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Magic Sinewaves are a newly discovered class of mathematical functions that 
hold significant potential to dramatically improve the efficiency and power quality
of solar energy synchronous inverters, electric hybrid automobiles, and industrial 
motor controls, among many others. An executive summary can be found here, a
slideshow type intro presentation here, a development proposal here, the latest 
calculator here with its tutorial here, demo chips here, and more info here. 

Major goals of such digital sinewave generation including offering the maximum  
possible efficiency by using the fewest of simplest possible switching transitions; 
offering the lowest possible distortion by zeroing out a maximum number of low
harmonics that impact power quality, whine, vibration, and circulating currents; 
and by using all digital techniques that are extremely low end micro friendly.

Magic sinewaves have two remarkable properties: Any number of desired low      
harmonics can be forced exactly to zero in theory, and to astonishingly low 
levels when quantized to 8-bit compatible levels. And magic sinewaves use the     
absolute minimum possible and simplest energy-robbing transitions to achieve 
such harmonic suppression.

The spectrum of a typical magic sinewave might look something like this…
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Although any chosen number of the Magic Sinewave lower harmonics could be 
forced exactly to zero in theory, the first two or higher unsuppressed harmonics 
will remain of significant size. These will typically range from one fifth the size of 
the fundamental for high amplitudes up to matching the size of the fundamental 
for very low amplitudes. 

Unlike conventional PWM with that has a far higher number of efficiency robbing 
transitions, any one unsuppressed harmonic will never significantly exceed the  
strength of the fundamental. Typically, the unwanted harmonic will be a lot less.
At worse, it will barely exceed the fundamental by one or two percent at most.

As with most digital sinewave generators, higher harmonics are dealt with by low 
pass filtering or integration. Magic sinewaves in general have a lot less unwanted
energy that is mostly quite high in frequency and thus is fairly easy to deal with. 
Filtering can often include the inductance of a motor being controlled along with 
its load inertia.

Nonetheless, it sure would be nice to be able to help the filtering process along 
by further reducing any unwanted harmonic energy. It turns out that there are 
some spread spectrum techniques that can lower uncontrolled harmonics by 
values from 6 to as much as 24 decibels. And that would be before any filtering. 
Unwanted higher frequency energy is also significantly reduced.

These concepts are quite similar to those used for EMI reduction in system clocks. 
In addition, they explore a quirk or two peculiar to magic sinewaves. 

There are several manageable downsides to spread spectrum techniques. These 
include needing a lot more memory for both program and data storage; the 
somewhat reduced efficiency because of a few extra switching transitions; being  
less useful for higher amplitudes; probably not being delta friendly; and often 
demanding more complex initial programming and debug.
  
A simulation demo of what follows can be found here.

Uncontrolled Harmonic Amplitude "n" Independence

Our latest expanded Magic Sinewave Calculator and its Tutorial provides us with
a rather astonishing result. 

Consider a BEF8 best efficiency magic sinewave that has n=8 pulses per quadrant
and an amplitude of 0.53… 

                        h31 =  0.00000000000 (and all lower)
                        h33 = -0.77885548201
                        h35 =  0.57886655491
                        h37 =  0.17991844863

Next, compare it against this 0.53 amplitude BBE23 bridged best efficiency         
magic sinewave… 
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                       h89 =  0.00000000000 (and all lower)
                       h91 = -0.77885548201
                       h93 =  0.57886655491
                       h95 =  0.17991844863

We see that the first unwanted harmonics for a given amplitude are identical for 
both best efficiency and bridged best efficiency magic sinewaves. And that ( for 
most values ) are independent of the number of pulses per quadrant! Identical 
results beyond ten decimal places are usually gotten for wildly differing guesses 
and totally different repeated approximation routes.

Each sequential magic sinewave route suppresses one new odd harmonic. For 
instance, the first problem harmonic on a BBE8 will be the 27th. The first on a 
BEF8 will be the 29th. The first on a BBE9 will be the 31st, and the first on a BEF9 
will be the 33rd, and so on.

Which leads to these obsrvations…

        The strength of low unwanted harmonics of a 
        magic sinewave are exactly determined by the
        fundamental amplitude. They are often fully
        independent the number of pulses per quadrant!

        BEF types and BBE types "take turns" zeroing
        out progressively higher low odd harmonics.

I am not sure of the explanation for this "n independence" phenomena. I do 
suspect it has something to do with digital "distortionless modulation" of a carrier.
It is still pretty amazing to see repeated and unrelated calculations converging on 
identical results, though.

Another curious quirk of many magic sinewaves can prove even more useful for 
spread spectrum harmonic reduction…

        The first two uncontrolled low harmonics in
        most magic sinewave often alternate sign. 

Which suggests that some sneaky cancellations should be possible if we combine 
a certain magic sinewave for one quadrant with its neighbor for the next one.

Predicting Possibilities

Let’s try to predict what the potential for this method is. Then we can go on to 
create actual plots of the possible improvements. All will make use of our spread
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spectrum techniques that combine one magic sinewave on the first quadrant with
one or more of its neighbors on succeeding quadrants.

The need for carrier reduction is clearly greatest at low amplitudes. And this is 
precisely where the best performance of this SSCS approach will lie. At very low 
amplitudes, the unwanted coefficients of a BBE8 can be approximated by…

                          27   29   31   33   35   37   39   41   43
                            0     1    -1   ~0   ~0   ~0   ~0   ~0   ~0

Here we’ve shown the harmonic numbers on the top row and their amplitudes on 
the bottom one. Our original Magic Sinewave math forces harmonics 3 to 27 to 
precisely zero in theory. Our first two uncontrolled harmonics will end up near 
plus and minus unity. And the next series of odd harmonics will be very nearly 
zero clear up through the 61st. We can ignore anything higher in frequency here 
because they also will get significantly reduced by what follows.

The rms value of our unwanted low harmonics will be the sum of their squares. 
Or 1.4142 in this case. We can use this as our baseline reference.

Now consider using a BBE8 for the first quadrant and a BEF8 for the second…

                          27   29   31   33   35   37   39   41   43
                            0     1    -1   ~0   ~0   ~0   ~0   ~0   ~0
                            0     0     1    -1   ~0   ~0   ~0   ~0   ~0
                           ===============================
                            0   0.5    0  -0.5  ~0   ~0   ~0   ~0   ~0

Here we’ve shown the average of the amplitudes below the line. We are usually 
permitted to average with the Fourier Math because of the phase coherence of 
any one summed harmonic. The rms amplitude of our three unwanted harmonics 
will be 0.707. And we have achieved a modest but possibly useful six decibels of 
unwanted carrier rejection.

More has to be better, right? Well, maybe. Let’s try alternating four progressive 
magic sinewaves over an entire cycle. One per quadrant. Ultimately, we’ll put the 
BBE’s back to back for best efficiency. The performance now looks like this…
 
                          27   29   31   33   35   37   39   41   43
                            0     1    -1   ~0   ~0   ~0   ~0   ~0   ~0
                            0     0     1    -1   ~0   ~0   ~0   ~0   ~0
                            0     0     0     1    -1   ~0   ~0   ~0   ~0
                            0     0     0     0     1    -1   ~0   ~0   ~0   
                          ===============================
                            0  0.25   0     0     0 -0.25 ~0   ~0   ~0
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This time, our rms unwanted harmonics will get suppressed to 0.3545 of the 
fundamental, or twelve decibels of suppression from our original. SSCS 
averaging of four magic sinewaves over a full cycle is probably optimal. Going to 
eight magic sinewaves over two cycles instead gives us…

                    27   29   31   33   35   37   39   41   43   45   47
                      0     1    -1   ~0   ~0   ~0   ~0   ~0   ~0   ~0   ~0
                      0     0     1    -1   ~0   ~0   ~0   ~0   ~0   ~0   ~0
                      0     0     0     1    -1   ~0   ~0   ~0   ~0   ~0   ~0
                      0     0     0     0     1    -1   ~0   ~0   ~0   ~0   ~0  
                      0     0     0     0     0     1    -1   ~0   ~0   ~0   ~0
                      0     0     0     0     0     0     1    -1   ~0   ~0   ~0 
                      0     0     0     0     0     0     0     1    -1   ~0   ~0  
                      0     0     0     0     0     0     0     0     1    -1   ~0
                    =======================================
                      0  +.12   0     0     0     0     0     0     0  -.12  ~0 
 

Our rms error is now down to 0.176 and we have eighteen decibels of low 
amplitude suppression. But we now need eight times the memory for data 
storage and program length. And averaging harmonic energy over two 
fundamental cycles may be stretching things somewhat. 

Thus, you probably might want to think twice over 8:1 spectrum spreading.

Yes, you can continue the process indefinitely, but at some point the process gets 
ridiculous. For 16:1 spectrum spreading, you would use sixteen magic sinewaves. 
One for each quadrant averaged over four consecutive fundamental cycles. 
Extending the above math tells us your rms unwanted low harmonics will be clear
down at 0.0883 or a full twenty four decibels attenuated. But new our system 
requirements would seem clearly excessive.

Thus, sscs = 4 or sscs = 8 would likely end up your best choices here.

Plotting the Full Response

A math checking simulator appears as DEMOSSCS.PSL. This is an in-house doc, so 
I left it somewhat rough around the edges. It is written in PostScript using my     
Gonzo Utilities and is sent to Acrobat Distiller which is used as a Host Based       
PostScript Interpreter. 

We’ll insert our usual note here that versions of Acrobat Distiller newer than 8.1 
default to preventing disk access. The workaround is to run Distiller from the 
command line using an Acrodist -F.

The simulator creates 1:1, 2:1, 4:1, and 8:1 spread spectrum magic sinewaves and
then does a Fourier Analysis on them. Interpreting the results can give us this 
response plot what we can expect from spread spectrum techniques…  
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Another obvious benefit from spectrum spreading is that the filtering used should 
end up a lot more independent of amplitude. Thus further easing the filter needs.

For More Help

Further Magic Sinewave explorations require your participation as a Synergetics    
partner or associate.

To proceed, view the many Magic Sinewave tutorial files and JavaScript 
calculators you’ll find at http://www.tinaja.com/magsn01.asp. 

Full consulting services, custom designs, seminars, and workshops are available. 
Or you can email don@tinaja.com. Or call (928) 428-4073.
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