
Resolving Stability Issues in
Gauss-Jordan Equation Solutions

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2010 pub 09/10 as GuruGram #109
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

Back in GuruGram #77, we looked at the Gauss-Jordan Elimination method of
solving linear nxn equations. This method is especially computer friendly. It is
based on simple and repetitive preprocessing of an equation array to the point
where the solution can be observed by inspection. Our own uses of this technique
have included our Magic Sinewave Calculators and various Digital Filters.

Useful and amazingly compact JavaScript solution utilities can be found here.

Unfortunately, the Gauss-Jordan method can lead to severe stability issues for
certain equations involving larger values of "n". In which the range of solution
coefficients can increase exponentially and can easily surpass the quantized math
limits of the algorithm in use.

The Problem…

The Gauss-Jordan method repeatedly subtracts two numbers to create a present
coefficient of interest. It then uses this coefficient of interest to normalize or
scale all coefficients that follow. Ideally, the coefficient of interest should be near
unity. If it is too small, its normalization will cause extreme magnification of all
following coefficients. And repeated low coefficients of interest that normalize
high might cause blowups beyond the quantization capability of the program.

Surprisingly, any coefficients of interest that are large compared to unity don’t
seem to be much of a problem. Normalizing these creates small values. The next
stage subtraction tends to "swallow" its smaller companion. At least in our Magic
Sinewaves, nearly all of the coefficients often end up much larger than unity.

 …and Some Solutions…

Some equations may have such a bad spread of coefficient values that most any
solution may be untenable, Gauss-Jordan or not. And sometimes, rearranging
columns can make a profound difference. But column rearrangement changes the
basic equation structure and may create unweildy housekeeping details.

— 108.1 —

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/glib/gaussjor.pdf
http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination
http://www.tinaja.com/demo28a.asp
http://www.tinaja.com/glib/muse107.pdf
http://www.tinaja.com/glib/gaussjor.pdf
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/magsn01.asp

Instead, the best approach to improving stability is often…

 Initial Gauss-Jordan equation rows may be interchanged in
 any order without affecting the final result

 Some sequences are much more likely to cause blowups.

For instance, even way down at n=16, there are well over 10^13 possible ways to
prearrange the equation rows. At least a few of these arrangements should end
up significantly less blowup prone. Fortunately, by progressively finding the
"best" row in sequence, the number of blowup avoidance tasks can be reduced to
a few hundred or a few thousand.

Here are some tools and techniques that can minimize (but not necessarily
eliminate) Gauss-Jordan blowups…

0. Trap out Div0

A missing variable or coefficient being normalized can cause a division
by zero and the usual blowup. Very low values should be trapped out and
reported. Sometimes, rearranging the column sequence can be of value.

1. Include Coefficient Reports

The JavaScript alert command can be extremely useful. Especially
for reporting coefficients on entry to Gauss-Jordan, on completing
the Gauss part, and on exiting the solution. You can use view source on
this calculator for examples. Typical code might be…

 If (eqns) is the array being manipulated by your
 Gauss-Jordan routine, use…

 alert (eqns) ;

 … as a temporary debugger. Or else something like…

 form.ExportX.value = eqns ;

 … at the beginning, middle, and end to spot blowups.

2. Avoid 32-bit Math

Floating point math routines of 32-bit resolution are normally limited to
six decimal digits or so. While they can be extended somewhat using
these techniques, some 32-bit blowup problems can reasonably be
expected beyond 12x12 linear equations.

— 108.2 —

http://www.tinaja.com/glib/gaussjor.pdf
http://www.tinaja.com/demo28a.asp
http://www.tinaja.com/glib/gaussjor.pdf
http://www.tinaja.com/glib/ps8dprp1.pdf

PostScript normally uses 32-bit math, while JavaScript offers full 64-bit
calculations. Our Magic Sinewave calculators use JavaScript routines.

3. Consider 128-bit Math

This sledgehammer cure lets you hunt with the big dawgs instead of
staying on the porch. But it takes some really fancy computing and
equipment. A full 128-bit floating point package might not be needed.
Only the ability to subtract, divide, and deal with 128-bit array values
would really be required.

4. Try a Random Rearrangement

Sometimes a simple shuffling of the row sequences will allow a solution
that is free of blowups. This is certainly worth a try and may be all that
you need. Repeated randomizations can pick the lowest buildup values.

5. Try a Shuffling Alogrithm

Blowup issues were first encountered on our Magic Sinewaves around 20
pulses per quadrant, resulting in 40x40 linear equations needing solved.
By going to a strange rule of "alternate the remaining lowest and highest
harmonic equation rows", blowups were eliminated in our ms calculator.

Similarly, there might be obvious or strangely non-obvious rearrangements
of the equation rows of other problems.

6. Pre-analyze and optimize row-by-row impact

Our final blowup workaround is very much data specific and requires some
elaborate preprocessing…

 If all else fails, test and re-organize the
 order of all rows for their least impact.

This crude and unfinished demo program shows some of the techniques
that may be involved. Candidate rows are selected one by one as the
potential final top row. Each positional subtract-and-substitute candidate
is then compared for its blowup impact. Any absolute result less than
unity is suspect.

A blowup "figure of unmerit" can be calculated by using abs 1 exch div
dup 1 le {pop 0} if This should produce a number above unity for each
problem row, and zero for each well behaved row. Each candidate row
can then be square-root-of-the-sums-of-the-squares processed for an
overall figure of unmerit.

— 108.3 —

http://www.tinaja.com/post01.asp
http://www.tinaja.com/demo28a.asp
http://www.nongnu.org/hpalib/
http://www.tinaja.com/mssamp1.asp
http://www.tinaja.com/demo28a.asp
http://www.tinaja.com/psutils/renorm01.psl

The lowest score candidate then becomes the new top row. The
process gets repeated for as many rows as are needed.

Something like 1/2n^2 subtractions and normalizations may be
needed, combined with n rms calculations. While not overly
excessive, this is far more complex than the Gauss-Jordan
calculations themselves.

For More Help

Actual working code can be generated on an as-needed or custom consulting
basis. An expansion of out magic sinewave calculators is in the works. Blowup
problems are anticipated beyond n=32 or so with their 64x64 linear arrays
needing solution.

Sourcecode for this GuruGram appears here.

Additional info on similar topics appear on our Magic Sinewave and Math Stuff
library pages. You can also email us or call (928) 428-4073 for further help.

— 108.4 —

http://www.tinaja.com/glib/gaussjor.pdf
http://www.tinaja.com/info01.asp
http://www.tinaja.com/demo28a.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/gjstab01.psl
http://www.tinaja.com/magsn01.asp
http://www.tinaja.com/math01.asp
mailto:don@tinaja.com

