
Magic Sinewave Quantization Utilities

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2003 as GuruGram #27
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

A new class of math functions called Magic Sinewaves lets you efficiently
produce power sinewaves that can have any chosen number of low harmonics
forced very near zero. And do so using the fewest possible switching events for
the highest possible energy efficiency. Two new intros appear here and here,
along with a development proposal here, a tutorial here, visualizations here , lots
of calculators here, and seminars and workshops here.

In this Gurugram, we’ll take a closer look at how quantization of magic sinewaves
into integer delay and width values affects the synthesis accuracy. In general,
quantization introduces errors that dramatically raise distortion levels, creates
amplitude jitter, and may introduce frequency jitter. While approximate
quantization estimations are provided in the Magic Sinewave Calculators, our
interests here will be in exact prediction of specific performance.

Some new PostScript utilities are available that can give you many of the needed
quantization analysis tools. Such as file OPTJIT01.PSL and its OPTJIT01.PDF demo
plots. We’ll note in passing that the 32-bit math accuracy of PostScript seems to
be acceptable for these specific tasks. As this utility is a personal tool, it may still
have some rough edges and may be subject to change and improvement.

Data Formats

The original exact calculators determine a list of first quadrant event positions. In
the case of a Best Efficiency-28 magic sinewave, there are seven pulses and eight
delays whose absolute starting points are 0, p1s, p1e, p2s, p2e, p3s, p3e, p4s,
p4e, p5s, p5e, p6s, p6e, p7s, and p7e. For a given amplitude, these will be an
increasing series of degree values in the 0 to 90 degree range.

As we have seen in our Magsine Visualizations as GuruGram #24, the situation is
somewhat more complex for delta friendly magic sinewaves in that half of the
pulse edges must track the others to guarantee three phase compatibility. A new
export format has been added to commercial versions of the calculators that
outputs predelay, p5w, p1w, middelay, p2w, p4w, p3w, and postdelay.

— 27.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/math01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/glib/msintro1.pdf
http://www.tinaja.com/glib/deltams1.pdf
http://www.tinaja.com/glib/msinprop.pdf
http://www.tinaja.com/glib/stepsynt.pdf
http://www.tinaja.com/glib/vismagsn.psl
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/psutils/optjit01.psl
http://www.tinaja.com/psutils/optjit01.pdf
http://www.tinaja.com/glib/msintro1.pdf
http://www.tinaja.com/glib/vismagsn.psl
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/deltams1.pdf

Because of the needed locking, derived widths p6w will equal the sum of p5w
and p1w, while p7w must equal the sum of p2w, p4w and p3w.

Further, the predelay...postdelay sequence repeats every thirty degrees. For any
thirty degree interval, the sourcecode will decide which phase gets pulses p1, p2
and p3, which gets p4 and p5, and which gets p6 and p7. Of correct polarity.

The Delta friendly transform from event positions to export format is…

 predelay = 60 - p5e
 p5w = p5e - p5s
 p1w = p1e - p1s
 middelay = p2s - p1e
 p2w = p2e - p2s
 p4w = p3s - p2e
 p3w = p3e - p3s
 postdelay = 30 - p3e

And one unquantized reverse transform is…

CONTROLLABLE (INDEPENDENT) VARIABLES:

 p1s = predelay + p5w
 p1e = p1s + p1w
 p2s = p1e + middelay
 p2e = p2s + p2w
 p3s = p2e + p4w
 p3e = p3s + p3w
 p5e = 60 - predelay

LOCKED TRACKING (DEPENDENT) VARIABLES:

 p4s = 60 p3s sub
 p4e = 60 p2e sub
 p5s = 60 p1s sub
 p6s = 120 p5e sub
 p6e = 60 p1e add
 p7s = 60 p2s add
 p7e = 60 p3e add

While any seven of the fourteen Delta-28 variables could be made independent,
the choice of p1s, p1e, p2s, p2e, p3s, p3e and p5e appears to have some analysis
and optimization advantages. Especially when optimizing quantized distortion.

— 27.2 —

Quantization Tradeoffs

Quantization of magic sinewave data into integer sequences trades off the best
achievable distortion against the clock frequency, data word size, amplitude jitter,
and possibly frequency jitter. While "reasonable" results can often be gotten by
using "modified" 8-bit stored data, optimization methods may not be clear.

A good baseline starting point can be to let a frequency very near 10 Megahertz
equal a magic sinewave output frequency of 60 Hertz. If 3472 clock cycles are
used in a 30 degree interval, an entire cycle will consist of 41664 cycles . And a
10 MegaHertz PIC clock should produce an output frequency of 60.0038 Hertz.
Conversely, a frequency of 60 Hertz can be gotten from a 9.999360 MHz PIC
clock. Note that a PIC clock is four times the instruction cycle time.

These particular values give us a 2.1198 degree full scale for 8-bit data, which
corresponds to one count being 0.008641 degrees. Values above the 2.1198 full
scale are easily handled by adding a ramp of amplitude*k. Depending on the
actual data, inverse ramps and/or end truncated ramps can also be used. Thus, as
we have already seen in MINDIST1.PDF as GuruGram #19, we can get a lot more
than 8-bit accuracy and still use 8-bit stored data values.

Quantization consists of converting exact degree values into a group of eight
integers that are supposed to sum to 3272 over a 30 degree interval. The degrees
to integers algorithm is…

 degreesperbit = 0.008641

 quantout = int (round (degreesin/degreesperbit))

And the corresponding reverse transform is

 degreesperbit = 0.008641

 degreesout = quantin * degreesperbit

Thus an amplitude 0.54 array of [3.929702 6.271940 1.1360694 7.174293
0.5446923 4.7354755 2.7413283 3.466498] degrees becomes an integer
sequence of [454 727 132 829 63 549 318 400]. Once again, note that these
larger integers can be generated by an 8-bit table lookup plus an 8-bit function.

For instance, the 549 value might be synthesized as an 8-bit stored value of 117
added to 8 times the desired amplitude of 54. Or 117 + (8*54) = 549. Note
further that a delay of eight times a stored value gets easily done simply by
creating a delay loop of eight instruction cycles per count.

— 27.3 —

http://www.tinaja.com/glib/mindist1.pdf
http://www.tinaja.com/gurgrm01.asp

A minor gotcha

When we quantize, the "virtually zero" distortion is very likely to get a lot worse.
How much worse can be found by converting the integers back into degrees and
then recalculating the Fourier coefficients. But, before we do, note that…

The sum of the quantizations does NOT
necessarily equal the quantization of the sums!

Each and every 8 data value degree array summed to 30 degrees. But when you
quantize, you get a Gaussian type thingy that depends on the roundup or
rounddown stats of the individual data. Typically, one-half of your quantized
amplitudes will sum to 3472. Most of the others will sum to 3471 or 3473, while
a few stragglers will sum to higher or lower values.

This means that…

Direct use of quantized data can cause frequency jitter!

In this example, a frequency jitter of 2 counts out of 3472 translates to just under
0.05 percent jitter worst case. Which is probably negligible for most apps. But we
can easily achieve zero jitter with minor mods to our quantized data. At only a
negligible distortion penalty.

Ferinstance, you could manually go through the data. If you have a 3471 sum,
find the one pre rounding value closest below 0.5 and round it up instead. I
automated this in a utility that initially "rounds" everything at a 0.75 threshold,
guaranteeing low data. The threshold is then lowered in tiny increments till the
3472 value is reached for each and every quantized data array.

If a quantized array with jitter was, say, [454 727 132 829 63 549 318 400], its
frequency dejittered improvement might look like [454 727 133 829 63 549 318
400]. I feel that frequency dejittering is most often a very good idea.

Amplitude Jitter

Quantizing will also give us some amplitude jitter, but this is usually not too
significant. If you select a hundred amplitude levels, this implies you are willing to
take anything from 53.50001 to 54.44449 for amplitude 54 . Which I’ll define as
an amplitude jitter of plus or minus fifty percent.

As we’ll shortly see, purposely allowing a max amplitude jitter around the ten
percent range can significantly lower our quantized distortion levels.

Conversely, distortion could be traded off for lower amplitude jitter.

— 27.4 —

Some Results

The orange dots here give us a preliminary plot of the raw quantization errors we
can expect from our above example…

0.0 0.5 1.0
0.0%

0.5%

1.0%

= raw quant
= best neighbor

Amplitude

U
n

fi
lt

er
ed

T

H
D

2

-2
2

Typical
quantized
Delta-28

distortions

We see that our raw quantized total harmonic distortion for the second through
twenty-second harmonic is under 0.2 percent for most higher amplitude values.
And that is before any filtering. Our filter, of course, has bigger things to worry
about. Namely the uncontrolled twenty third and higher harmonics.

We see that 8-bit data thus gives us "acceptable" distortion after quantization in
this 10 MHz --> 60 Hz example. We might be tempted to try and reduce our clock
frequency further. Perhaps going to 6 MHz --> 60 Hz or even using that internal
4 MHz PIC clock option for fixed 60 Hertz apps. But these reductions may make
synthesizing very low or very high amplitudes tricky, especially for Delta 44 or
Delta 60 magic sinewave options.

It does turn out there is a sneaky trick we can pull that can further reduce our
quantized harmonic distortion. I’ll call this one…

Shaking the Box

Compared to our quantized solution, what are the nearest adjacent 78,125 magic
sinewaves up to? It turns out that a "nearby" magic sinewave can often give us a
two to twelve decibel thd 2-22 distortion reduction.

— 27.5 —

Which can result in the magenta dots in our previous figure. Reducing most
prefiltered 2-22 distortions to well under one tenth of a percent total thd.

To "shake the box", you take your independent p1s, p1e, p2s, p2e, p3s, p3e, and
p5s integers and alter each value by -2, -1, 0, 1, or 2 counts while you are doing
an exhaustive search. The results for amplitude 54 might look like this…

54
0.535 0.540 0.545

0.00%

0.05%

0.10%

Amplitude

U
n

fi
lt

er
ed

T

H
D

2

-2
2

Nearby
quantized

Amplitude 54
options

I’ve left those nearby results with higher distortions unplotted. Here, we see that
the orange dot is what we want in the way of a "perfect" magic sinewave, the red
dot is our initial quantization, and the magenta dots offer several "better"
tradeoffs. In this example, I’d go with the 0.0655% x 0.5409 amplitude improved
solution.

Note that all of the new data values will still sum to 3472. Because half the delay
and position values are dependent on (and calculated from) the other half. No
new frequency jitter is introduced by this process.

When plotted on a different scale and allowing higher distortion values, this gives
us a classic "dripping stalactite" plot. One that was crucial in early magic sinewave
development. When it was found that the drips could be miraculously forced to
zero if you used accurate enough calculations.

— 27.6 —

A Data Set

Here’s a preliminary data set using our above example that may be used for
sourcecode generation…

[[868 0 0 1730 0 0 0 868] 0.000000 0.0000000 3472]
[[860 13 2 1722 0 10 6 859] 1.510760 0.0093493 3472]
[[850 29 5 1701 6 22 8 851] 0.978672 0.0210324 3472]
[[845 43 7 1683 7 33 14 840] 0.477679 0.0312886 3472]
[[837 56 9 1668 7 43 20 832] 0.318167 0.0406482 3472]

[[830 68 11 1653 10 52 23 825] 0.337353 0.0493669 3472]
[[821 85 14 1631 11 65 30 815] 0.203131 0.0617085 3472]
[[815 95 16 1619 13 73 33 808] 0.259957 0.0692016 3472]
[[807 110 18 1601 14 84 39 799] 0.229666 0.0798052 3472]
[[800 122 20 1587 16 93 43 791] 0.271299 0.0885358 3472]

[[791 138 23 1567 18 106 49 780] 0.172600 0.1005590 3472]
[[784 151 25 1551 19 116 54 772] 0.1339800 0.109939 3472]
[[777 163 27 1536 21 125 58 765] 0.1192960 0.118677 3472]
[[768 180 30 1515 22 138 65 754] 0.1874040 0.131049 3472]
[[761 193 32 1499 24 148 70 745] 0.1343130 0.140698 3472]

[[754 205 34 1484 26 157 74 738] 0.1291950 0.149444 3472]
[[747 218 36 1468 26 167 80 730] 0.1061010 0.158846 3472]
[[738 234 39 1448 28 179 86 720] 0.0965049 0.170589 3472]
[[731 246 41 1434 29 188 91 712] 0.0914561 0.179351 3472]
[[723 260 43 1417 31 199 96 703] 0.1290420 0.189653 3472]

[[714 276 46 1397 32 211 103 693] 0.0546426 0.201417 3472]
[[707 289 48 1381 33 221 108 685] 0.1085760 0.210828 3472]
[[701 300 50 1367 35 229 112 678] 0.1002610 0.218951 3472]
[[691 316 53 1348 36 241 119 668] 0.1207730 0.230727 3472]
[[684 330 55 1330 37 252 125 659] 0.1038410 0.241057 3472]

[[677 342 57 1316 38 261 130 651] 0.0973585 0.249840 3472]
[[670 354 60 1300 40 270 135 643] 0.1141750 0.259094 3472]
[[663 367 62 1284 40 280 141 635] 0.0808775 0.268537 3472]
[[653 384 65 1263 42 293 148 624] 0.0519740 0.281232 3472]
[[647 395 67 1249 43 301 153 617] 0.0641827 0.289386 3472]

[[638 411 70 1229 44 313 160 607] 0.0942731 0.301193 3472]
[[630 424 72 1214 45 323 166 598] 0.0954356 0.310907 3472]
[[624 435 74 1200 46 331 171 591] 0.0730116 0.319070 3472]
[[615 451 77 1180 47 343 178 581] 0.0677774 0.330889 3472]
[[608 463 79 1165 48 352 183 574] 0.0797174 0.339699 3472]

— 27.7 —

[[600 477 82 1147 49 363 190 564] 0.0727672 0.350554 3472]
[[592 491 84 1130 50 373 196 556] 0.0859002 0.360616 3472]
[[585 503 87 1114 51 382 202 548] 0.0895733 0.369923 3472]
[[578 516 89 1098 51 392 209 539] 0.0823565 0.379679 3472]
[[569 531 92 1079 53 403 216 529] 0.0758395 0.391137 3472]

[[562 543 94 1064 54 412 221 522] 0.0916116 0.399965 3472]
[[553 558 97 1046 54 423 229 512] 0.0716472 0.411197 3472]
[[547 569 99 1032 55 431 234 505] 0.0527390 0.419389 3472]
[[538 584 102 1013 56 442 242 495] 0.0744991 0.430883 3472]
[[530 598 105 995 56 453 249 486] 0.0643956 0.441523 3472]

[[523 610 107 980 57 462 255 478] 0.0651337 0.450642 3472]
[[515 624 110 962 58 472 262 469] 0.0500311 0.461231 3472]
[[508 636 112 947 59 481 268 461] 0.0682797 0.470357 3472]
[[501 648 115 931 59 490 275 453] 0.0390659 0.479727 3472]
[[493 661 118 914 60 500 282 444] 0.0464662 0.491163 3472]

[[485 675 120 897 61 510 289 435] 0.0701265 0.500383 3472]
[[478 687 123 881 61 519 296 427] 0.0436721 0.509765 3472]
[[470 700 126 864 62 529 303 418] 0.0589122 0.520046 3472]
[[463 712 129 848 62 538 310 410] 0.0621049 0.529436 3472]
[[454 727 132 829 63 549 318 400] 0.0655310 0.540979 3472]

[[447 739 134 814 64 557 324 393] 0.0659652 0.549818 3472]
[[440 751 137 797 64 567 332 384] 0.0608129 0.559810 3472]
[[432 764 140 780 65 577 339 375] 0.0552627 0.570111 3472]
[[424 777 143 764 65 586 346 367] 0.0621947 0.579854 3472]
[[417 789 145 748 66 595 353 359] 0.0497526 0.589296 3472]

[[409 802 149 730 66 605 361 350] 0.0498109 0.599860 3472]
[[401 815 152 713 66 615 369 341] 0.0454799 0.610207 3472]
[[393 828 155 696 67 624 377 332] 0.0516502 0.620493 3472]
[[385 841 158 679 67 634 385 323] 0.0588497 0.630849 3472]
[[379 851 160 665 68 642 391 316] 0.0342060 0.639051 3472]

[[371 864 164 647 68 652 399 307] 0.0456603 0.649639 3472]
[[363 877 167 630 68 662 407 298] 0.0522574 0.660009 3472]
[[355 890 170 612 69 672 415 289] 0.0426991 0.670628 3472]
[[348 901 173 597 69 680 423 281] 0.0480973 0.679712 3472]
[[340 914 176 579 70 690 431 272] 0.0477716 0.690340 3472]

— 27.8 —

[[333 925 179 564 70 699 438 264] 0.0308037 0.699467 3472]
[[324 939 183 545 70 710 447 254] 0.0686215 0.711012 3472]
[[317 950 185 530 71 718 455 246] 0.0415750 0.720131 3472]
[[310 961 188 514 72 727 462 238] 0.0498212 0.729513 3472]
[[302 973 192 497 71 737 471 229] 0.0430787 0.739846 3472]

[[294 986 195 479 72 747 479 220] 0.0405623 0.750499 3472]
[[286 998 198 462 72 757 488 211] 0.0438831 0.760860 3472]
[[279 1009 201 446 73 766 495 203] 0.0497878 0.770257 3472]
[[271 1021 204 429 74 775 504 194] 0.0441616 0.780553 3472]
[[264 1031 207 414 74 784 512 186] 0.0457397 0.789662 3472]

[[256 1043 211 396 74 794 521 177] 0.0325654 0.800267 3472]
[[249 1054 213 381 75 803 528 169] 0.0440074 0.809451 3472]
[[241 1066 216 363 76 813 537 160] 0.0403837 0.820078 3472]
[[233 1077 220 346 76 823 546 151] 0.0256970 0.830362 3472]
[[225 1089 223 328 77 833 555 142] 0.0332166 0.840997 3472]

[[218 1099 225 313 78 842 563 134] 0.0337785 0.850140 3472]
[[210 1110 228 296 79 852 572 125] 0.0360605 0.860449 3472]
[[203 1120 231 280 80 862 580 117] 0.0150460 0.869889 3472]
[[195 1131 233 262 82 872 589 108] 0.0360463 0.880467 3472]
[[187 1141 236 245 83 883 598 99] 0.0317396 0.890767 3472]

[[180 1151 237 230 85 892 606 91] 0.0190775 0.899933 3472]
[[172 1162 238 213 88 902 615 82] 0.0316686 0.910273 3472]
[[165 1171 239 197 91 912 623 74] 0.0263476 0.919661 3472]
[[157 1181 239 180 95 922 633 65] 0.0388174 0.929956 3472]
[[150 1190 238 164 100 932 641 57] 0.0323680 0.939357 3472]
[[142 1200 235 147 107 943 650 48] 0.0272150 0.949701 3472]

[[134 1209 230 130 116 955 659 39] 0.0318331 0.960034 3472]
[[126 1218 223 113 127 966 669 30] 0.0351219 0.970334 3472]
[[119 1226 210 97 144 977 677 22] 0.0379512 0.979745 3472]
[[111 1234 188 80 170 989 688 12] 0.0386641 0.990337 3472]
[[103 1242 151 63 211 1001 698 3] 0.0439439 1.000650 3472]

As before, the quantized integer matrix is made up of predelay, p5w, p1w,
middelay, p2w, p4w, p3w, and postdelay. Followed by the distortion in percent,
the normalized amplitude, and the integer count per thirty degrees. The latter
also serves as a frequency jitter checksum.

Also as before, values above an 8-bit "full scale" of 255 are realized by summing
with an eight bit function. Typical functions are ramps of amplitude*k, its
inverse, or truncated versions of same.

— 27.9 —

Some Fourier Math

I overwhelmingly prefer to use the PostScript language for all of my engineering
analysis. Especially when graphic display is involved. Sadly, PostScript uses only
32-bit math routines making it inappropriate for actual determination of true
magic sinewave zero nulls.

Which is why we went to the 64-bit Javascript routines for all the actual Magic
Sinewave Calulators Typically, PostScript has a noise floor in the sixth or seventh
decimal place, while JavaScript can easily work fifteen decimal places or more.

Fortunately, PostScript is good enough for routine magic sinewave use as we’ve
done here. Here is how you calculate a fundamental amplitude using classic DFT
Fourier Series…

/a1 {curdegarray 0 get cos curdegarray 1 get cos sub
 curdegarray 2 get cos add curdegarray 3 get cos sub
 curdegarray 4 get cos add curdegarray 5 get cos sub
 curdegarray 6 get cos add curdegarray 7 get cos sub
 curdegarray 8 get cos add curdegarray 9 get cos sub
 curdegarray 10 get cos add curdegarray 11 get cos sub
 curdegarray 12 get cos add curdegarray 13 get cos sub
 4 mul pi div} store

Here curdegarray is p1s, p1e, p2s, p2e, p3s, p3e, p4s, p4e, p5s, p5e, p6s, p6e,
p7s, and p7e. And pi is predefined as 3.1415926 or thereabouts.

A typical relative harmonic is calculated as…

/h7 {curdegarray 0 get 7 mul cos
 curdegarray 1 get 7 mul cos sub
 curdegarray 2 get 7 mul cos add
 curdegarray 3 get 7 mul cos sub
 curdegarray 4 get 7 mul cos add
 curdegarray 5 get 7 mul cos sub
 curdegarray 6 get 7 mul cos add
 curdegarray 7 get 7 mul cos sub
 curdegarray 8 get 7 mul cos add
 curdegarray 9 get 7 mul cos sub
 curdegarray 10 get 7 mul cos add
 curdegarray 11 get 7 mul cos sub
 curdegarray 12 get 7 mul cos add
 curdegarray 13 get 7 mul cos sub
 4 mul pi div 7 div a1 div} store

— 27.10 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/muse90.pdf

Other harmonics are suitably scaled, such as multiplying angles by 5 and dividing
output by 5 on the fifth harmonic, etc…

Although the triad harmonics of 3, 9, 15, and 21 should be identically zero in a
delta friendly magic sinewave, it still may pay to calculate them. Both to find
possible errors and to keep track of the PostScript repeat calc noise floor.

Total harmonic distortion 2-22 is then calculated by…

/thd {h3 dup mul h5 dup mul add h7 dup mul add
 h9 dup mul add h11 dup mul add h13 dup mul add
 h15 dup mul add h17 dup mul add h19 dup mul add
 h21 dup mul add sqrt 100 mul} store

For More Help

Additional Magic Sinewave help is available per the previously shown web links.
Detailed analysis of system specifics are available at our standard consulting rates.
Per our Magic Sinewave Development Proposal and our Consulting Services.

Additional GuruGrams columns await your ongoing support as a Synergetics
Partner.

— 27.11 —

http://www.tinaja.com/glib/deltams1.pdf
http://www.tinaja.com/post01.asp
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/glib/msinprop.pdf
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp
http://www.tinaja.com/advt01.asp

