
More Fun With Fields:
Simplification by Rebounding

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2004 as GuruGram #43
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Back in GuruGram #39, we looked at Fun With Fields and found out how the
PostScript computer language greatly simplified the understanding, analysis, and
visualization of field problems. This was followed up by GuruGram #41 on Array
to Image Conversion that gave us further speedups and simplifications.

We saw that there was a property of fields called the Laplacian that determines
exactly how your field is going to behave. A zero Laplacian is the simplest form
and applies to much of electrostatics, electrical currents, temperature gradients,
magnetics and noncompressible fluids.

One way to solve a zero Laplacian is to make some guesses and then set your
boundary conditions. Followed by simply averaging each field point value with
its four nearest neighbors. After repeating the process many hundreds to many
thousands of times, an accurate field image should result.

The only little problem with the Laplacian averaging scheme is that it gets ugly
for real world geometries. Especially when rectangular, irregular, and circular
boundaries are all involved. I’d like to introduce a possibly new (and definitely
heretical) method of Laplacian solution that avoids all of the exotic math.

I call this my rebounding method.

With rebounding, you always do your Laplacian averaging in a simple square or
rectangular array. You then reenter your boundary conditions BEFORE each
repeated averaging!

After a few hundred to a few thousand passes, your field will be a mix of useful
and useless solution areas. You then do an image conversion and throw away all
of the useless stuff with a proper choice of clipping paths. The big advantage is
that simple PostScript graphic procs can replace extremely complicated and
subtle coordinate transformations, complex trig, or otherwise messy math.

Like so…

— 43.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/funfield.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/psar2img.pdf
http://www.tinaja.com/glib/psar2img.pdf
http://www.tinaja.com/post01.asp

The REBOUNDING METHOD of zero Laplacian solution:

 1. Do your repeated field averaging over a simple square.

 2. Re-enter boundary conditions BEFORE each averaging.

 3. Throw away unwanted areas by image clipping.

Yeah, that’s going to slow us down a little. But you can still get useful results in
tens of seconds and precision results in a few minutes. And completely eliminate
nearly all of the messy field math in the process.

There are at least two usable methods of reentering your boundary conditions
into your field data array. These are the direct method and the infill method.

The direct method is useful for horizontal or vertical boundaries. In which you
simply replace any possibly changed array values with their boundary defaults.

The infill method is named after the enigmatic and obscure PostScript infill
operator. You create a PostScript graphic proc the same size as your array. You
then use the infill (or possibly the ineofill) operator to see which array elements
are to be reset to their boundary conditions.

For instance, you could create a fixed boundary circle and then "implant" that
circle into your array. And automatically determine which field array points are
inside or outside of that circle. Using ZERO math!

Now, the inside points of our circle will be dead wrong, but it will be only the
bounding edge that we are concerned with. We’ll later throw away all of the bad
stuff with clipping paths on the final image.

The infill method is much slower than the direct method, so you should reserve it
for times when the field points to be rebound aren’t in single rows or columns.

Some Code

Before we look at three real-world rebounding examples, let’s pick up some of our
needed PostScript code. Here is a field array generator…

/initfield {/mtval exch store % save empty value
 /ccc exch store % save number of columns
 /rrr exch store % save number of rows
 mark rrr {mark % start for rrr arrays
 ccc {mtval} repeat % place ccc data values each
] } repeat]
 /field exch store } store

— 43.2 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp

A 40,000 point array field can be set up as 200 row subarrays of 200 column data
points each. This seems about right for many uses. initfield can be called with the
number of rows, the number of columns, and the empty data value on the stack.

We have been using data value reals from 0 to 1000 with 500 being a mid value.
They become blue=0, green=500, and red=1000 in the final images.

Here’s a quadaverage routine to replace every internal point in a square or
rectangular field with the average of its nearest four neighbors…

/quadaverage {

 1 1 field length 2 sub { % for each column
 /hhh exch store

 1 1 field 0 get length 2 sub { % for each row
 /vvv exch store

 field hhh get vvv 1 add get % two vertical points
 field hhh get vvv 1 sub get add

 field hhh 1 sub get vvv get % two horizontal pts
 field hhh 1 add get vvv get add

 add 4 div % new average
 field hhh get exch vvv exch put % and replace

 } for } for } bind def % complete loops

Note that the field edges do not change, so you should only need to set their
boundary values once. It is only the internal values that may need rebounding.

We’ll shortly see several examples of direct method rebounding. Here is one
possible infill rebounder…

/resetbound {gsave /boundval exch % save boundary value
 store newpath exec % execute 1:1 fill proc
 0 1 field 0 get length 1 sub { % for each element
 0.5 add /curvpos exch store % center samples
 0 1 field length 1 sub { % for each column
 0.5 add /curhpos exch store % center samples

 curvpos curhpos infill % is rebound needed?
 { field curvpos get % yes, reset value
 curhpos boundval put
 } if
 } for} for grestore} def

— 43.3 —

Note that the PostScript proc must have the same number of horizontal and
vertical pixels as there are array-of-arrays elements. Note further that each field
value is offset slightly by 0.5,0.5 to center each point on its respective pixel.

Depending on the field complexity, several resetbound passes may be needed.
The infill and direct methods can be combined to cover different array points.

These routines can be found ready-to-use in REBOUND1.PSL, BUSONLY.PSL, and
elsewhere on my website.

Several Earlier Procs

Before continuing, let’s reshow and update some utilities from the two earlier
GuruGrams. Here’s a hue to RGB converter and its supporting procs…

/plotsat 0.8 store % color saturation 1=full
/plotbrt 1.0 store % color brightness 1=full

/bkg {1 plotsat sub} store
/upset { 1 bkg sub % available total sat shift
 &cwt mul % the desired shift
 bkg add} store % plus the background
/downset { 1 bkg sub % available total sat shift
 1 &cwt sub mul % the desired shift
 bkg add} store % plus the background

/huetorgb {dup /currenttint % save currenttint
 exch store 5.999
 mul dup floor cvi
 /&cbar exch store % save case 0-5
 &cbar floor sub % save posn into case
 /&cwt exch store

 [% array of case cases
 { 1 upset bkg} % red dominant 0 to .166
 { downset 1 bkg} % green dominant .166 to .333
 { bkg 1 upset} % green dominant .333 to .500
 { bkg downset 1} % blue dominant .500 to .666
 { upset bkg 1} % blue dominant .666 to .833
 { 1 bkg downset} % red dominant.833 to .999
] &cbar get exec % exec selected case

255 mul plotbrt mul cvi /curblue exch store
255 mul plotbrt mul cvi /curgreen exch store
255 mul plotbrt mul cvi /curred exch store

curred curgreen curblue} def

— 43.4 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/rebound1.psl
http://www.tinaja.com/psutils/busonly.psl
http://www.tinaja.com
http://www.tinaja.com/gurgrm01.asp

And here is our disgustingly elegant array-to-string converter…

 /makestring {dup length string dup /NullEncode filter
 3 -1 roll {1 index exch write} forall pop} def

And our field2image converter that converts a by-columns array of arrays into a
series of row strings as requested by an image proc…

/field2image { mark % start row array
 0 1 field length 1 sub % get row voltage values
 {/fcol exch store
 field fcol get
 arraycount get} for
] % complete voltage row array

 /arraycount arraycount % advance pointer
 1 add store

 mark % start scaled hue array
 exch {1000 sub abs 1667 % 1000=red 0.000 0=blue 0.667
 div huetorgb } forall] % and complete

 makestring } store % and convert to string

And fieldasimage that converts a by-columns array of arrays into an image for
compact storage and fast display…

/fieldasimage {
 << % begin RGB image dictionary
 /arraycount 0 store % new row string counter

 /ImageType 1 % usual image stuff
 /Width imgwide
 /Height imghi
 /BitsPerComponent 8
 /MultipleDataSources false
 /Interpolate false
 /Decode [0 1 0 1 0 1]
 /ImageMatrix % work UP from bottom
 [imghi 0 0 imghi 0 0]
 /DataSource % MUST be deferred!!! proc
 {field2image}
>>
 image } store

— 43.5 —

Variable /imghi is the array height as found by /imgwide {field length} store.
Similarly, variable imghi is the array width defined by /imghi {field 0 get length}
store.

Finally, here is fieldplot that positions and draws a field image at a specified page
location…

/fieldplot {
 /DeviceRGB setcolorspace % set color mode

 gsave translate % position on page
 imghi dup scale % scale to size
 fieldasimage % place image
 grestore} store

So what good is all this stuff? Lets look at three real-world examples…

Example #1 — A Printed Circuit Trace Sharp Corner

What kind of trouble can you get into by using pretty square corners on higher
power printed circuit traces? Let’s start with our answer and work our way back to
how we can use rebounding to get there…

We can immediately see that the current density at the inside corner is three or
more times higher than normal! And that this can cause excessive heating at
higher current levels. Thus, all of those pretty square edges can easily cause you
bunches of grief. To make your current density more uniform, do a 45 degree
break at each corner, or use rounded edges instead.

— 43.6 —

We start our field plot off with an array of 200 column arrays of 200 data points
each. Our outside edges will not change during averaging, so we can enter them
just once as…

/settop {0 1 199 {field exch get 199 1000 put} for} store

/setright {field 199 mark 200 {1000} repeat] put} store

/setleft {/val 0 store 100 1 199 {field 0 get exch val put
 /val val 10 add store} for

/setbot {/val 0 store 100 1 199 {field exch get 0 val put
 /val val 10 add store} for

Since everything is horizontal or vertical, we can use the faster and simpler direct
rebounding. The left-of-center row and the bottom-of-center edge boundaries
will change with averaging and must be reentered before each averaging…

/setwest {0 1 100 {field exch get 100 0 put} for} store

/setsouth {0 1 100 {field 100 get exch 0 put} for} store

Here is the code that does the averaging and rebounding…

/pccornerfield {200 200 500 % create 200 x 200 green field
 initfield
 settop setright setleft % set initial boundary conditions
 setbot setwest setsouth

 numrebounds {setwest % repeat rebounds & averages
 setsouth quadaverage
 field 120 get 120 get == % optional progress reporter
 } repeat

 gsave pccornerclip % clip to useful portion
 closepath gsave eoclip
 gsave 0 0 fieldplot % plot the useful field
 grestore grestore stroke % stroke outline
 grestore} store

numrebounds determines the number of averages taken. About 2500 gives useful
results in this example. You can watch the optional progress reporter till nothing
changes much. Curiously, in this example, the values first go down and then
slightly back up again as the more distant precincts eventually report in.

— 43.7 —

And here is the sneaky clipping that uses my Gonzo Utilities to chop out the
unneeded (and wrong) southwest corner…

/pccornerclip {0 100 mt 100 pu 200 pr 200 pd
 100 pl 100 pu 100 pl} store

Equipotential and gradient lines can easily be added to these plots by using the
techniques of FUNFIELD.PDF. I’ve left them off here for clarity.

Example #2 — A Busbar Mounting Hole

Traditional field solutions quickly get messy if you have rectangular and circular
areas involved at the same time. Such as this busbar with a mounting hole in it…

Here are the direct boundaries…

/setleft {/val 0 store 50 1 150 {field 0 get exch val put
 /val val 10 add store} for} store

/setright {/val 0 store 50 1 150 {field 199 get exch val put
 /val val 10 add store} for} store

/settop {0 1 199 {field exch get 150 1000 put} for } store
/setbot {0 1 199 {field exch get 50 0 put} for } store

setleft and setright need entered only once, while settop and setbot will have to
be rebounded before each repeat averaging.

Here is our circular infill boundary…

/cencirc {newpath 100 100 35 0 360 arc} store

Here is the code that does the averaging and rebounding…

— 43.8 —

http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/glib/funfield.pdf

/busbarfield {200 200 500 % create 200 x 200 green field
 initfield
 setleft setright settop % set initial boundary conditions
 setbot {cencirc} % using both direct and infill
 500 resetbound

 numrebounds {settop % repeat rebounds & averages
 setbot {cencirc} 500
 resetbound quadaverage
 field 100 get 140 get == % optional progress reporter
 } repeat

 gsave busclip % clip to useful portion
 closepath gsave eoclip
 gsave 0 0 fieldplot % plot the useful field
 grestore grestore stroke % stroke outline
 grestore} store

Note that cencirc is called as {cencirc} 500 resetbound. As a deferred proc.

Finally, here is our busbarclip clipping path that chops off the upper and lower
quarters of the square and the center of the hole circle…

/busclip {newpath 100 100 35 0 360 arc 0 50 mt 200 pr
 100 pu 200 pl 100 pd} store

A reminder that we have completely characterized the field by the final numbers
in our array. Intermediate points are easily and accurately found by interpolation.
There is a slight error introduced by the finite number of data points working with
differentials rather than true point derivatives. If more precision is needed, the
number of data points can be quadrupled and then quadrupled again.

While equipotential lines and gradient lines are easily derived from the fields data
array, there is often little point in doing so. The whole point of equipotentials and
gradients was to solve the field problem in the first place. Which we have
replaced with repeated rebounding and averaging instead.

Example #3 — Three Phase Power in a Conduit

The beauty of the rebounding method is that your averaging solution takes place
over a plain old square. No cylindrical, spherical, or fancier transformations are
needed. There are also no hyperbolic trig functions or similar nasties.

This field is really ugly when done the old way in traditional rectangular
coordinates…

— 43.9 —

What we have here is a conduit with a triplet of three phase power lines in it. The
top phase is shown at peak positive amplitude, while the bottom two will be at
one-half their peak negative value. The outside shield is at ground potential.

Four infill boundaries are needed…

/threephaseoutside {newpath 100 100 100 0 360 arc
 0 0 mt 200 pu 200 pr 200 pd 200 pl} store

/onehole {newpath 100 150 30 0 360 arc} store

/twohole {newpath 143.3 75 30 0 360 arc} store

/threehole {newpath 143.5 125 30 0 360 arc} store

Here is the code that does the averaging and rebounding…

/threephasefield {200 200 % create 200 x 200 green field
 500 initfield
 {threephaseoutside} % set four infill boundaries
 500 resetbound
 {onehole} 1000
 resetbound
 {twohole} 150
 resetbound
 {threehole} 150 resetbound

— 43.10 —

 numrebounds {
 500 resetbound % reset four infill boundaries
 {onehole} 1000
 resetbound
 {twohole} 150
 resetbound
 {threehole} 150
 resetbound quadaverage % and do repeating averages
 field 100 get 110 get == % optional progress reporter
 } repeat

 gsave threephaseclip % clip to useful portion
 closepath gsave eoclip
 gsave 0 0 fieldplot % plot the useful field
 grestore grestore stroke % stroke outline
 grestore} store

And here is our threephaseclip clipping code…

/threephaseclip {newpath 100 100 100 0 360 arc 130 150
moveto 100 150 30 0 360 arc 143 30 add 80 moveto 143 75
30 0 360 arc 57 30 add 80 moveto 57 75 30 0 360 arc
} store

The equipotentials and gradients for this particular field are quite impressive. I’ve
left them off as an exercise for the student.

It might be very interesting to redo our three phase rebounding every thirty
degrees or less. And then make an animated and looped sequence of the results.
This can greatly aide the visualization and understanding of three phase power.

For More Help

Consulting services are available per our Infopack services and on a contract or an
hourly basis. Additional GuruGrams are found here, PostScript topics here, and
math items here. Really advanced PostScript math problems are found in our
Magic Sinewave library as well.

Further GuruGrams await your ongoing support as a Synergetics Partner.

— 43.11 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/math01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

