
Exploring the .BMP File Format

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2003 as GuruGram #14
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

The .BMP image standard is used by Windows and elsewhere to represent
graphics images in any of several different display and compression options. The
.BMP advantages are that each pixel is usually independently available for any
alteration or modification. And that repeated use does not normally degrade the
image. Because lossy compression is not used.

Its main disadvantage is that file sizes are usually horrendous compared to JPEG,
fractal, GIF, or other lossy compression schemes. A comparison of popular image
standards can be found here.

I’ve long been using the .BMP format for my eBay and my other phototography,
scanning, and post processing. I firmly believe that…

All photography, scanning, and all image post-processing should
always be done using .BMP or a similar non-lossy format.

Only after all post-processing is complete should JPEG or another
compressed distribution format be chosen.

Some current examples of my .BMP work now do include the IMAGIMAG.PDF
post-processing tutorial, the Bitmap Typewriterthat generates fully anti-aliased
small fonts, the Aerial Photo Combiner, and similar utilities and tutorials found
on our Fonts & Images, PostScript, and on our Acrobat library pages.

A few projects of current interest involving .BMP files include true view camera
swings and tilts for a digital camera, distortion correction, dodging & burning,
preventing white punchthrough on knockouts, and emphasis vignetting. Mainly
applied to uncompressed RGBX 24-bit color .BMP files.

The .BMP Format

Two typical discussions of the .BMP format can be found Here and Here. In
general, a .BMP file consists of a header, an optional color lookup table area, and
a pixel data area. Header data values are LSB first.

—1—

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.designer-info.com/Writing/bmp_tiff_jpeg_gif.htm
http://cgi6.ebay.com/ws/eBayISAPI.dll?ViewSellersOtherItems&userid=abeja&completed=0&sort=2&since=-1&include=0&page=1&rows=100
http://www.tinaja.com/glib/imagimag.pdf
http://www.tinaja.com/glib/myebays.pdf
http://www.tinaja.com/glib/stepprep.pdf
http://www.tinaja.com/glib/imagimag.pdf
http://www.tinaja.com/psutils/pdf2bmp.psl
http://www.tinaja.com/psutils/blender.psl
http://www.tinaja.com/aafont01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://village.infoweb.ne.jp/~fwhw1257/study/bmpform.htm
http://www.daubnet.com/formats/BMP.html

Here is how the .BMP header is usually organized.…

00-01 $00-$01 ASCII 2-byte "BM" bitmap identifier.

02-05 $02-$05 Total length of bitmap file in bytes.
 Four byte integer, LSB first.

06-09 $06-$09 Reserved, possibly for image id or revision.
 Four byte integer, LSB first.

10-13 $0A-$0D Offset to start of actual pixel data.
 Four byte integer, LSB first.

14-17 $0A-$11 Size of data header, usually 40 bytes.
 Four byte integer, LSB first.

18-21 $12-$15 Width of bitmap in pixels.
 Four byte integer, LSB first.

22-25 $16-$19 Height of bitmap in pixels.
 Four byte integer, LSB first.

26-27 $1A-$1B Number of color planes. Usually 01
 Two byte integer, LSB first.

28-29 $1C-$1D Number of bits per pixel. Sets color mode.
 Two byte integer, LSB first.

 1 - Monochrome
 4 - 16 lookup colors
 8 - 256 lookup colors
 16 - 65,536 lookup colors
 24 - 16,777,216 RGB colors
 32 - 16,777,216 RGB colors + alpha

30-33 $1E-$21 Non-lossy compression mode in use
 Four byte integer, LSB first.

 0 - None
 1 - 8-bit run length encoded
 1 - 4-bit run length encoded

34-37 $22-$25 Size of stored pixel data
 Four byte integer, LSB first.

38-41 $26-$29 Width resolution in pixels per meter
 Four byte integer, LSB first.

42-45 $2A-$2D Height resolution in pixels per meter
 Four byte integer, LSB first.

 more…
—2—

46-49 $2E-$31 Number of colors actually used.
 Four byte integer, LSB first.

50-53 $32-$35 Number of important colors
 Four byte integer, LSB first.

Color lookup tables follow the header for those lower performance modes in
which they are used. These in turn are followed by the actual pixel data in
appropriate format.

My main interest lies in the 24-bit uncompressed RGB color mode. In this mode,
there are no color lookup tables used. Nor are the "colors available" and "colors
used" data fields used. Each pixel consists of an 8-bit blue byte, a green byte, and
a red byte in that order. Working from left to right upwards line-by-line starting
at the lower left. The pixel data starts at the data offset and continues to the end
of the .BMP file.

Understanding Line Padding

There is a crucial little line padding detail that must be attended to when dealing
with actual .BMP bitmap data. The rule is simply…

Each new .BMP line must start on an even 32 bit boundary!

Because three does not divide into four very well, zero, one, two, or three 00
padding bytes must be added to the end of each .BMP data line in the 24-bit
uncompressed format. The exact number of padding bits is set by the number of
horizontal pixels per line.

Here is some PostScript code to determine your end-of-line padding needed…

/padding hres 3 mul cvi 4 mod % find 32-byte block start
[0 3 2 1] exch get def % save as TLU correction

One sneaky way of dealing with padding is to create a line buffer of hres*3 plus
padding. Then zero out three end characters. Any unneeded padding bytes will
later get overwritten by real pixel data.

A .BMP Header Reader

As our first .BMP manipulation example, BMPRPT01.PSL is a simple bitmap header
reader and reporter. It will read a .BMP header and report format, compression,
and most key values. The same code forms the essential core for fancier .BMP
manipulation routines as it extracts key values and doubles as a version verifier.

To use, bring this file up in a wp or editor, change the filename, and resave as a
standard ASCII textfile. Then send to distiller. The bitmap header info is then
reported both to screen and to your log file.

—3—

http://www.tinaja.com/post01.asp
http://www.tinaja.com/psutils/bmprpt01.psl

This routine currently uses my full Gonzo Utilities. If desired, this mergestr string
merger can be substituted…

/mergestr {2 copy length exch length add string dup dup
4 3 roll 4 index length exch putinterval 3 1 roll exch
0 exch putinterval} def

Preventing White "Punch Through"

Here’s a second example of the neat things you can do by using PostScript
modification of .BMP bitmap images: There’s a deadly little trap if you knockout
an image to a white outline and then tow it over a new background. If there are
any inadvertent true white pixels inside of your image, the new background will
"punch through" with disastrous results. And hand patching can be a real pain.
Especially if you miss a crucial highlight pixel or two.

This NOWHIT01.PSL routine scans a RGB bitmap, and replaces all $FF $FF $FF (or
255 255 255) white pixels with "almost white" $FE FE FE pixels. You can also use
it to make any color into the white needed for Paint transparency.

To use this utility, bring it up in a suitable word processor or editor, change the
old and new .BMP filenames, resave, and send to Distiller. The code first checks
the header to make sure you really have a 24-bit uncompressed .BMP file. It then
copies the header and scans the rest of the triads a horizontal line at a time.
Non-white triads are copied, while any true white ones will get substituted with a
very light "ivory".

While you could read and write every 3-byte RGB triad to disk, this might need
millions of separate disk reads or writes. Instead, it is much faster to use a pair of
buffer strings and work a line at a time. Here is how you might define these
strings while handling padding at the same time…

/linestring hres 3 mul padding add string store
/targetstring hres 3 mul padding add string store

targetstring dup length 1 sub 0 put
targetstring dup length 2 sub 0 put
targetstring dup length 3 sub 0 put

Swings & Tilts for Your Digital Camera!

Very impressive things can happen if you grab each .BMP image line and then
selectively move each pixel to the right or left by just the right amount. This lets
you do traditional view camera swings and tilts. Views can easily be changed to
"architectural perspective" where all vertical lines in the real world end up vertical
in your image.

—4—

http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/knockout.bmp
http://www.tinaja.com/psutils/nowhit01.psl
http://www.tinaja.com/glib/speedup2.pdf

Detailed swing and tilt instructions and examples appear in GuruGram #16. The
basic routine is SWINGT01.PSL, helped along by these before and after files.
Images are grabbed one line at a time. The pixels on each line are then suitably
moved and stretched to get the desired effect. The key secret is to use the Cubic
Spline Basis Functions of GuruGram #4 to interpolate between your pixels at the
highest possibly quality.

"Dual Mode" Photography

Multiple exposures can often greatly improve a final image. For instance, the
contrast can be dramatically increased on a label or nameplate or whatever. A sub
image is then knocked out to white and pasted over the original. Or stock feet or
handles or better knobs or oscilloscope screens can be added. With care, the
process can be made seamless.

I’ve found that using both a camera and a scanner on the same image can reap
huge benefits. Ferinstance, the Nikon CoolPix5000 takes outstanding photos, but
it tends to burn out meter faces on autoexposure flash. So, you take your main
photo with the Nikon and then high resolution scan the meter face. Our swings
and tilts get used backwards to convert a rectangular meter face scan into the
proper trapezoidal perspective shape for pastein.

A subtle advantage of this technique is that the "text plane" of a scanner is always
properly aligned for all the sharpest possible lettering. When the subject is on an
angle, the camera can only truly focus on a small portion of the lettering. Which
is what the lens plane "tilt" feature of a view camera was all about.

As this example shows us, you first crop the meter face to the correct left and
right edges. Then you scale the left edge to get its size right. Then you rotate the
face 90 degrees and offset the original right edge to get the proper amount of
climb. You then reduce the gain of the right edge to get the proper amount of
scaling. Finally, you rotate back, knockout to white and paste the face on top of
the original photo. With practice, this takes only a few minutes.

A Magic Backgrounder

There’s lots of other tricks you can do by examining each RGB pixel and then
selectively modifying them. MAGFILL1.PSL is a PostScript-as-Language routine of
mine that replaces a white background with a "magic" background consisting of
three or more random colors. The colors are often closely spaced to give a "rich"
or "interesting" appearance. They are similar to KNOCKOUT.BMP.

The "magic" part comes in that random dots like these virtually eliminate any
JPEG edge artifacts!. Giving you much better online image quality. MAGFILL1.PSL
is also much faster than hand patching KNOCKOUT.BMP, since you simply
knockout to white. In theory, your JPG filelengths will get somewhat larger, but
this does not seem to be significant.

—5—

http://www.tinaja.com/psutils/swingt01.psl
http://www.tinaja.com/psutils/swingt01.psl
http://www.tinaja.com/images/bargs/marcon01.bmp
http://www.tinaja.com/images/bargs/marconz1.jpg
http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/glib/basis.pdf
http://www.nikon.com
http://www.tinaja.com/images/bargs/sencri01.jpg
http://www.tinaja.com/psutils/magfill1.psl
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/knockout.bmp
http://www.tinaja.com/psutils/magfill1.psl
http://www.tinaja.com/glib/knockout.bmp

Here is how I normally use MAGFILL1.PSL: I first grab an image using a digital
camera or scanner. The image is scaled to a large convenient .BMP worksize and
cropped. About six megs seems to be best for eBay stuff. The image then may get
distorted into "architect’s perspective" using our the SWINGT01.PSL routines.

At this point, the image may still contain some true white pixels. We get rid of
these using NOWHIT01.PSL to eliminate any future "punch thru" problems. It is
important to run NOWHIT01.PSL after all swings and tilts, resizing, or other early
adjustments, to make sure no inadvertent true whites get added.

The image is then traced to a white outline and then knocked out by a simple
Paint exterior fill. MAGFILL1.PSL is brought up in a wp or editor and its filenames
are changed. It is resaved as an ordinary ASCII textfile and sent to Distiller. The
magic background appears in the chosen image in a few seconds. A catalog of
favorite magic backgrounds is easily included.

For Further Help

Some additional bitmap examples include our histogram analyzer, a standalone
shading corrector, a standalone saturation adjuster, and my not-quite-ready
burnout reducer.

Consulting assistance on any and all of these topics can be found through our
InfoPack service. Related Guru’s Lair library pages include our GuruGram,
PostScript, Acrobat, Auction Help and Fonts & Images selections.

Additional GuruGrams await your ongoing support as a Synergetics Partner.

—6—

http://www.tinaja.com/psutils/magfill1.psl
http://www.tinaja.com/psutils/swingt01.psl
http://www.tinaja.com/psutils/nowhit01.psl
http://www.tinaja.com/psutils/nowhit01.psl
http://www.tinaja.com/psutils/magfill1.psl
http://www.adobe.com
http://www.tinaja.com/psutils/histog01.psl
http://www.tinaja.com/psutils/shade1.psl
http://www.tinaja.com/psutils/satadj01.psl
http://www.tinaja.com/psutils/noburn01.psl
http://www.tinaja.com/info01.asp
http://www.tinaja.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/auct01.asp
http://www.tinaja.com/aafont01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

