
Some PostScript Disk Access Notes

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2002 as GuruGram #13
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

The general purpose PostScript computing language from Adobe Systems has a
number of different disk access features. These include support of high end
printers and typesetters that have internal hard drives for font, page, job, and
form storage. And the ability for Acrobat Distiller to access and modify files on its
own host operating system.

In expanding upon an InfoPack I did for a client, I thought I’d gather together
and review some of the more obscure PostScript disk access fundamentals.

Essential PostScript Resources

Two "must have" documents are the PostScript II Reference Manual and the
PostScript III Reference Manual. These are downloadable free using these links,
or may be purchased in hard copy via Amazon Books.

The more interesting and more obscure disk access info usually appears in the
PostScript Language supplements…

PostScript Language Supplement 2011
PostScript Language Supplement 2012
PostScript Language Supplement 2013
PostScript Language Supplement 2014
PostScript Language Supplement 2015
PostScript Language Supplement 2016

PostScript Language Supplements 3011 and 3012

Additional PostScript support appears on this Adobe PostScript Technotes site,
on my PostScript Libray and Acrobat Library pages, my earlier PostScript Disk
File Utilities utility file and by way of either the comp.lang.postscript or the
comp.text.pdf usenet newsgroups.

A collection of third party links can also be found here and here .

—1—

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/post01.asp
http://www.adobe.com
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/info01.asp
http://partners.adobe.com/asn/developer/pdfs/tn/psrefman.pdf
http://partners.adobe.com/asn/developer/pdfs/tn/PLRM.pdf
http://www.tinaja.com/amlink01.asp
http://ftp.ktug.or.kr/obsolete/info/adobe/devtechnotes/pdffiles/ps2011.supplement.pdf
http://ftp.ktug.or.kr/obsolete/info/adobe/devtechnotes/pdffiles/ps2012.supplement.pdf
http://ftp.ktug.or.kr/obsolete/info/adobe/devtechnotes/pdffiles/ps2013.supplement.pdf
http://ftp.ktug.or.kr/obsolete/info/adobe/devtechnotes/pdffiles/ps2014.supplement.pdf
http://ftp.ktug.or.kr/obsolete/info/adobe/devtechnotes/pdffiles/ps2015.supplement.pdf
http://ftp.ktug.or.kr/obsolete/info/adobe/devtechnotes/pdffiles/ps2016.supplement.pdf
http://partners.adobe.com/asn/developer/pdfs/tn/PS3010and3011.Supplement.pdf
http://partners.adobe.com/asn/developer/technotes/
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/psutils/disktool.ps
http://www.tinaja.com/psutils/disktool.ps
news:///comp.text.pdf
news:///comp.lang.postscript
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp

Snooping Around

The PostScript language is fairly open and inspectable, so it is often a good idea
to snoop around inside to find the available resources. But note that…

You must have two way comm to return any useful info
from a PostScript peripheral, printer, or imagesetter!

Many early PostScript peripherals were conventional parallel port driven and thus
unable to return any info or messages. To intelligently work with PostScript these
days, you must use both two-way comm and software capable of receiving and
interpreting returned info.

Suitable two-way comm methods include serial, USB, SCSI, Ethernet, AppleTalk,
new IEEE high speed bidirectional parallel, or IDE. To make sure you have
two-way comm, just send your middle name to your PostScript device. You
should get back an undefined error message or log file.

The host based Acrobat Distiller, of course, eliminates any comm hassles and lets
you directly run interpreted PostScript without comm worries. As found in this
Using Acrobat Distiller as a General Purpose PostScript Computer tutorial.

Your essential starting point on any PostScript snoop is the version command.
This should tell you whether you are working with PostScript Level I, II, or II, with
GhostScript, or with a third tier clone. A "real" level two PS device should return
something like 2014, while a level three will use a fancier 3010.157.

Once you know your version, you can dump and save both your systemdict and
statusdict dictionaries„

statusdict begin statusdict {exch == == (\n) print } forall

systemdict begin systemdict {exch == == (\n) print } forall

There are bunches of other dictionaries which you should be able to "avalanche"
out of systemdict. One "magical" dictionary is internaldict which does need an
easily found password and special treatment…

1183615869 internaldict begin 1183615869 internaldict
{exch == == (\n) print } forall

One of the more interesting commands buried in internaldict is superexec, which
sometimes lets you access restricted info…

1183615869 internaldict begin
{restricted stuff {access proc} forall} superexec

—2—

http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/psutils/distlang.html
http://www.cs.wisc.edu/~ghost/

IODevices and File Systems

In general, there are two main types of disk files associated with PostScript or
Acrobat access.

Files internal to an imagesetter or a high end printer will often make use of the
Adobe File System format and consist or an UNIX-like collection of 1024 byte
pages. The first disk is typically called (%disk0%), but oddball names are
sometimes substituted. A (%*) can often be used as an "any disk" wildcard. As
we’ll shortly see, these files are easily created, read, written, and cataloged.

Adobe Acrobat instead accesses whatever the (%os%) host operating system
happens to be using. While you can usually create, read, and write files to the
host system, I have been unable to find any means of cataloging host system files
with Acrobat. Nor of finding used and available disk space. Nor of using relative
filenames. Apparently these restrictions may have been purposely done to reduce
virus and other malicious file potential.

Typically, PostScript or Acrobat will link IODevices of one sort or another. Some of
these will be FileSystem devices that can have files created, read, written, or
deleted. FileSystem devices can sometimes be initialized, sized, or cataloged.

With PostScript III, you can list your IODevices with…

/str 50 string def
(*){==} str /IODevice resourceforall

Doing so may return this list for Distiller…

(%hostfont%)
(%Distillery%)
(%os%)
(%fontset%)
(%cid%)
(%ram%)

The properties of each of these IODevices can be found by using…

(%hostfont%)currentdevparams {exch 50 string cvs print
() print == } forall (\n) print

 … which should tell us that (%Distillery%) is a Communications IODevice,
while all the others are FileSystem IODevices. Writeable and readable disks would
be included as FileSystem devices. Similar code can be used to find the available
Disk Systems for most any PostScript printer or imagesetter.

—3—

http://www.tinaja.com/acrob01.asp

Level II Disk Commands

There are only six PostScript level II disk commands of primary interest. They may
apply only to Adobe File System format devices. These have been retained in level
III as compatibility operators…

devstatus — string devstatus searchable writeable hasNames
 mounted removable searchOrder free logicalSize
 true (if device known) false (if not)

 Returns the values of various file system attributes for the disk
 device identified by string (which must be %diskn% for some integer
 value of n). If the specified device name is known, the boolean value
 true is returned on the top of the stack, accompanied by the values
 of the device parameters Searchable, Writeable, HasNames, Mounted,
 Removable, SearchOrder, Free, and LogicalSize If the device name is
 unknown, only the value false is returned on the stack.

 Errors: stackoverflow, stackunderflow, typecheckx

diskonline — diskonline bool (statusdict dictionary)

 Returns a boolean value indicating whether there exists a writeable disk
 device. The result will be true if there exists a device parameter set
 named %diskn% (for some integer value of n) in which the value of the
 Writeable parameter is true; if no such parameter set exists, a false
 value will be returned. Disk does not need an initialized file system.

 Errors: stackoverflow

 diskstatus — diskstatus free total (statusdict dictionary)

 Returns the current number of free blocks and the total number of blocks
 available on all writeable disk devices. These values are determined by
 finding all known device parameter sets named %diskn% (for integer values
 of n) in which the value of the Writeable parameter is true, and totaling
 the values of their Free and LogicalSize parameters, respectively.

 Errors: stackoverflowx

initializedisk — blocks action initializedisk (statusdict dictionary)

 Initializes each writeable disk by setting the device parameters
 LogicalSize and InitializeAction in each %diskn% parameter set to
 the values blocks and action + 1, respectively. This operator should
 be invoked only from within a system administrator job.

 Errors: invalidaccess, ioerror, rangecheck, stackunderflow, typecheck

—4—

setuserdiskpercent int setuserdiskpercent (statusdict dictionary)

 Formerly set the percentage of disk space reserved for user files. This
 operator now pops the operand int off the stack and otherwise does nothing.
 This operator should be invoked only from within a system administrator
 job. There is no Language Level 2 equivalent for this operator.

 Errors: invalidaccess, rangecheck, stackunderflow, typecheckx

userdiskpercent userdiskpercent int (statusdict dictionary)

 Formerly returned the percentage of disk space reserved for user files.
 This operator now does nothing and returns the value 0. There is no
 LanguageLevel 2 equivalent for this operator.

 Errors: stackoverflow

Level III Disk Parameters

PostScript Level III instead uses resource dictionaries that can be expanded
for future capabilities. In the listings that follow, read-only refers only to access by
language operators (for example, setdevparams and currentdevparams).

The value of a read-only parameter can change, but not as a result of
invoking setdevparams. Changes to parameters in FileSystem parameter sets
take effect immediately.

Device parameters in the %diskn% parameter set:

Type name (Read-only) The parameter set type; must be FileSystem.

Bus string (Read-only) The name of the bus on which this disk resides
 %Scsi% (or) if a SCSI bus, %Ide%
 (or %IdeX%) if an IDE bus. If the imaging
 system uses a file system of the native
 operating system rather than the Adobe storage
 device implementation, this parameter may not
 be meaningful or may be absent. More info
 about the bus (for this disk device) can be
 obtained by using currentdevparams.

HasNames boolean (Read-only) A flag specifying whether the device supports
 named files. Since a device will not mount
 successfully unless it contains a valid file system,
 HasNamesis always true for mounted devices;
 if false, the device is not mounted.

—5—

Mounted boolean A flag specifying whether the device should be
 mounted or dismounted, or (if queried)
 whether the device is currently mounted.
 Setting Mounted to true indicates that the
 system should attempt to mount the device,
 and setting it to false that it should
 attempt to dismount the device.

 Mounting a device makes it known to the
 system and makes it at least readable,
 depending on the nature of the device. A
 device will not mount successfully unless
 it contains a valid file system (that is,
 unless the HasName parameter is true). If an
 attempted mount (or dismount) fails, a
 configurationerror occurs.

 When queried, the value of this parameter
 indicates whether the device is currently
 mounted. Mounted should be queried
 immediately after it is set, to obtain the
 attempted mount or dismount result.

Removable boolean (Read-only)

 A flag specifying whether the device supports
 removable media. Depending on how the
 removable media device operates, setting
 the value of Mounted to false for such
 a device will either eject the medium or
 allow the medium to be removed. Once the
 medium has been removed, the device cannot
 be mounted until the medium is reinserted.

Writeable boolean (Read-only except during a mount)

 A flag specifying whether the files on the device
 can be opened for write access (or, if the
 device is not mounted, whether the device will
 support writeable media). If the medium is
 writeprotected, Writeable is false. This
 parameter can be set only during a mount-
 that is, at the same time that the Mounted
 parameter is being set to read only if the
 medium is not write-protected.

—6—

Searchable boolean A flag specifying whether the device
 participates in searches for a file when a file
 name is supplied that does not specify a device
 (see PLR3, Section 3.8.2).

 Note: On some products, devices that support
 removable media will initially have Searchable
 set to false. Searchable must be explicitly set
 to true on such devices to enable them to
 participate in device searches.

SearchOrder integer The priority (0 or greater) at which the device
 participates in file searches as indicated by a
 value of true for the Searchable parameter.
 The lower the value, the higher the priority.
 This parameter is ignored if Searchable is false.

BlockSize integer (Read-only) Number of bytes in a block on the formatted
 device. For a disk using the Adobe file system,
 BlockSize is 1024. This parameter determines
 the unit for the values of the Free,
 PhysicalSize, and LogicalSize parameters.

Free integer (Read-only) Number of blocks of free space available
 on the medium in the device (where the block
 size is indicated by the BlockSize parameter).
 Free is 0 if the medium is completely full or
 if the device is not mounted.

PhysicalSize integer (Read-only) The number of blocks of medium in the device
 (where the block size is indicated by the
 BlockSize parameter). This is the
 maximum allowable size of the file system;
 the exact size is determined by the LogicalSize.

 PhysicalSize is 0 if the device is not mounted.

LogicalSize integer The number of blocks allocated to the file
 system (where the block size is indicated by the
 BlockSize value). When queried, LogicalSize
 is 0 if the device is not mounted. When set, this
 parameter specifies the number of blocks to be
 allocated to the file system when it is created in
 response to the InitializeAction parameter.

—7—

 The value of LogicalSize must not exceed that
 of PhysicalSize. If LogicalSize is 0, then
 InitializeAction uses a default size that is
 normally the same as the value of PhysicalSize.

 If LogicalSize is set with a certain value and (as
 specified by the value of InitializeAction),
 the medium in the device is reformatted before
 the file system is created, a subsequent query of
 LogicalSize should return the value that was
 set. However, if LogicalSize is queried before
 the medium is reformatted, it may return the
 current size instead.

InitializeAction integer A code specifying an action for initializing the
 device:

 0 — No action. This value is returned when the
 parameter is queried.

 1 — Deletes current file system. (if any) and
 creates one having the size specified by the
 LogicalSize parameter. (Medium is assumed
 to have been formatted already.) The device
 must first be mounted; otherwise, an ioerror
 will occur.

 2 — Reformats entire medium before creating
 a new file system of size LogicalSize. The
 Interleave parameter also plays a role in how
 the medium is formatted.

 3+ — Same effect as the value 2 and also
 carries out product dependent actions, which
 typically consist of preformatting the disk
 and running integrity tests before creating
 the file system. Some devices can have
 additional parameters that serve as arguments
 to InitializeAction.

Interleave integer The interleave number, n, specifying n-to-1
 interleaving. Interleaving arranges logically
 contiguous sectors on the disk in the most
 efficient way for the system using that disk.
 This parameter is used only when the medium
 is being formatted by InitializeAction.

—8—

 For example, assume there are 16 sectors going
 around a single track on a disk. If the first
 sector is logical sector number 1, the second 2,
 the third 3, etc… the value of Interleave
 is 1 (1-to-1 interleaving). In this case, the
 system must be very fast to be able to take data
 from the disk, one sector immediately after
 another. If the system fails to consume the first
 sector in time for the second sector, it has to
 wait an entire revolution of the disk to get the
 next sector. This can result in very poor
 performance.

 If the first sector is logical sector number 1,
 the third 2, the fifth 3, and so on, the system
 needs to consume the current sector while
 the head skips over a sector in time for the next
 logical sector. In this case, the value of
 Interleave is 2 (2-to-1 interleaving). The sectors
 in between are used for higher logical numbers.
 It takes a minimum of two revolutions to get
 the data for an entire track off the disk. In
 this example, the second physical sector on the
 disk would be between logical sectors 1 and 2,
 and would be logical sector 9.

 Similarly, with an Interleave value of 3, the first
 sector is logical sector number 1, the fourth 2,
 and so on.

 Normally, Interleave gets set to a value that
 lets the software use the data during the time
 between sectors, but not waste any time. It is
 difficult to determine what the proper value is.
 The value depends greatly on the job accessing
 the disk. For drives that provide buffering for
 a full track of data, 1-to-1 interleaving is
 almost always most efficient.

PrepareAction integer An action to prepare the underlying
 file system for a specific purpose:

 0 — No action.

 0 — Device specific action.

—9—

Some Examples

Here are a few simple examples of PostScript disk access routines. In a fully blown
program, you’ll want to add such bells and whistles as a conditional known
command to prevent errors should the commands not be available.

But first, an important rule…

Always use a "\\" double reverse slash inside a filename
or other PostScript string every time you really want a
"\" or single reverse slash!

Things can really get complicated in Gonzo where you’ll need four reverse slashes
for every one that is to actually appear on your screen or page.

Merge two strings… This routine is excerpted from my PostScript Gonzo Utilities
that are found on the PostScript Library page. It is quite handy when
manipulating filenames and such. The two top stack strings become one…

/mergestr {2 copy length exch length add string dup dup
4 3 roll 4 index length exch putinterval 3 1 roll exch
0 exch putinterval} def

Check available AFS disk space — Should work for most PostScript printers and
imagesetters using the Adobe File System format…

statusdict begin
diskonline dup == flush true {diskstatus == == flush} if
end

This (and similar routines) may or may not work for Distiller (%os%) disk
operating systems, depending on the presence or absence of PhysicalSize and
Free parameters. Possible workarounds may be available through the Acrobat
SDK Software Development Kit.

Catalog AFS disk — Disks are normally named (%disk1%), (%disk2%), etc… .
A (%*) can usually be used as a wildcard…

/str 50 string def
(%*){== } str filenameforall

On Distiller using (%os%) disk operating systems, this code may sometimes only
return a fontlist found in (%hostfont%).

—10—

http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp
http://partners.adobe.com/asn/developer/acrosdk/main.html
http://partners.adobe.com/asn/developer/acrosdk/main.html

Write to an AFS disk using currentfile — Rename and prepend the following to
any text file to be stored on a laser printer’s hard disk...

/filename (filenamehere) def
filename status {4 {pop} repeat filename deletefile} if
/mfn filename (w) file def
/buffer 1024 string def
/bf {{currentfile buffer readstring pop dup length 0 eq
 {pop mfn closefile exit}{mfn exch writestring}ifelse
 } loop}def
bf

Once again, double reverse slashes should be used in any PostScript string where
a single reverse slash is wanted.

Prepare file for Distiller host disk read or write — This also shows how to use
our mergestr utility…

/diskfileheader (C:\\WINDOWS\\Desktop\\inherit) store
/diskfilesourcename (g9demoyx.pdf) store
/diskfiletargetname (g9demozz.pdf) store
/sourcefilename diskfileheader diskfilesourcename
 mergestr store
/targetfilename diskfileheader diskfiletargetname
 mergestr store
/readfile sourcefilename (r) file store
/writefile targetfilename (w+) file store

Note that the (w+) tells us to append file info, rather than overwriting it. You can
use similar code to read or write AFS files by changing to the (%disk1%) filename
scheme.

Read a file one byte at a time — After you predefine a /yourreadfilename to
either AFS or (%os%) naming conventions…

/strx (X) def
/yourreadfilename (r) file /myworkfile exch def
{myworkfile read {strx exch 0 exch put
your_character_user_routine_goes_here }
{myworkfile closefile exit} ifelse
} loop

The your_character_user_routine must consume a one character stack-top string
in some manner.

—11—

Read a file one line at a time — After you predefine a /yourreadfilename to
either AFS or (%os%) naming conventions…

/strx 256 string def
yourreadfilename (r) file /myworkfile exch def
{myworkfile strx readline
 {your_string_user_routine_goes_here}
 {myworkfile closefile exit} ifelse
} loop

The your_character_user_routine must consume a one line stack-top string in
some manner. /strx can be lengthened or shortened as needed. It must be larger
than the longest line in the file.

Change the position of the next file read or write — After myworkfile is
predefined and in use…

/nextfileloc 12345 def
myworkfile nextfileloc setfileposition

This scheme lets you randomly access file info. Rather than sequentially.

Strings as "Disk" Files

PostScript strings can be made to appear as read or write files by applying
suitable filters to them. This lets you use many of the disk file commands for
string manipulation. The only major restriction is that your strings will have the
usual 65,536 character limit.

The two magic filters are…

NullEncode — source NullEncode filter

 Passes all data through, without any modification. This permits an
 arbitrary data target (procedure or string) to be treated as an
 output file.

SubFileDecode — source count string SubFileDecode filter

 Passes all data through, without any modification. This permits an
 arbitrary data source (procedure or string) to be treated as an
 input file. Optionally, this filter detects an end-of-data marker
 in the source data stream, treating the preceding data as a subfile.

 source is the original string. countis the maximum number of
 characters to be delivered. string is an end of file marker, such
 as a carriage return or tab character.

—12—

Here’s a sneaky example that shows you the power of strings-as-files…

Convert an array to a string — A stacktop array of 8-bit integers can get
converted to a string using this code…

/makestring {dup length string dup /NullEncode filter
3 -1 roll {1 index exch write} forall pop} def

While file techniques are certainly not needed here, their Elegant Simplicity
makes for a very cute routine.

Our PostScript Fractal Fern gives you a second example of string-as-file
manipulations. Per this FERN2IMG.PSL sourcecode. The same utility can be used
to convert most any calculation-intensive PostScript routine into a fixed size
bitmap image. Giving you a much faster print or view time at the expense of
fixed size and resolution. Here’s the calculated fern for a speedup comparison.

More PostScript utilities appear on our PostScript Library page. Additional
string-as-file resources appear in Adobe Tech Note TN5603

Some More Detailed Applicatons

Here’s a list of some of our other PostScript disk manipulation files…

pdf2bmp.psl Acrobat Bitmap Typewriter
acatdata.psl Acrobat Catalog Internal Data Formats
catwords.psl Acrobat Catalog Word List Extractor
graburls.psl Acrobat URL Extractor & Link Tester
blender.psl Bitmap blender and manipulator
catools1.psl Catalog Data Manipulation Tools
strconv.html Convert PS Strings, Integers & Arrays
bodcat.psl Duplex Catalog Auto-Addresser
flatvue1.psl Flate Compression Object File Viewer
fern2img.psl Fractal Fern to Image Converter
flutools.psl Flutterwumper Utilities
mscal156q.psl Fourier Equation Generator (plus more
 in the Magic Sinewave library)
weblogu2.psl Log File Interpreter Utilities
pfa2pfb.psl PFA to PFB Font File Converter
pfb2pfa.psl PFB to PFA Font File Converter
psdisk03.psl PostScript Disk Access Notes
disktool.psl PostScript Disk Tools
psinscrt.psl PostScript Insider Secrets
pssearch.psl PostScript Search & Replace

 more…
—13—

http://www.tinaja.com/glib/elesimp.pdf
http://www.tinaja.com/psutils/fern2img.pdf
http://www.tinaja.com/psutils/fern2img.psl
http://www.tinaja.com/psutils/fernx1.pdf
http://www.tinaja.com/post01.asp
http://partners.adobe.com/asn/developer/pdfs/tn/TN5603.Filters.pdf
http://www.tinaja.com/psutils/pdf2bmp.psl
http://www.tinaja.com/psutils/acatdata.psl
http://www.tinaja.com/psutils/catwords.psl
http://www.tinaja.com/psutils/graburls.psl
http://www.tinaja.com/psutils/blender.psl
http://www.tinaja.com/psutils/catools1.psl
http://www.tinaja.com/psutils/strconv.html
http://www.tinaja.com/psutils/bodcat.psl
http://www.tinaja.com/psutils/flatvue1.psl
http://www.tinaja.com/psutils/fern2img.psl
http://www.tinaja.com/psutils/flutools.psl
http://www.tinaja.com/psutils/mscal156q.psl
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/psutils/weblogu2.psl
http://www.tinaja.com/psutils/pfa2pfb.psl
http://www.tinaja.com/psutils/pfb2pfa.psl
http://www.tinaja.com/glib/psdisk03.psl
http://www.tinaja.com/psutils/disktool.psl
http://www.tinaja.com/glib/psinscrt.psl
http://www.tinaja.com/glib/pssearch.psl

refsum1.html Referral Log Analyzer
reflog1.html Referral Log Reader
reflog1.psl Referral Log Report Generator
refsum1.psl Referral Log Summary Analyzer
searepl.psl Search & Replace Demo
weberru2.psl Web Error File Utilities
grabsrch.psl Web Query Log Extractor
grabrefs.psl Web Referral Log Extractor

For Further Help

Consulting assistance on any and all of these topics can be found at
http://www.tinaja.com/info01.asp.

Additional GuruGrams await your ongoing support as a Synergetics Partner.

—14—

http://www.tinaja.com/text/refsum1.html
http://www.tinaja.com/text/reflog1.html
http://www.tinaja.com/psutils/reflog1.psl
http://www.tinaja.com/psutils/refsum1.psl
http://www.tinaja.com/psutils/searepl.psl
http://www.tinaja.com/psutils/weberru2.psl
http://www.tinaja.com/psutils/grabsrch.psl
http://www.tinaja.com/psutils/grabrefs.psl
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

