentarily grounding the
IRQ line through the safety resistor. The program is working if alarm
trips are ignored for the first 20 seconds, and then the next trip
should light the red LED and make the buzzer squawk. The buzzer
should sound off for 5 seconds, but the red LED should stay lit. Fur
ther alarm trips should only buzz the buzzer.

Note how the CPU's operation switches automatically from main
code to interrupted code and back again. Note also how either
block of code seems to be free to use a subroutine. See how the
sub automatically returns to whatever called it, while the interrupt
automatically goes back to the main program.

or does it?

Ah, but there's a bug in the works. And not one you could call a
feature either ...

DOING IT:

Replace the LOY # $01 at the end of the
burglar interrupt code with a pair of NOPs
and rerun your program.

The yellow bulb should now stay "stuck"
and refuse to flash until half a minute
after each alarm.

Why?

297

Remember how we said there were local variables and global
variables? If you ever get the two mixed up, you are in deep trouble.
Local variables must be kept local, and global ones must be avail
able at any time for any use without interference.

What happens in the burglar interrupt is that the interrupt code
uses the subroutine for the 5-second buzzer timeout. It exits the
sub with a zero in the Y register.

But the main program might have been using the same subrou
tine at the time it was interrupted. Instead of the 0.3-second yellow
delay, you end up going all the way around and then some, for a
full 25.6 seconds of delay.

Your interrupt has destroyed three values needed by your main
program. These are the number of tenths remaining in theY register
and the two subroutine counter locations INNRLP and OUTRLP. Try
to pick up where you left off and funny things happen.

You must be very careful that interrupts do not change anything
you need your main program . . .

You MUST be VERY CAREFUL that an interrupt's
code does not change or destroy any values
located anywhere that the main program might
need!

In this example, it's the shared subroutine that causes the prob
lem. In other cases, you might be using page zero locations for
some use in the main program and for something else in the sub.
Other times, you will alter registers or flags in an unexpected way.

Here are three possible ways around shared location
problems . . .

WAYS TO KEEP VARIABLES LOCAL

() Keep everything separate
() Save and restore
() Minimize the damage

Keeping everything separate is one sure way to keep local vari
ables truly local and safe. This means that the interrupt code should

298

use its own variables in its own unique locations and should not
change or alter any registers needed by the main program, includ
ing the accumulator. In this module, we could write a separate
delay subroutine, but we would still have a problem with the accu
mulator.

The save and restore technique tells you to save all registers and
variables that you may need somewhere else as the first thing you
do with your interrupt code. It's easiest to shove the accumulator, X,

and Y onto the stack. You can do the same with other variables,
such as INNRLP and OUTRLP, or you can move copies of these to
safe locations.

You should then unwind all the saves and put everything back
where it belongs as the last thing the interrupt code does. Save and
restore is far and away the best possible technique to use. But
there's a time penalty, since extra bytes and clock cycles are needed
to carry out the save and restore process.

Minimizing the damage is a very dangerous technique. The four
things damaged by the subroutine are the accumulator, theY regis
ter, INNRLP, and OUTRLP. These last three aren't damaged by the
main interrupt code, but are damaged by the subroutine the inter
rupt uses, giving the same nasty result.

Since our burglar alarm is a somewhat sloppy use of a micro, we
can let INNRLP and OUTRLP end up too big or too small, and all it
does is give you a slightly longer tenth of a second the first time
back around. But theY value is another matter, since we would get
the full timeout of 25.6 seconds with an interrupt return with a Y
value of zero. So, as a sloppy fix, we reset Y to 0.1, making the first
yellow flash somewhat short and then the rest normal.

And the program seems to work all right with this sneaky two
byte LDY #$01 patch.

But the fact remains that our interrupt has altered four values that
are supposed to be local to the rest of the program.

So . . .

Do NOT minimize damage to "fix" shared varia
ble problems.

All this does is drive the real problems deeper
and makes them vastly harder to find.

Instead . . .

299

DOING IT:

Rewrite the burglar interrupt code to save
and restore the A, Y, INNRLP, and
OUTRLP values.

some further interruptions

It turns out that there are up to five parts to a program that uses
interrupts. Here they all are ...

INTERRUPT PROGRAM PARTS

(1) The main program.
(2) Code early in the main program that connects

the interrupt vectors.
(3) Any subroutines used by the main program.
(4) The interrupting code.
(5) Any subroutines used by the interrupting code.

Needless to say, if you forget to load any one of these parts, your
program will not work. -Be sure to load all parts of a program any
time you use it.

And, if any problems show up, always reload all five parts to
make sure that what you think is in the machine is really there.

If you have several different interrupts, you have to set up some
way to find out who is doing the interrupting. If you have a polled
interrupt system, then you have to start reading some port inputs
somewhere to find out just who is trying to get your attention. In a
prioritized interrupt system, your interrupts will normally arrive on
different package pins, and each will jump to the address you
taught it to go to at the start of your main program.

Want to do more with interrupts? How about this ...

300

DOING IT:

Work out a safe way to interrupt your
computer either 60 or 120 times a second
from a power line reference, using one of
the circuits of the next chapter.

Then show how you can build a light dim
mer, a clock, and an irrigation timer.

To sum up, interrupts are outside world events that demand or
request the computer's attention. Interrupts can in fact be outside
world signals or they can come from peripheral or timer chips, or
even from the programmer for debugging. Important types are the
maskable interrupt, the non-maskable interrupt, and the system
reset.

There are two common ways of handling multiple interrupts that
depend on the microprocessor in use. In a polled interrupt, there is
one interrupt pin, and the interrupts are software checked via port
lines to see who demands attention. In a prioritized interrupt, there
are many hardware input lines and each goes to its own special
address. Each interrupt is vectored to a special address in a special
location that begins the interrupting code. The interrupting code
ends on a Return From Interrupt, or RTI command.

Interrupts are best used where long time delays or random
outside world events must interact with the microcomputer system.
Use of interrupts frees up the microprocessor chip from single
minded tasks of waiting around till something happens.

The hidden nasties in this module involve using interrupts,
telling the difference between interrupts and subroutines, prop
erly initializing "magic" address locations in a system, keeping
variables local, and picking up more practice with simple hard
ware interfacing.

breaks and breakpoints

What could you do if you were able temporarily to force an
interrupt exactly when and where you wanted to in any program?
This would be a very powerful debugging tool, since you could
then stop the program, and check to see what each and every reg
ister and address space location of interest was up to. Single step
ping gets old fast when you have to go through long loops or find
out what is happening well into a program. With this forced inter
rupt, though, you could stop th� program at any place and at any
time.

One way you can do this is to add a fancy address decoder. When
you hit the instruction that contained this address, the output of the
decoder would reach around and trip the interrupt line. You might
interrupt yourself back into the system monitor. You can then go to
special code that does special things for you. You might even exe
cute some custom code, such as a "new" op code, and then pick up
where you left off in your main program.

A fake or programmer-created interrupt is such a needed tool that
just about any microcomputer system will do it for you without any
extra hardware at all. We call this software-driven interrupt a break,
and the place in the code where the break takes place is called a
breakpoint . . .

301

One older use of the word break involves World War II fighter
planes. The command here means to drop what you are doing since
you are about to be shot down. In ham and CB radio communica
tions, the break command means that someone else wants to inter
rupt or break into the conversation.

A break in a computer program means essentially the same. Stop
the program immediately and go to the monitor or some other
interrupting program useful for testing or debugging.

Practically all microcomputers have a special op code to force a
software-driven interrupt. What you do is replace a legal op code
with the break op code. When the microprocessor gets to this point
in a program, it immediately acts as if it were interrupted.

The 6502 break code is a double zero. Like so ...

BRK j FORCE SOFTWARE INTERRUPT I 00

(IMPLIED addressing)
1 Byte 7 Clocks

l aRK I Sets B and I
flags

Forces an interrupt and jumps to the address stored in $FFFE low and
$FFFF high. Sets B and I flags.

Assume $FFFE = $07 and $FFFF = $FE
$2AAA- $00 Forces a software break by jumping to $FE07. Sets B

and I flags.

Now, if you do not have any external interrupts in your system,
BRK will be their only possible source, and you are home free. just
use the IRQ address to point to where you want to go on a break.
Some micros, such as the 6800, keep the BRK and IRQ vectors sepa
rate for you. The 6502 does not.

302

But, what if you do have "real" interrupts in use as well as "fake'
software-driven break interrupts? Each microcomputer has to have
some way to tell the two apart.

On the 6502, the BRK code sets a special flag that is called the B
or Break flag. If you have to, you can read this flag as the first part of
your interrupting code. If it is a "real" interrupt, the break flag is
cleared, and you go on and service the interrupt as it is supposed to
be. If you have more than one "real" interrupt, you then poll by
reading inputs ports lines till you find the culprit. If you have a
"fake" interrupt, the break flag is set, and you can now go on with
your debugging. Other CPUs behave differently.

There is no quick way to read the break flag on the 6502. Instead,
you move the flag register into the accumulator by bouncing it off
the stack with a PHP and PLA command pair. You then do an AND
#$10 to mask out the B flag. A zero result means the break flag was
zero. You only have to go this route if you are trying to tell breaks
from real interrupts.

Another card ...

DOING IT:

If your trainer is from the 6502 school,
complete the BRK card at this time.

If not, complete all cards for all instruc
tions that let you do breakpoints or other
software-driven .debugging aids.

For practice in using breakpoints, replace the first instruction in
the delay loop of Discovery Module 4, the audio tone using a sub
routine, with BRK, and set up the IRQ vectors to point to your mon
itor. Single step the program, and you should enter the monitor
where you used to enter the subroutine loop.

If you want to do something with a breakpoint and then return to
your main code, you will start executing code at the breakpoint plus
two on the 6502. Thus, if you want to continue, the next byte after
a breakpoint is skipped. Watch this detail if you get fancy with your
breakpoints.

One sneaky use for breakpoints lets you add your own custom op
codes to the microprocessor of your choice. What you do is enter a
BRK, followed by two or three code bytes. You teach the micro to
BRK to some code of your own, rather than the system monitor, and
then process the code bytes as needed. For instance, you can add

303

all of the fancy 6809 op codes to the 6502, or provide most any
other "op-code" command you like.

Op code patches like these are sometimes called macros. Macros
work like real op-code instructions but may take more code and
may need much longer to execute.

Be sure to learn how to use breaks and breakpoints since they are
such a powerful and friendly tool. If your trainer is old enough or
cheap enough to lack a single step feature, the breakpoint will be
absolutely essential to debug code. In any trainer or personal com
puter, break debugging is most helpful and very valuable.

what? no math?

We have now gone through nine discovery modules that should
have led you through practically all the op codes of the micro of
your choice. Some of you may have noticed that we did not seem to
pick up much in the way of micro arithmetic along the way. Why
not?

Mostly to drive home the point that math really isn't all that
important for many different microcomputer uses.

Now, if you want to get into a heavy math trip with micros, you
certainly can. Micros offer incredible new vistas for math freaks as
well as powerful and elegant tools for attacking problems. So, have
at it. There is nothing to stop you. But please don't let any personal
math hangups keep you from learning about and understanding
microcomputers.

To review, we've seen that there are four levels of arithmetic nor
mally done with microcomputers. These are the bit level, the word
/eve/, the multi-word level, and the algorithm level.

Bit level math is plain old logic, and we now know how to do
things like AND, OR, and EOR bits together. Word level involves
the addition and subtraction of single 8-bit words to get a 0 to
+ 256 result in straight binary or a -127 to +127 result in 2's comple
ment signed binary.

For more accuracy, we can do addition with pairs or even groups
of words, taking a carry or a borrow from the least significant word
pair and adding or subtracting it to the more significant pair of
words, and so on. This way you can get any amount of precision
you need.

The algorithm level lets you combine the usual addition and sub
traction instructions with shifts, logic, and all the other microcom
puter op codes to get a fancy result. Once again, most micros do
not have any immediate way to multiply, divide, find square roots,
or do trig stuff. Instead, you repeat all the simple op codes over and
over again in a pattern needed to get you a final result.

There are lots of alternatives to brute force machine-level coded
math .

304

ALTERNATIVES TO BRUTE FORCE MATH

() Steal the plans
() Use table lookup
() Use higher level language
() Add dedicated hardware

Almost every ordinary math operation has already been worked
out for most popular microcomputers. Many of your typical pro
gramming books will be very happy to either bore you, confuse
you, or overwhelm you with all the gory details. Public domain pro
gram libraries literally overflow with poor to barely useful ways of
handling nearly any math problem. Many micro magazines will also
cover math programs in depth.

Standard algorithm libraries are expensively available from such
heavies as the ACM and IEEE as well.

So, if your main goal is to get a math result, rather than build
personal skills in mathematical programming, then go steal the
plans from someone else. Then use them. Don't reinvent the wheel.

As to the morality of this, just play fair. Using one source is plagi
arism; two or more is dedicated research. As long as your personal
value added dominates your programs, feel free to adapt and use
the ideas of others. Ideas and concepts are worth a dime a bale in
10-bale lots. It is only the final conversion of ideas into a useful
program or product that is profitable or genuinely useful.

It's not creative unless it sells.
Table lookup is a very powerful way of doing oddball math things

like trig functions, logs, and so on. What you do is use a file to get
immediately from problem to solution. Table lookups are extremely
fast, compared to any method of calculating anything complex. For
instance, say you wanted to plot a circle on a graphics screen. Nor
mally, you will only need 8-bit accuracy for this, since most screens
are less than 256 lines high. So, instead of taking forever while
cal cui ati ng the square-root-of-the-sum-of-the-sine-and-cosine
squares, just look up the values in the table and use them directly.
Then scale the answer to size with a second table lookup that acts
as a multiplier. Some sneaky tricks are needed to cut any tables you
use dqwn to reasonable sizes, but that just adds to the fun.

If your micro has BASIC or another higher level language avail
able, then consider using that high level language to do any of the
fancy math stuff for you. This works out very well if you only need
an occasional calculation and can live with the pitifully slow speed
of high level languages. Sometimes a mix of high level language and
machine language subs will give you the best combination of speed

305

and flexibility. Other times, your machine language programs can
directly borrow the math subroutines from the higher level lan
guage.

Another alternative to math-intensive micro problems is to add
some custom hardware. Two examples. You can add a fast multi
plier chip to do a hardware multiply or divide for you. You could
also add a fancy calculator chip or "math function" integrated cir
cuit and unload the fancy calculations from your micro's CPU.
Check TRW for multipliers, and National, Intel, or AMO for dedi
cated math chips.

Well, we have weasled around on this long enough. It turns out
that there are usually only two micro instructions available that do
arithmetic. These are add and subtract. Both are usually available in
many different address modes.

The add usually works by getting a value from someplace, adding
that value to whatever is already in the accumulator, and putting
the result back into the accumulator. Add instructions are usually
provided with lots of different address modes, so you can either
add an immediate constant value to the accumulator or add any
thing in the address space to the accumulator.

Some micros give you a choice of using or not using the carry flag
with your add commands. If you do not use the carry, there is no
way to extend the addition beyond eight bits, but the carry flag is
not altered, and can be safely used for other things. The 6502 always
uses the carry flag for its addition and subtraction instructions.

Here is a 6502 card for add immediate .

Aoc l ADD VALUE TO ACCUMULATOR I 69

(IMMEDIATE addressing)
2 Bytes 2 Clocks

I ADC #$06 1 C,N,V and Z

flags

Adds the value of the second byte of the instruction to the accumulator
and the carry flag. Then puts the result in the accumulator. The carry flag
sets on a result > 255. N and Z flags work normally. The V flag sets on a
result > 127. Used to add a constant value to the accumulator.

Assume that the accumulator holds an $AE.

2C34- 69 9F Adds $9F to the $AE already in the accumulator, leav-
ing us with $4D in the accumulator, sets C and V flags,
and clears N and Z flags.

306

The add immediate instruction takes what is left in the carry flag
from previous work and adds that to the accumulator. Then it adds
what is in the second instruction byte to the accumulator. Then it
puts the results of this addition back into the accumulator. The N

and Z flags behave in the usual way. The carry flag will set on a
result greater than $FF, and the V flag will set on a result greater
than $7F.

If you are working in straight binary, you can ignore the V flag.
The C flag carry result will be important to you only if you are using
two or more words for "double width" addition. We have already
seen that you must know the state of the carry flag before you
add ...

The state of the carry flag MUST be known
before doing any addition or subtraction!

Usually, you CLEAR the carry flag before you do
an ADDITION.

Usually, you SET the carry flag before you do any
SUBTRACTION.

If you add with the state of the carry flag unknown, you will get
an answer that could be either correct or else high by one. You can
also start adding with a set carry flag and add one less than normal
to get a correct result, but such sneakiness can return to haunt you
later.

The V or oVerflow flag is important only when you are doing 2's
complement signed binary arithmetic, and then only on the most
significant 8-bit word you are using. On an 8-bit add, the V flag will
set on a result greater than 127. Detailed examples of 2's comple
ment arithmetic are shown in Chapter 1 of the 6502 Programming
Manual.

There is also an SBC or SuBtract with Borrow instruction in most
microcomputers. The carry flag is still used, with the usual
assumuption that a set carry is a cleared borrow. This one usually
works by doing an internal 2's complement and then adding. As
long as you are subtracting small numbers from big numbers, and as
long as you expect a positive or zero result, you can subtract in
straight binary the same way you add. It is only when you expect or
need negative results that you have to go to 2's complement signed
binary.

Let's wrap up the cards ...

307

DOING IT:

If your trainer is from the 6502 school,
complete the ADC and SBC cards for all
address modes at this time.

If not, complete all cards for all instruc
tions that do addition or subtraction at
this time.

We are purposely not going into details of double width 2's com
plement arithmetic here. Subtraction is fairly rare in micros. Even
when it is done, it often involves a single 8-bit word and a positive
result.

By the way, the original 6502 does not have a DEA or Decrement
the Accumulator command. Some other micros do. If yours does
not, you can fake a DEA command by doing an SEC and then an
SBC #$01. The result will be one less than what was in the accumu
lator before. Remember that a set carry flag is treated as a cleared
borrow and vice versa.

Unless you have missed a card or two somewhere along the way,
this should have got us through all the instructions for the 6502. In
your particular micro, there may be cards and even address modes
left over.

So . . .

DOING IT:

If your trainer is from the 6502 school,
pick up any cards you may have missed
at this time.

If not, investigate all remaining address
modes and then do all remaining cards.

You should now have a complete set of all cards for your micro
and a complete understanding of how to use each card. You will
probably have discovered by now that the value in the cards is more
in creating them than in using them later. In writing a card by hand,
you are forced to think about exactly what the card does and how it
is used. That, of course, is the whole point in the "those #$!$#

308

cards" method and the secret to thoroughly learning and under
standing machine language programming.

If you want to change microprocessor families, just go back and
repeat everything with a new set of cards of a different color. Once
again, this method works with any microcomputer from any family,
present or future.

As a reminder, our discovery modules aren't true programs, for
there is far more that goes into writing a program than simply
punching some code into the machine. We will find out one good
way to write real programs in Chapter 9. This method is called the
Micro Applications Attack. We'll also find out where to go next.

Lets now put all of our interface and 1/0 stuff together in a big
pile and call it Chapter 8.

�·-·-�·-·-·-·-·-·-·-·-·-·-·-·-·

I .-·-i I j j things they never tell you in computer school i j i ' i i
i I SOME PROGRAM MUSTS ' i • • • • I ,

' What does it take to write and successfully market a software program j I • today? I count eight absolute musts: j •
! f (1) The program MUST run in machine language. j !
I f Check into the "top thirty" listing of any major microcomputer,

1• I I and you'll find programs that run in machine language sweep the •
1 j listings, thirty to zip. This is because machine language is far and f 1• • away the fastest, most powerful, and most flexible way of doing f • I things. BASIC need not apply.

I i ! i (2) The program MUST be written by someone who is a top-notch i • 1 � programmer and knows the application area cold. • 1
• If you are only a programmer, you will write a program that is I • I •

totally worthless when people actually try to use it to solve real- j 1
•

world tasks on their terms. If you are only an expert in your field, i • I j then you will write a program that self-destructs and trips all over
• 1 1 itself. In short, if you have never sharpened a Pulaski, don't try to I • i • write forest fire simulation software. f 1

•1
(3) The program MUST be user friendly. f • 1 This means that an absolutely minimum number of keystrokes are 1 I

e used to do anything and that all commands are in a logical and self- • e

1 consistent order. It means menu-driven programs, or other easy-to- f 1 • use structures that smoothly and swiftly move you from program I •
309

---·-.·---·-·-·-·-·-·-·-·-·-..-·-·-· I .-·-� I i � things they never tell you in computer school i i
i f area to program area. It means talking in English, rather than com- i i • 1 puterese. It means NEVER dropping your user into an operating sys- • I tern, losing a file, or hanging the machine. It means unlocked and j I f readable standard disk codes and formats, easily and conveniently •

I• I available to other programs. User Friendliness means full and total ! 1• f recovery from the dumbest possible inputs entered at the worst I • I possible time. i i ! I (4) The program MUST be unlocked. j • I There are only four things that locking and copy protection does • 1
• I for a program: (1) It hacks off and inconveniences the legitimate ! • I i users of the program; (2) It raises the price of the program; (3) It

! I
•• diverts time and energy that should have been spent improving and ! I• testing the main program . •1 i . and, of course, (4) It very dramatically increases the number of I

·

· �
· bootleg copies of the program in circulation, because of the superb i •I entertainment and unbeatable education that cracking copy pro- j

• tection provides. j • ! (5) The program MUST be fully documented and disclosed. j ! I Decent documentation, including complete source code listings
• 1 1 for all machine language programs, is an absolute must. Users I • •, • demand the absolute and inherent right to modify and adapt a pro- f I gram to suit their needs. They must be provided with all the infor- ! I• mation they can possibly use and then some.

i
•

(6) The program MUST be beta tested. ! • I There is no way that a program can be written by a single author I 1 and immediately marketed. Instead, a large group of knowing but j • •, more or less unbiased outsiders must thoroughly test the program
I I to see what bugs exist in the program and find out how people •

I• outside of the thought patterns of the original author are going to

1·
•

interact with the software. Two beta test methods include trusted

• reviewers and captive clubs. • I (7) The program MUST be well supported. � ! i The program author must be willing and able to directly handle any I program problems that crop up, for at least two years after program

I• release. This means, at the very least, continually monitored tele- i •• phone voice and modem hot lines, along with published upgrade •

•· and update information that is either free or priced at printing and f •1 distribution costs. I • • I (8) The program MUST be fun to use. 1 This is what makes all of CP/M so dreary and so downright awful. i • •1 Remember that EVERYTHING run on a computer is a game. The
• I only d1fference between the Zork and Visica/cadventures IS that '

I• the h1gh score m Visica/c appears m The Wall Street journal' j •
mstead of Softline. A wmning computer program MUST be fun to i �

I• use. Smce the program IS, by defm1t1on, a game, that game must be •

I fun to play and must be winnable. If your users aren't enjoying I
• themselves, all is lost. t I �·�·�·-: I
·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·

310

A

Absolute indirect addressing, 81
Absolute long addressing, 81
Absolute short addressing, 73, 90,

208
Accumulator, 22
Accumulator indirect addressing, 81
ADC card, 300
Address

base, 84, 261
bus, 37, 39
flasher, 319
toggler, 319, 321

Address modes, 10, 63, 86
indexed indirect, 277
indirect indexed, 277

Address space, 10, 15, 20-21
rules, 13

Addressing
absolute indirect, 81
absolute long, 70, 89

commands, 72
absolute short, 73, 90, 208
accumulator indirect, 81
block move, 95
immediate, 68, 88

commands, 69
implied, 65, 87

commands, 66

indexed, 83-86
indirect, 80-81, 92
page zero, 208
register indirect, 81
relative, 76-77, 91

commands, 78
relocatable, 95

Index

Addressing -cont
virtual, 95

AID input converter, 399
multiple slope, 402
types, 401

Algorithm, 304
Amplifiers, circuit level, 373
AND card, 239
Animal project, 269
Apple II, 50, 54, 275, 284, 349
Approximation, 227
Architecture, 31

microcomputer, 32
microprocessor, 32
Von Neumann, 117

Assembler form, 104
Assembly, 146
Audio Tone (Discovery Module 4), 186

B

Barrel shifting, 239
Base address, 84, 261
Baud rates, 363
BIT card, 248
Bit twiddlers, 238
Blocks, data, 115
BNE card, 180
Bottom-up programming, 423
Bounce, 396
Branch, 135
Break, 302
Breakpoint, 302
BRK card, 302
Burglar Interrupt (Discovery Module 9) ,

283

445

Bus
address, 37, 39
control, 41, 43

data, 37-38

lines, 43

multiplexed, 39

Byte
high address (page), 17, 38

low address (position), 17, 38

c

Cards, those #$!$#, 125, 130

ADC, 300
AND, 239

BIT, 248

BNE, 180

BRK, 302

CLC, 178

CMP, 246

DEX, 192

JMP absolute, 136
JSR, 208

LDA, 158, 261

NOP, 135

PHA, 202

ROR, 243
RTI, 290

RTS, 209

STA, 159, 217

TAX, 156

Carry flag, 175

Chips
seri-al 1/0, 365

"more than a port," 368

Circuit level amplifiers, 373

Circuit level interface, 312, 371,

391
Circuits

CMOS, 315, 354

integrated, safety rules, 317

LSTIL, 315, 354
signal levels, 316

CLC, 66
CLC card, 178
Clock

cycle, 168

frequency, 168

CMOS circuits, 315, 354

CMP card, 246
Code

designer friendly, 220

position independent, 79

user friendly, 220

446

Coding, straight line, 187

Cold start, 288
Commands

absolute long addressing, 72

immediate addressing, 69

implied addressing, 66
logic, 238, 242

relative addressing, 78

teaching, 329

Conditional instruction, 136

Control bus, 41, 43

Contact bounce, 396

Converter, AID input, 399

Converter, D/ A, 387

CPU, 34,46

D

D/ A converter, 387
companding, 390

multiplying, 390

Darlington transistors, 377
Data blocks, 115

Date bus, 37-38

Data files, 222
Debouncing, 393

Debugging, 147, 210
Decoding, 44

Decrementing, 192

Delay loop, 188

Delimiter, 267

DEX card, 192

Dice project, 360

Direct 1/0, 14

Disassembly, 146

Discovery Modules, 126, method, 140

1. Tail Byter, 140

2. Figure Eight, 150

3. Square Deal, 155

4. Audio Tone, 186

5. Pitch Reference, 206
6 . . Y Time Delay, 219

7. Nite Lite, 251
8. Text Outenblatter, 257

9. Burglar Interrupt, 283
Dumping, 144

8080, 345

8085, 56

E

8048, lmsai, 53, 59

Electronic hand tools, 109

F

Fancy ports, 327
Figure Eight (Discovery Module 2), 150
File, 115
Files, kinds of, 258

data, 222
random access, 259
sequential access, 259
use hints, 265

Flags, 172
carry, 175
negative, 174-175
6502's, 176-177
zero, 174

Flowchart, 127
Forms

assembler, 104
hex dump, 105, 145
machine language programming, 103
simplified 1/0 diagram, 345, 443

Frequency, 165
clock, 168
units, 165

Frobozz, 115-116

Glomper, 108
Grabber, 108

Halt, 43

G

H

Hand tools, electronic, 109
Handshaking, 281, 287, 399-341
Hex dump forms, 105, 145
HP 5036, 345

If instruction, 180, 185
Immediate addressing, 68, 69, 88
Implied addressing, 65, 66, 87
lmsai 8048, 53, 59
Incrementing, 192
Index value, 84, 261
Indexed addressing; 83-85, 93
Indexed indirect address mode, 277
Indexed sequential access method,

276
Indirect addressing, 80-81, 92

Indirect indexed address mode, 277
Initialization, 161, 296, 327, 344
Input conditioning, 392, 396
Instruction

conditional, 136
machine, 115
unconditional, 136

Instruction times, 169
Integrated circuit safety rules, 317
Integrated circuit signal levels, 315
Intel 8212, 335-339
Interface, 311

circuit level, 312, 371, 391
input and output, 366
micro level, 313, 314
people level, 313
system level, 313

Interrupt, 43, 280
addresses (6502), 288
masked, 281
non-maskable, 281
polled, 282, 284
prioritized, 282, 285
program parts, 300

1/0

diagram, simplified, 345, 443
direct, 14
memory mapped, 14

JSR card, 208
jump, 135
JMP absolute card, 136

K

Keyboard, scanning, 353

L

LAN controllers, 369
LDA card, 158, 261
Listener probe, 195
Listing, 144
Load, 156
Logic analysis, 153
Logic commands, 238, 242
Loop, 188

delay, 188
use rules, 189
within loop, 220

447

LSTTL circuits, 315, 354

M

Machine language programming, 114
form, 103

Marker, 267
Masked interrupt, 281
Memory map, 32

detailed, 48, 54
simplified, 48

Memory mapped 110, 14
Menu driven program, 121-122
Micro Applications Attack, 407-422
Micro level interface, 312, 314
Micro toolkit, 99
Mnemonic, 132
Modules, Discovery, :126, 140, 150, 155,

186, 206, 219, 251, 257, 283
Move, 156
Multiplexed bus, 39
MYTH-1 discovery trainer, 126

N

Negative flag, 174-175
Nesting, 190
Nite Lite (Discovery Module 7), 251
Non-maskable interrupt, 281
NOP, 130
NOP card, 134
NPN transistors, 376
Numeric analysis, 230

0

Op code, 131
Open collector outputs, 370-371
Operand, 132

symbols, 132
Optocoupler, 383, 394
OR instructions, 241
Oscilloscope, 107, 163
Output conditioning, 392, 3%
Output isolation, 383
Outputs, open collector, 370-371

p

Page zero addressing, 208
Parallel ports, 312, 325, 329

448

Passing variables, 231
People level interface, 313
PHA card, 202
Phlag register, 173
Pipelining, 71, 137
Pitch Reference (Discovery Module 5),

206
Pointer, 25
Pointer, stack, 28, 204
Pointer stash, 271
Polled interrupt, 282
Ports

input and output, 325
latched output, 333
parallel, 313, 325, 329
serial, 312, 325, 362
simple and fancy, 327

Port lines, minimizing, 352
Position independent code, 79
Processor status register, 173
Prioritized interrupt, 282, 285
Program, 115, 120

blowups, 123
counter, 27
form rules, 141
menu driven, 121-122

Programmer's model, 32, 55
Programming

bottom-up, 423
machine language, 114
stickiest box, 415, 423
top-down, 423

Protecting diode, 379
Protocol, 339
Popping, 203
Pulling, 203
Pushing, 203

Q

Q option, 190

R

RAM, 14
Random access file, 259
Reading, 12
Re-entrant code, 208
Register indirect addressing, 81
Relative addressing, 76-77, 78, 91
Relative branch timing, 184
Relative branch value, 181

block counting method, 182-183

Relative branch value-cont
official math freak method, 184

Resolution, 388
Resource sheet, 97
ROM, 14
ROR card, 243
RTI card, 290
RTS card, 209
Registers, types of, 21

address, 26
data direction, 344
flag, 29
index, 23
phlag, 173
processor status, 173

Registers, working, 10, 20-21

s

Scanning keyboard, 353
Schmidt triggers, 397-398
Serial 1/0 chips, 365
Serial ports, 312, 325, 362
Sequential access file, 259
Settling time, 388
Setup time, 334-335
Sideways shovers, 238, 245
Signetics 490, 381
Simple ports, 327
Simplified 1/0 diagram, 345

form, 443
Single stepping, 147
6551, 366
6800, 58
6502, 57, 114, 168, 288
6530, 348, 368
6522, 342-345, 348, 351
Sneak path, 357
Soft switch, 179, 319, 322
Spike protector, 378
Sprague 2813, 381
Square Deal (Discovery Module 3), 155
STA card, 159, 217
Stack, 198

use rules, 200
Stack pointer, 28, 204
Start, cold, 288
Stash, 115
Stickiest box programming, 423
Store, 156
Straight line coding, 187
Subroutine, 206

uses, 207
Subroutines, utility, 274

SYM-1, 51, 347
System level interface, 313
System reset, 281

T

Tail Byter (Discovery Module 1), 140
Task times, 169
TAX card, 156
Teaching commands, 329
Testers, 238
Text compression, 268
Text Outenblatter (Discovery Module 8),

257
Time measurements, 166
Time multiplexing, 357
Time period, 165
Toolkit, micro, 99

Top-down programming, 423
Trainers, 101

MYTH-1, 126
Transfer, 156
Trap, 137
Triac, 385
Tri-state drivers, 331

u

Unconditional instruction, 136

Value, index, 261
Variables

global, 233
local, 233, 298
passing, 231

rules, 232

v

Von Neumann, 117

w

Warm restart, 288
Working registers, 10, 20-21
Writing, 12

X

X-Y matrix circuits, 357

449

y z

.Y Time Delay (Discovery Module 6), 219 Z-80, 52, 97

Zero flag, 174

450

don 2
Typewritten Text

don 2
Typewritten Text

don 2
Typewritten Text

don 2
Typewritten Text

don 2
Typewritten Text

don 2
Typewritten Text

don 2
Typewritten Text

don 2
Typewritten Text

don 2
Typewritten Text

don 2
Typewritten Text

don 2
Typewritten Text
This book continues as...< http://www.tinaja.com//ebooks/MLP2cb.pdf >

don 2
Typewritten Text

don 2
Typewritten Text

don 2
Typewritten Text

don 2
Typewritten Text

-

-

-

• Start with the concepts of addressing and address space.

• Work your way up to microcomputer architecture addressing

modes and become familiar with a toolkit you will need for

machine language programming.

• Do actual programming on nine discovery modules by using

the "those #$!$# cards" method.

• Get a detailed look at input/ output.

• Solve real world shirtsleeve problems In the micro appllcatlor

attack.

• Obtain Ideas that you can Immediately put to creative and

profitable use from the collection of 63 new and exciting

possible microcomputer applications.

SYtiERGETICS SP PRESS

3860 West First Street, Thatcher, AZ 85552 USA
(928) 428-4073 http:/ /www.tinaja.com

-

-

