
PostScript -as -Language
Runtime Speedup Tricks

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2003 as GuruGram #16
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

The first few cuts of our Swings & Tilts utility in GuruGram #15 ran kinda slow,
and it did take me several more passes to get it up to reasonable speed. What I
thought I’d do here is review some of the methods you can use to optimize your
PostScript-as-Language runtime speeds.

We’ll first note that too much speed optimization may lead to code that is longer,
more obtuse, harder to maintain, and less tutorial. So a balance between speed
and usability is often best. PostScript has gotten amazingly fast over the years.
Consistent with what is possible within the limits of a batch-oriented interpreted
higher level language. Here are some items to consider when optimizing your
code for fastest runtime speed…

Write your own code — Most commercial packages that generate PostScript code
write sequences that are ridiculously long and execute way too slowly. Your own
"bare metal" hand coding can eliminate anything unnecessary and should run ten
to a hundred times faster. My Gonzo Utilities are one route towards fast and
efficient high performance routines.

Get your code working first — The first cut of any program can always have its
speed improved, so don’t worry too much about optimizing speed early in the
game, Use a two-step process where you first get your code to do exactly what
you ask of it. Then go back through and clean up any speed issues.

Use a fast machine and the latest version Distiller — PostScript-as-Language
code will obviously execute faster on a new 4 GigaHertz computer than on an
older 50 MegaHertz one. Especially if the latter does not include a decent math
coprocessor. The latest Acrobat Distiller versions have gotten stunningly fast.

Use print to disk — The standard way of capturing and evaluating slow PostScript
code is to do a print to disk and then inspect your results as an ordinary ASCII
textfile. The code can then be analyzed for any excesses, redundancies, or speed
limitations. But note that certain newer Acrobat features such as transparency
have no direct PostScript equivalent and thus lead to large and slow code.

—1—

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/psutils/swingt01.psl
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp#gonzo
http://www.adobe.com
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/glib/pstrans.pdf
http://www.tinaja.com/post01.asp

Don’t Sweat mul or div — At one time, more complex math functions were quite
slow, but these days with a modern math coprocessor, the PS mul multiply or div
divide operations usually run just as fast as ordinary addition or subtraction. Even
trig functions such as a cos cosine calculation will only take four or so times
longer. Allow a microsecond or two per trig function.

Bound and Determined — Your first and foremost speedup trick is to use the
PostScript bind operator. Simply place a bind before each major def. This tightly
links variables to their values and eliminates a lookup step. Binding typically
speeds you up by fifteen to twenty percent. But may not always be appropriate.

Measure program speed — The PostScript usertime operator measures and
records one millisecond ticks. Longer times may be evaluated by repeated use.
Here are some handy procs from my gonzo utilities…

/starttimer {usertime /mytimenow exch def} def
/stoptimer {usertime mytimenow sub /mytime exch mytime
 add def} def
/resettimer {/mytime 0 def} def
/reporttimer {mytime 1000 div (\rElapsed time:) print 20
 string cvs print (seconds.\r) print flush} def

/stopwatchon {resettimer starttimer} def
/stopwatchoff {stoptimer reporttimer} def

Normally, you just put a stopwatchon at the beginning of what you want to time
and a self-reporting stopwatchoff at the end.

Big lumps first — Your first speedup goal is to measure how much time you are
spending in each activity. Normally, the innermost code loops will dominate since
they tend to execute much more often. Obviously, your first efforts at speedup
are best spent in those areas that are using up the most time.

Try null differencing — Sometimes it is tricky to measure a complex inner loop of
major code. A sneaky way around this is to measure your total program time,
then comment out the inner loop and measure again. The difference between
the two should be your inner loop time. Repeated differencing can then get your
total time budget for typical program operation.

Measure proc speeds — Individual PostScript commands or small procs will
execute much faster than a millisecond and thus give you a usertime value of
zero. Instead, measure the time of one million procs at once…

stopwatchon
1000000 { your_proc_here } repeat
stopwatchoff

—2—

http://www.tinaja.com/post01.asp#gonzo

Select store instead of def — The PostScript def command always assigns new
vm resources, where store writes over previously assigned values. Stores thus can
be far more compact and efficient.

Stuff the stack — PostScript stack operations are self-addressing and the fastest
available. Creative use of dup, copy, index, exch, and roll are often the secret to
tight code. The more you can do with the stack, and the deeper you can load it,
the faster your results will often be.

But watch for excessive exch — The exch command is certainly among the most
versatile and fastest in PostScript. But too many of them in the innermost tight
portions of your code strongly suggest that you need to rearrange things or
earlier preload other items on your stack. Ferinstance, a /cx exch def can
sometimes get its exch eliminated by a previous /cx stack entry.

Reuse strings — Predefine a workstring or two and reuse them over and over
again, rather than creating a new string for each and every use instance. But be
sure to apply the new string content immediately, or it might change rather
unexpectedly later in your routine. Note that strings are not protected by the
usual saves and restores.

Use table lookups — A key rule is to never calculate anything you already know
the answer to. Table lookups are one of the greatest and least appreciated routes
towards fast code. With a table lookup, you simply go get the answer, rather than
spending a lot of time calculating it. Here is an Elegantly Simple example where a
PostScript lookup table fakes the case command of other languages…

{ {proc0} {proc1} {proc2} {defaultexit} } exch get exec

Entering with a number 0, 1, 2, or 3 does proc0, proc1, proc2, or defaultexit
without having to test for each selected value. As a fancier example, very complex
bicubic basis functions are needed for pixel interpolation. Instead of calculating
them over and over again, you simply look up the results…

/b1 [1.000 0.999 0.998 0.992 0.979 0.954 0.916 0.863 0.795
0.715 0.625 0.529 0.432 0.338 0.252 0.176 0.113 0.064 0.028
0.007 0.000] store

You can inspect SWINGT01.PSL as a detailed use example. This code is discussed
in depth at GuruGram #15.

Table lookups can either be downloaded or calculated early in the program.
On-the-fly table building makes sense so long as the build time is much less than
the use time saved. While table sizes of a few hundred bytes are the norm, very
large lookup tables can sometimes be used to advantage. Tables are often best as
one-dimensional arrays.

—3—

http://www.tinaja.com/glib/elesimp.pdf
http://www.tinaja.com/glib/basis.pdf
http://www.tinaja.com/psutils/swingt01.psl
http://www.tinaja.com/gurgrm01.asp

Minimize disk reads and writes — The PostScript disk access operators quite
useful but rather slow. If you are going to need thousands or millions of disk reads
or writes, consider using the writestring and readstring operators to create long
buffer strings. Use of put and get on those buffers can be much faster. Especially
when processing, say, an entire scan line of pixels.

Watch those "==" and flush instructions — It is certainly a good idea to report
lots of results often to your log files. But the flush operator can be exceptionally
slow, and it is needed by == or anytime you want an immediate text output.
Here’s an outer loop "still busy" status reporter that adds little overhead time…

dup 24 mod 0 eq {(.) print flush} if % for count on stack

Use Conditionals with care — The PostScript if and ifelse statements execute
rather slowly, so you often will want to avoid any and all unnecessary testing.
Sometimes and or or Booleans can be successfully used to reduce multiple tests to
a single one. Other times, rethinking of an algorithm can let one test do the work
of two. Or place one inside the other.

Calculate changes only — If you are making very complex calculations and only a
small part of the calculation changes each time, consider saving old results and
recalculating only the changes. This dramatically sped up my Magic Sinewave
research. Sometimes derivatives or differentials can also be used to quickly find
a neighboring value. This is an advanced concept I’d be glad to help you with per
our Consulting Services.

Be aware of Garbage Collection — Earlier PostScipt code had a disconcerting
habit of stopping every now and then to do vm cleanup housekeeping. Which
could add mysterious and erratic long delays to your processing time. One
obvious precaution is to shut down other host programs when running Distiller.
A second defense is to avoid excess buildup of abandoned strings, defs, variables,
saves/restores, and whatever in your code development. And a third is to be
aware of the vmreclaim command and its use. As detailed in the PostScript Level
II Reference Manual and the PostScript Level III Reference Manual.

Some random tips — Minimize the total number of variables. Do as much as you
can directly on the stack. Don’t sweat exact name lengths or definition sequences
as these do not seem to consistently save you a lot of speed. It’s usually better to
keep names informative rather than ultra short. Use "linear" coding instead of
nesting "subroutine" proc after proc after proc. But it is probably a good idea to
keep your main code loop clean, calling only a few key detail procs as needed.
Consider glyph, font, or Xobject tricks where you need to reuse a complex but
small image. Debugging is often enormously helped by purposely introducing a
zorch "stop here" error. Test and measure continuously. For "obvious" speedup
tricks may in fact end up slower than you’d first expect.

—4—

http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/post01.asp
http://partners.adobe.com/asn/developer/pdfs/tn/psrefman.pdf
http://partners.adobe.com/asn/developer/pdfs/tn/psrefman.pdf
http://partners.adobe.com/asn/developer/pdfs/tn/PLRM.pdf

Think outside the box — If things are still too slow, perhaps a radical new
algorithm would be better. Maybe parallel processing on several machines at
once (this works like a champ on my Magic Sinewaves.) Or, in the case of those
Uh-compared to what? situations, running overnight, or on a secondary machine,
or during lunch can be effective.

In several instances, I’ve successfully used easy, powerful, and convenient
interpreted PostScript-as-Language for all of my early development work and later
switched to another language for the final out-the-door product. I’ve even used
PostScript to automatically write JavaScript programs! Or even to create a
Custom Robotic Languages.

For Further Help

Additional background along with related utilities and tutorials appears on our
GuruGram, PostScript, Acrobat, and Fonts & Bitmaps library pages.

Consulting assistance on any and all of these and related topics can be found at
http://www.tinaja.com/info01.asp. As can our speed analysis services.

Additional GuruGrams await your ongoing support as a Synergetics Partner.

—5—

http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/flut01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/aafont01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

